Published in Proceedings of 2008 USENIX Annual Technical Conference

Vx32: Lightweight User-level Sandboxing on the x86

Bryan Ford and RussCox
Massachusetts Institute of Techndogy
{ baford,rsc} @pdacs.csail .mit.edu

Abstract

Code sandboxngis useful for many purposes, but most
sandboxng techniques require kernel modifications, do
not completely isolate guest code, or incur substantial
performance costs. Vx32 is a multi purpose user-level
sandboxthat enables any applicaion to load and safely
exeaute one or more guest plugrins, confining ead guest
to a system cdl APl controlled by the hast application
and to a restricted memory region within the host's ad-
dress pace Vx32runs guest code dficiently on severa
widespread operating systems withou kernel extensions
or speda privileges; it proteds the host program from
both reads and writes by its guests; andit all owsthe host
to restrict the instruction set avail able to guests. The key
to vx32s combination o portability, flexibility, and effi-
ciency isits use of x86 segmentation hardware to sand-
box the guest’s data acceses, along with a lightweight
instructiontrandator to sandbox guest instructions.

We evaluate vx32 using microbenchmarks and whole
system benchmarks, and we examine four applications
based on vx32 an archival storage system, an extensi-
ble pubic-key infrastructure, an experimental user-level
operating system running atop ancther host OS, and a
Linux system cdl jail. The first three goplicaions ex-
port custom APIs independent of the host OS to their
guests, makingtheir plug-insbinary-portable acosshost
systems. Compute-intensive workloads for the first two
appli cationsexhibit between a30% slowdowvn anda 30%
speadup on vx32relative to native exeaution; speedups
result from vx32's instruction trandator improving the
cadelocdity of guest code. The experimental user-level
operating system all ows the use of the guest OS's appli-
caions alongside the host’s native goplications and runs
faster than whale-system virtual machine monitors such
as VMware and QEMU. The Linux system cdl jail in-
cursupto 80% overheal but requiresno kernel modifica
tions and is del egation-based, avoiding concurrency vul-
nerabiliti es present in ather interposition mechanisms.

1 Introduction

A sandbo is a mechanism by which a host software
system may exeaute abitrary guest code in a confined
environment, so that the guest code canna compromise
or affed the host other than acording to a well-defined
palicy. Sandboxng is useful for many purposes, such
as running urtrusted Web applets within a browser [6],
safely extending operating system kernels [5, 32], and
limiting pdential damage caised by compromised ap-
plicaions[19,22]. Most sandbong mechanisms, how-
ever, either requireguest codeto be (re-)writtenin atype-
safe language[5, 6], depend onspedal OS-spedfic fadl-
ities [8, 15,18, 19], alow guest code unrestricted read
accessto the host's gate [29,42], or entail a substantial
performance @st 33,34, 37].

Vx32 is a lightweight sandboxfor the x86 architec
ture that enables applicaions to run urtrusted code dfi-
ciently on standard operating systems withou requiring
spedal privileges or kernel extensions. The vx32 sand-
box runs dandard x86 instructions, so guest code may
be written in any language including assembly language,
and may use advanced processor feaures such as vec
tor (SE) instructions. An application may haost multiple
sandboxinstances at once; vx32 gvesead guest itsown
dynamicdly movable andresizable address pacewithin
the host's ace Vx32 confines both guest reads and
guest writes to the guest’s designated addressregionin
the host, proteding bah the host’s integrity and the pri-
vagy of any senditive data (e.g., S keys) it may hold
in its address pace Vx32 confines eat guest’s g/stem
cdlsto an APl completely determined by the host appli-
cdion. The guest system cdl APl need na have any re-
lationship to that of the host operating system, so the host
application can ke its guest environments independent
of and patable acosshaost operating systems.

The key to vx32s combination o flexibility and effi-
ciency isto usedifferent mechanismsto sandbox dita ac
cesses and instruction exeaution. Vx32 sandboyes guest

data access using the x86 processor’'s ssgmentation
hardware, by loading a spedal data segment into the ds,
es, and ss registers before exeauting guest code. Ac-
cessng datathroughthis ssgment automaticdly confines
both reals and writes to the guest’s designated address
region, with no performance overhead since the proces-
sor always performs sgment translation anyway.

Since the vx32 sandboxruns entirely in user mode,
however, vx32 cannd rely on the procesr’s privilege
level medhanism to prevent the guest from esceping its
sandbox—for example, the x86 privilege levels aone
would nat prevent the guest from changing the segment
registers. VVx32 therefore prevents guest code from ex-
eauting “unsafe” instructions auch as sgment register
loads by using dyramic instruction trandation [9, 34],
rewritingead guest code sequenceinto a “safe” form be-
fore exeauting it. This dynamic trandation incurs some
performance penalty, espedally on control flow instruc-
tions, which vx32 must rewrite to keep exeaution con-
finedto its cache of safe, rewritten code. Sincevx32con-
fines data acceses via segmentation, it does not need to
rewrite most computationinstructions, leaving safe ode
sequences as compad and efficient asthe guest’s original
code. Vx32'son-demandtrandation can in fad improve
the cate locdity of the guest code, sometimes result-
ingin better performancethan the original code, as €
previously in dynamic optimization systems|[4].

Becaise common OS kernels aready provide user-
level access to the x86 segmentation hardware, vx32
does nat require any spedal privileges or kernel exten-
sions in order to fully sandbox al memory reads and
writes that guest code performs.

Vx32isimplemented as a library that runs on Linux,
FreeBSD, and Mac OS X and is being used in several
applicaions. VXA [13] is an archival storage system
that stores exeautable decoders along with compressed
content in archives, using vx32to run these decoders at
extradion time; thus the achives are “self-extrading’
but aso safe and OS-independent. Alpaca[24] is an
extensible PKI framework based on poof-carrying au-
thorization [3] that uses vx32 to exeaute ayptographic
algorithms auch as SHA-1[12] that form comporents of
untrusted PKI extensions. Plan 9 VX is a port of the
Plan 9 operating system [35] to user space Plan 9 kernel
code runs as a user-level processatop another OS, and
unmodified Plan 9 user applicaionsrun uncer the Plan 9
kernel’s control inside vx32. Vxlinux is a delegation-
based system cdl interposition tod for Linux. All of
these goplications rely on vx32to provide nea-native
performance if an extension mechanism incurs substan-
tial slowdown, then in pradice most users will forego
extensibility in favor of faster but lessflexible schemes.

Previous paperson VXA [13] and Alpaca[24] briefly
introduced and evaluated vx32in the context of those go-

plicaions. This paper focuses on the vx32 virtua ma-
chineitself, describingits ssndboxXngtecniquein detalil
and analyzing its performanceover avariety of applica
tions, host operating systems, and herdware. Onred ap-
plicdions, vx32 consistently exeautes guest code within
afador of two of native performance; often the overhead
isjust afew percent.

This paper first describesbadgroundandrelated work
in Sedion 2, then presents the desigh o vx32in Sec
tion 3 Sedion 4 evaluates vx32 onits own, then Sec
tion 5 evaluates vx32 in the mntext of the eéove four
applicaions, and Sedion 6 concludes.

2 Redated Work

Many experimental operating system architedures per-
mit one user processto isolate and confine others to en-
force a ‘principle of least privilege™: examples include
cgpability systems [25], L3's clan/chief model [26],
Fluke's nested process architedure [14], and generic
software wrappers [15]. The primary performance @st
of kernel-mediated sandboyesliketheseisthat of travers-
ing hardware protedion damains, thoughwith careful
design this cost can be minimized [27]. Other systems
permit the kernel itself to be extended with untrusted
code, via domain-spedfic languages [31], type-safe lan-
guages [5], proof-carrying code [32], or spedal kernel-
spaceprotedion mechanisms [40]. The main challenge
in al of these gpproacdhes is deploying a new operating
system architedure and migrating applicdionsto it.
Other work has retrofitted existing kernels with sand-
boxing mechanisms for user processs, even taking ad-
vantage of x86 segments much as vx32 daes [8]. These
mechanisms dill require kernel modificaions, however,
which arenot easily portable even between different x86-
based OSes. In contrast, vx32 operates entirely in user
space adis easily portable to any operating system that
provides gandard feaures described in Sedion 3
System cdl i nterposition, asandboxngmethodimple-
mented by Janus [19] and similar systems [7,17,18, 22,
36], requires minor modificaions to existing kernels to
provide ameans for one user processto filter or handle
seleded system cdls made by ancther process Since
the sandboed processs g/stem cdls are still fielded by
the host OS before being redireded to the user-level
“supervisor” process system cdl i nterposition assumes
that the sandboyed process uses the same basic system
cdl APl as the host OS: the supervisor process can-
naot efficiently export a completely different (e.g., OS-
independent) APl to the sandboxed process as a vx32
host application can. Some system cdl interposition
methods also have concurrency-related seaurity vulnera-
biliti es [16,43], whose only clea solutionis delegation-
based interposition [17]. Although vx32 las other uses,

it can be used is to implement efficient del egation-based
system cdl i nterpaosition, as described in Sedion 54.

Virtualization hasbeenin usefor decalesfor purposes
such as dharingresources[10] and migratingapplications
to new operatingsystems[20]. Sincethex86architedure
did na provide explicit suppatfor virtuali zaion urtil re-
cently, x86-based virtual madchines such as VMware [1]
had to use dynamic instruction trandation to run guest
kernel code in an ungrivileged environment while sim-
ulating the gopeaance of being runin privileged mode:
thedynamictrandator rewritesinstructionsthat might re-
ved the aurrent privilege level. Virtua madines usually
do na trandate user-mode guest code, relyinginsteal on
host kernel extensions to run user-mode guest code di-
redly in a suitably constructed exeaution environment.
As described in Sedion 5.3, vx32's dynamic trandation
can be used to construct virtual machines that need no
host kernel extensions, at some performance ®st.

Dynamic instruction trandation is frequently used for
purpases other than sandboxng, such as dynamic opti-
mizaion [4], emulating aher hardware platforms|[9, 44]
or code instrumentation and debuggng [28,34]. The
latter two uses require much more complex code trans-
formations than vx32 performs, with a correspondngly
larger performance mst [37].

A software fault isolation (SH) system [29,42] stati-
cdly transforms guest code, preprocessngit to creae a
spedalized versionin which it is easy for the verifier to
ched that al datawrite instructions write only to a des-
ignated “guest” addressrange, and that control transfer
instructions branch orly to “safe” code entrypoints. SH
originaly assumed a RISC architedure [42], but PittS-
Fleld adapted SH to the x86 architecure [29]. SH’s
preprocessng eliminates the need for dynamic instruc-
tion trandation at runtime but increases program code
size eg., 60%-100% for PittSHeld. For efficiency,
SH implementations typicdly sandbox ony writes and
branches, not reads, so the guest can fredy examine host
code and data. This may be unacceptableif the host ap-
plication hdds ensitive data such as passvords or S
keys. The main challenge in SH on x86is the achi-
tedure's variable-length instructions: opcode sequences
representing ursafeinstructions might appea in the mid-
die of legitimate, safe instructions. PittSHeld addresses
thisproblem by inserting neops s that all branch targets
are 16-byte digned and then ensures that branches clea
the bottom four bits of the target address MiSHT [39]
sidesteps this problem for dired jumps by loading orly
codethat was assembled and cryptographicaly signed by
atrusted asembler. Indired jumps consult a hash table
listing valid jump targets.

Applications can use type-safe languages auch as
Java[6] or C#[30] to implement sandboxng completely
in user space This approach requires guest code to be

written in a particular language, making it difficult to
reuse existinglegacy code or use advanced procesor fea
tures auch as vedor instructions (SSE) to improve the
performanceof compute-intensive code.

3 TheVx32 Virtual Machine

The vx32 virtual machine separates data sandboxng
from code sandbong, using dfferent, complementary
mechanisms for ead:. x86 segmentation hardware to
sandbox dita references and dyramic instruction trans-
lation to sandboxcode. The dynamic instruction trans-
lation prevents malicious guest code from escaping the
data sandbox Vx32's dynamic trandationis smple and
lightweight, rewriting orly indired branches and replac
ing ursafe instructions with virtual traps. The use of
dynamic trandation also makes it possble for client li-
brariesto restrict the instruction set further.

This sdion describes the requirements that vx32
places on its context—the procesor, operating system,
and glest code—andthen explainsthe vx32 design.

3.1 Requirements

Procesor architedure. Vx32is designed aroundthe
x86 architedure, making the assuumption that most sys-
tems now and in the foreseedle future ae dther x86-
based or will be ale to emulate x86 code dficiently.
This assumption appeas reasonable in the aurrent desk-
top and server computing market, athoughit may pre-
vent vx32from spreadingeasily into other domains, such
as game cnsoles and handheld mobhil e devices.

Vx32 uses proteded-mode segmentation, which has
been integral to the x86 architecture since before its ex-
tensionto 32 Lits[21]. Therecent 64-bit extension of the
architedure disables ssgment trandation in 64-bit code,
but still provides ssgmentationfor 32-bit code[2]. Vx32
therefore caana use segmentation-based data sandbox
ing to run 64hit guest code, but it can still run 32hbit
sandboyed guest code within a 64-bit host applicaion.

Host operating system. Vx32requiresthat the host OS
provide amethod d inserting custom segment descrip-
torsinto the gpplicalion’'sloca descriptor table (LDT), as
explained below. The host OS can easily and safely pro-
vide this rvice to al applicaions, provided it chedks
and restricts the privileges of custom segments. All
widely-used x86 operating systems have this feaure.

To céach andisolate exceptions caused by guest code,
vx32 redlsto register itsown signal handersfor proces-
sor exceptions auch as segmentation faults and floating
point exceptions. For full functionality and robustness
the host OS must all ow vx32to handethese signalsona

10ne Windows vulnerability, MS04-011, was caused byinadequate
chedks on application-provided LDT segments: this was merely a bug
in the OS and nd an isaue with custom segments in general.

separate signal stadk, passng vx32the full saved register
state when such a signal occurs. Again, al widely-used
x86 operating systems have this cgpahilit y.

Finally, vx32 can benefit from being able to map disk
files into the host applicaion's address pace ad to
control the read/write/exeaute permissons on individual
pages in the mapping. Althoughthese fedures are not
gtrictly required by vx32 they are, once aain, provided
by all widely-used x86 operating systems.

On modern Unix variants such as Linux, FreeBSD,
and OS X, spedfic system cdls satisfying the abovere-
quirementsaremodify_1dt/i386_set_1dt, sigaction,
sigaltstack, mmap, andmprotect. WindowsNT, 200Q
and XP suppat equivalent system cdl s, thoughwe have
not ported vx32to Windows. We have not examined
whether Windows Vista retains this functionality.

Guest code. Although vx32 ges x86 segmentation
for data sandboxng, it assumes that guest code running
in the sandboxconforms to the 32-bit “flat model” and
makes no explicit referenceto segment registers. In fad,
vx32rewrites any guest instructionsreferring to segment
registers 0 that they raise avirtual ill egal instruction
exception. This “flat model” assumption is reasonable
for pradicdly all modern, compiled 32-bit x86 code; it
would typicdly be aproblem only if, for example, the
sandboyed guest wished to run 16bit DOS or Windows
code or wished to run a nested instance of vx32itself.

Some modern multithreading libraries use segment
registers to provide quick accessto threal-locd storage
(TLS); such libraries canna be used in guest code under
the aurrent version o vx32, but thisis not afundamental
limitation of the gpproach. Vx32 could be enhanced to
allow guest code to creae new segmentsusingemulation
techniques, perhaps at some performance @st.

Host applications may impose further restrictions on
guest codethroughconfigurationflagsthat dired vx32to
rejed spedfic dasses of instructions. For example, for
consistent behavior aaoss procesor implementations,
the VXA archiver described in Sedion 51 disalows the
non-deterministic 387floating-point instructions, forcing
applicaionsto use deterministic SSE-based equivalents.

3.2 Datasandboxing: segmentation

In the x86 architedure, segmentationis an addresstrans-
lation step that the processor appliesimmediately before
pagetrandation. In additionto the @ght general-purpose
registers (GPRs) accesdble in user mode, the procesor
provides $x segment registers. During any memory ac
cess the processor uses the value in ore of these seg-
ment registers as an index into ore of two segment trans-
lation tables, the globd descriptor table (GDT) or lo-
cal descriptor table (LDT). The GDT traditionally de-
scribes gments shared by all processs, whilethe LDT
contains segments gedfic to a particular process Upon

Host Operating System
Kernel Address Space

(x86-32 or x86-64)

VA VAV AVAN

Host Application
Address Space

(x86-32 or x86-64)

(guest address space expands
as heap grows) *

guest heap

Flat Model
Code, Data
Segments

guest code, data, bss
Guest

default guest stack Data
¥ Segment
Guest Address Space
(always x86-32) 0
_ Guest
guest execution state, Control
code fragment cache Segment

vx32 sandbox library ‘

Host Application
code, data, bss, heap
(x86-32 or x86-64)

N

Figure 1. Guest and Host AddressSpaceStructure

finding the gppropriate descriptor table entry, the proces-
sor chedks permisson hts (read, write, and exeaute) and
compares the virtual address of the requested memory
access against the segment limit in the descriptor table,
throwing an exception if any of these chedks fail. Fi-
naly, the processor adds the segment base to the virtual
addressto form the linear addressthat it subsequently
uses for page trandation. Thus, a normal segment with
base b and limit | permits memory accesses at virtual ad-
dressesbetween Oandl, and mapsthesevirtual addresses
to linea addresses from b to b+|. Today’s x86 operating
systems typicdly make segmentation trandation a no-op
by usingabase of 0 andalimit of 232-1. Eveninthis -
cdled “flat model,” the processor continues to perform
segmentationtrandation: it canna be disabled.

Vx32 all ocates two segmentsin the host applicaion's
LDT for ead guest instance a guest data segment and a
guest control segment, as depicted in Figure 1.

The guest data segment corresponds exadly to the
guest instance's address pace the segment base points
to the beginning o the address pace(addressO in the
guest instance), and the segment size is the guest’s ad-
dress pacesize Vx32 exeautes guest code with the
procesor’s ds, es, and ss registers halding the selec

grow-down area (fragment index table) \

Code fragment cache
* Guest
Control
grow-up area (code fragments) Segment

Entrypoint hash table

Fixed execution state, register save area /

Figure 2: Guest Control Segment Structure

tor for the guest data segment, so that data reads and
writes performed by the guest accessthis ssgment by de-
fault. (Code sandboxng, described below, ensures that
guest code cana override this default.) The segmenta-
tion hardware ensures that the address pace gpeas at
address0 in the guest and that the guest cannat access
addresses past the end o the segment. The trandation
also makesit possblefor the host to unmap aguest’s ad-
dress gacewhen it is not in use and remap it later at a
different host address to relieve congestionin the host’s
address pacefor example.

The format of the guest data segment is up to vx32s
client: vx32 orly requiresthat it be a @ntiguols, page-
aligned range of virtual memory within the host address
space Vx32 providesaloader for ELF exeautables[41],
but clients can load guests by other means. For example,
Plan 9 VX (seesedion 5.3) uses mmap and mprotect to
implement demand loading of Plan 9 execautables.

The guest control segment, shown in Figure 2, corn-
tains the data needed by vx32 duing guest exeaution.
The segment begins with a fixed data structure contain-
ing saved host registers and ather data. The entrypoint
hash table and code fragment cache make up most of the
segment. The hash table maps guest virtual addresses to
code sequences in the ade fragment cace. The trans-
lated code itself neads to be included in the guest con+
trol segment so that vx32 can write to it when patching
previously-trand ated uncondtional branchesto jump di-
redly to their targets[38].

Vx32 exeates guest code with the processor’s fs or
gs register haldingthe selecor for the guest control seg-
ment. The vx32runtime acceses the control segment by
spedfying a segment override onits data accssinstruc-
tions. Whether vx32 wses fs or gs depends on the host
system, as described in the next sedion.

3.3 Code sandboxing: dynamic trandation

Datasandboxngensuresthat, usingthe proper segments,
data reals and writes cannd escgpe the guest’s address
space Guests could still escape using segment override
prefixes or segment register loads, however, which are
unprivileged x86 ogerations. Vx32 therefore uses code

scanning and dyramic translation to prevent guest code
from performing such unsafe operations.

Asin Valgrind [34] and just-in-time compilation [11,
23], vx32's code scanning and trandation is fully dy-
namic andrunson demand. The guest isall owed to place
arbitrary code sequences in its address pace but vx32
never exeautes this patentiall y-unsafe ade diredly. In-
stead, whenever vx32entersaguest instance, it translates
afragment of code starting at the guest’s current instruc-
tion pdnter (eip) to produce a equivalent safe fragment
in vx32s code fragment cade, which lies outside the
guest’s address pace Vx32 also recrds the eip and
addressof the trandated fragment in the entrypoint hash
tablefor reuseif the guest branchesto that eip again. Fi-
naly, vx32 jumps to the trandated code fragment; after
exeauting, the fragment either returns control to vx32 a
jumps diredly to the next trandated fragment.

On 32-hit hosts, vx32 rever changesthe ade segment
register (cs): it jumps diredly to the gpropriate frag-
ment in the guest’s code fragment cade. Thisis sfe be-
cause the aode fragment cade only contains sfe trans-
lations generated by vx32itself. The code trandator en-
sures that all branches inside trandated code only jump
to the beginning o other trandated fragments or badk to
vx32 to hande events like indired branches or virtual-
ized guest system cdls.

On 64bit hosts, since segmentation orly operates
while exeauting 32bit code, vx32 must creae aspedal
32-bit code segment mappingthe low 4GB of the host ad-
dress pacefor use when running guest code. The guest
control and data segments must therefore reside in the
low 4GB of the host address paceon such systems, al-
though dher host code and data may be ebove 4GB.

Because vx32 rever exeautes code in the guest’s ad-
dress pacediredly, vx32 requires no static preprocess
ing o verificaion o guest code before it is loaded, in
contrast with most other sandboxng techniques. In-
dedd, reliably performingstatic preprocessngand verifi-
cdionis problematic onthe x86 dweto the achitedure’'s
variable-length instructions [29, 39].

Trandation overview. Vx32's trandation o guest
codeinto code fragmentsis asimple procedurewith four
stages: scan, simplify, place and emit. The stages share
a “hint table” containinginformationabou ead instruc-
tionin the fragment being trandlated. The eventual out-
put is both the trandated code and the hint table, which
the trandator savesfor later use by exception handlers.

1. Scan. The trandator first scans guest code starting
at the desired eip, deading x86instructionsto de-
termine their lengths and any required transforma-
tions. The tranglator scans forward urtil it reades
an urncondtional branch or a fragment size limit
(currently abou 128 bytes of instructions). The

scan phese records the length, original offset, in-
struction type, and worst-case trandated sizein the
hint table. Jumps are the only instructions whose
trandated sizeis not known exadly at this point.

2. Smplify. The next phase scans the hint table for di-
red branches within the fragment being trand ated;
it marksthe onesthat can betranslated into short in-
trafragment branchesusing 8-bit jump offsets. After
this phase, the hint table mntains the exad size of
the trandation for eadth origina guest instruction.

3. Place Usingthe now-exad hint table information,
the trandator computes the exad offset of ead in-
struction’s trandation. These offsets are needed to
emit i ntrafragment branchesin the last phase.

4. Emit. The final phase writes the trandation into
the code fragment cadhe. For most instructions, the
trandation is merely a copy o the origina instruc-
tion; for “unsafe” guest instructions, the trandation
is an appropriate sequence tosen by vx32

Vx32 saves the hint table, at a st of four bytes per
original instruction, in the mde fragment cate dong
side ead trandation, for usein exception handingasde-
scribed in Sedion 34. The hint table could be discarded
and recmmputed during exception handling, trading ex-
ception handling performancefor code cade space

The rest of this ®dion dscusses edfic types of
guest instructions. Figure 3 shows concrete examples.

Computationd code. Trandation leares most instruc-
tions intad. All ordinary computation and data acces
instructions (add, mov, and so on) and even floating-point
and vedor instructions are “safe” from vx32's perspec
tive, requiring notransglation, because the segmentation
hardware chedks all data reads and writes performed by
these instructions against the guest data segment’s limit.
The only computation instructions that vx32 daes not
permit the guest to perform diredly are those with x86
segment override prefixes, which change the segment
register used to interpret memory addresses and could
thus be used to escgpe the data sandbox

Guest code may fredy use dl eight general-purpose
registers provided by the x86 architedure: vx32 avoids
both the dynamic register renaming and spilli ng o trans-
lation engines like Valgrind [34] and the static register
usage restrictions of SH [42]. Allowing gwest code to
use dl the registers presents a pradicd challenge for
vx32, however: it leaves no genera-purpose register
avail able where vx32 can store the aldressof the saved
host registers for use while entering o exiting guest
code. As mentioned abowve, vx32 solves this problem by
pladngthe informationin the guest control segment and
using an otherwise-unused segment register (fs or gs)
to addressit. (Although vx32 des not permit segment

override prefixes in guest code, it is freeto insert them
for its own usein the code fragment trandlations.)

It iscommon novadaysfor thread libraries to use one
of these two segment registers—fs or gs—as a pointer
to thread-locd storage. If vx32 reused the thread-locd
segment register, it would have to restore the segment
register before cdli ng any thread-aware li brary routines,
including routinesthat perform locking, such asprintf.
On recent GCC-based systems, the thread-locd segment
register iseven used in functioncdl prologuesto look up
the stack limit duringastack overflow ched. Also, some
64-bit x86 operating systems (e.g., Linux) use privil eged
instructionsto initi ali zethe thread-locd segment register
with a base that isimpossble to represent in an ordinary
32-bit segment descriptor. On such systems, restoring
the thread-locd segment register would require asystem
cdl, increasing the cost of exiting guest code. For these
reasons, vx32 uses whichever segment register is not be-
ing used by the host OS'sthread library. With care, vx32
could share the thread library’s segment register.

Control transfers. To kegp guest exeaution safely con-
fined to its cade of trandated code fragments, vx32
must ensure that al control transfer instructions—cals,
jumps, and returns—go to vx32-generated trandations,
not to the original, unsafe guest code.

In the worst case, a control transfer must search the
tranglation hash table, invoking the instruction tranda-
tor if no trandation exists. Once atrangation has been
found vx32 can rewrite or “patch” dired jumps and d-
red cdlsto avoid futurelookups [34, 38]. To implement
this patching, the instructiontrandator initiall y trandates
ead fixed-target jump or cdl instruction to jump to a
stubthat invokesthe hash table lookupand kranch patch-
ing function. The branch patching functionlooks up the
target addressand then rewrites the jump or cdl i nstruc-
tionto transfer diredly to the target trandation.

Patching cannat be used for indired branches, includ-
ingindred cdlsandreturns. This hash table lookupfor
indired branches, espedally during return instructions,
isthe main source of dowdownin vx32

Other dynamic trandation systems optimize indired
branches by cadiing the last target of ead indired
branch and the correspondng trandation address or by
maintaining a cate of subroutine return targets analo-
gousto what many modern processors do[37]. Such op-
timizationswould be unlikely to benefit vx32: itsindired
target lookup mth isonly 21 instructionsin the common
case of an immediate hash table hit. Only the computa-
tion o the hash index—5 instructions—would be dimi-
nated by wsing a single-entry branch cade. Most of the
other instructions, which save and restore the x86 cond-
tion code flags and afew guest registersto give the target
lookupcode “room to work,” would still be required no
matter how simple the lookupitself.

(a) Anindirect jump to the address stored at 08049248:
08048160 jmp [0x08049248]
U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x2c], ebx
b7d8d107 mov ebx, [0x08049248]
b7d8d10d jmp vxrun_Tlookup_indirect

The fs segment register points to the guest control segment.
Thefirst line of evey trandated code fragment is aprologue
that restores the guest’s ebx (at b7d8d0f9 in this case), be-
cause vx32 jumps into a fragment using a jmp [ebx] in-
struction.

The trandation d the jmp instruction itself begins on the
seand line (at b7d8d100). The translated code saves ebx
badk into the guest control segment, loads thetarget eip into
ebx, and then jJumps to vxrun_Tookup_indirect, which lo-
caes and jumpsto the catied fragment for the guest address
in ebx.

The first two lines canna be optimized ou: other frag-
ments may diredly jump past the first instruction, as shown
below.

(b) A direct jump to 08048080:
08048160 jmp 0x08048080
U
b7d8d0f9 mov
b7d8d100 jmp
b7d8d105 mov fs:[0x5c], 0x00008115
b7d8d110 jmp vxrun_Tlookup_backpatch
b7d8d115 dword 0x08048080
b7d8d119 dword 0xb7d8d105

ebx, fs:[0x2c]
0xb7d8d105

The first jmp in the trandation is initially a no-op that just
jumpsto the next instruction, but vxrun_lookup_backpatch
will rewrite it to avoid subsequent lookups. The word
stored into fs:[0x5c] is an fs-relative offset telling
vxrun_Tlookup_backpatch where in the control segment to
find the two dwords arguments at b7d8d115. The control
segment for the guest begins at b7d85000 in this example.
The first argument is the target eip; the second is the
address of the end o the 32-bit jump offset to be patched.
Since ebx has not been spilled at the point of the jump,
vxrun_Tookup_backpatch patchesthejump to skip the one-
instruction prologue in the target fragment that restores ebx.

(c) A return instruction:
08048160 ret

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x2c], ebx
b7d8d107 pop ebx
b7d8d108 jmp vxrun_Tlookup_indirect

A return is an indired jump to an address popped off the
stack.

(d) An indirect call:
08048160 «call

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x2c], ebx
b7d8d107 mov ebx, [0x08049248]
b7d8d10d push 0x08048166
b7d8d112 jmp vxrun_Tlookup_indirect

[0x08049248]

The trandation is amost identicd to the one in (a). The
added push instruction saves the guest return address onto
the stack.

(e) A direct call:

08048160 call 0x8048080

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 push 0x8048165
b7d8d105 jmp 0xb7d8d10a

b7d8d10a mov
b7d8d115 jmp
b7d8dlla dword
b7d8dlle dword

fs:[0x5c], 0x000081la
vxrun_Tlookup_backpatch
0x08048080
0xb7d8d10a

The trandation is identicd to the one in (b) except for the
addition o the push that saves the return address

(f) A softwareinterrupt:
08048160 1int 0x30

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x20], eax
b7d8d106 mov eax, 0x230
b7d8d10b mov fs:[0x40], 0x8048162
b7d8d116 jmp vxrun_gentrap

The tranglation saves the guest eax into the guest control
segment, loads the virtual trap number into eax (the 0x200
bit indicates an int instruction), saves the next eip into the
guest control segment, and then jumps to the virtual trap
hand er, which will stop the exeaution loop and return from
vx32, lettingthe library’s cdl er hande the trap.

(9) An unsafeor illegal instruction:
08048160 mov

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x20], eax
b7d8d106 mov eax, 0x006
b7d8d10b mov fs:[0x40], 0x8048160
b7d8d116 jmp vxrun_gentrap

ds, ax

The trandation generates a virtual trap with code 0x006. In
contrast with (f), for ill egal i nstructions the saved eip points
at the guest instruction itself rather than just past it.

Figure 3: Guest code and vx32trandations. Most instructions—arithmetic, data moves, and so on—are unchanged by trans-

lation.

Traps. Vx32trandatesinstructionslike int, syscall,
and sysenter, which namally generate hardware traps,
into code sequences that generate virtual traps instead:
they record the trap code and then cause vx32to return
to its cdler, allowing the host applicaion to handle the
trap as it wishes. Typicd applicationslookfor a spedfic
trap code to interpret as a “virtual system cdl” andtrea
any other trap as reason to terminate the guest.

Privileged or unsafe instructions. Vx32 trandates
privileged or unsafe instructions (for example, kernel-
mode instructions or those user-mode instructions that
manipulate the segment registers) into sequences that
generate (virtual) ill egal i nstruction traps.

3.4 Exception handling

With help from the host OS, vx32 catches processor ex-
ceptions in guest code—for example, segmentation vi-
olations and floating pant exceptions—and turns them
into virtual traps, returningcontrol to the host appli caiion
with full i nformation about the exceptionthat occurred.

Sincethe eip reported by the host OS on such an ex-
ception pantsinto ore of vx32's code trandations, vx32
must trandate this eip bad to the arrespondng eip
in the guest’s original instruction strean in order for it
to make sense to the host applicaion o the developer.
To recover this information, vx32first locaes the trans-
lation fragment containing the aurrent eip and conwverts
the eip’s offset within the fragment to an offset from the
guest code addresscorrespondngto the fragment.

To locae the trand ation fragment containing the trap-
ping eip efficiently, vx32 arganizes the code fragment
cade into two sedions as shown ealier in Figure 2:
the code trandations and instruction ofset tables are d-
located from the bottom up, and the fragment index is
allocaed from the top dawvn. The top-down pation o
the cate isthus atable of all the trandation fragments,
sorted in reverse order by fragment address The excep-
tion handler uses a binary search in this table to find the
fragment containing a particular eip as well as the hint
table constructed duringtrandation.

Oncevx32'sexception hander haslocaed the corred
fragment, it performsa second bnary seach, thisonein
the fragment’s hint table, to find the exad addressof the
guest instruction correspondngto the aurrent eip.

Once the exception hander has trandated the fault-
ing eip, it can finaly copy the other guest registers un-
changed and exit the guest exeaution loop, transferring
control badk to the hast applicalionto handle the fault.

3.5 Usage

Vx32is ageneric virtual exeaution library; applications
dedde how to useit. Typicdly, applicaions use vx32
to exeaute guest code in a simple control loop load a
register set into the vx32 instance, and cdl vx32's run

function; when run eventually returnsavirtual trap code,
handle the virtual trap; repea. Diversity in vx32 appli-
cdions arises from what meaning they assgn to these
traps. Sedion 5 describes a variety of vx32 applicaions
and evaluates vx32in those ontexts.

Vx32 dlows the aedion o multiple guest contexts
that can be run independently. In a multithreaded host
application, different host threads can run dfferent guest
contexts dmultaneously with nointerference

4 \/x32 Evaluation

This =dion evaluates vx32 in isolation, comparing
vx32's exeaution against native execaution through mi-
crobenchmarks and whole-system benchmarks. Sec
tion 5evaluates vx32in the context of red applicaions.
Both sedions present experimentsrun onavariety of test
machines, listed in Figure 4.

4.1 Implementation complexity

The vx32 sandbox library consists of 3,800 lines of C
(1,500 semicolons) and 500lines of x86 assembly lan-
guage. The aode trandator makes up abou half of the
C code. Vx32runson Linux, FreeBSD, and MacOS X
withou kernel modificaions or accessto privileged op-
erating system fedures.

In addition to the library itself, the vx32 system pro-
vides a GNU compil er toolchain and a BSD-derived C
library for optional use by guests hosted by applicaions
that provide aUnix-like system cdl i nterface Host ap-
plicaions are, of course, freeto use their own compil ers
and librariesandto design new system cdl i nterfaces.

4.2 Microbenchmarks

To uncerstand vx32s performance @sts, we wrote a
small suite of microbenchmarks exercising ill ustrative
cases. Figure 5 showsvx32's performanceonthese tests.

Jump. This benchmark repeas a sequence of 100 ne
op short jumps. Because ashort jump isonly two bytes,
thetargetsare only aligned on 2byteboundaries. In con
trast, vx32's generated fragments are digned on 4byte
boundxries. The procesors we tested vary in how sensi-
tive they are to jump alignment, but almost al run con-
siderably faster on vx32s 4-byte digned jumps than the
2-byte jumps in the native code. The Pentium 4 and the
Xeon are unaffeded.

Jumpal. This benchmark repeds a sequence of 100
short jumps that are spaced so that ead jump target is
aligned ona 16-byte boundiry. Most processors exeaute
vx32's equivalent 4-byte digned jumps a littl e slower.
The Pentium 4 and Xeon are, again, unaffeded.

Jumpfar. This benchmark repeas a sequence of 100
jumps gacel so that ead jump target is aligned ona
4096byte (page) boundry. This is a particularly hard

L abel CPU(s) RAM Operating System
Athlon64 x86-32 1.0GHz AMD Athlon64 2800+ 2GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Core 2 Duo 1x2 2.33GHz Intel Core 2 Duo 1GB Mac OS X10.4.10
Opteron x86-32 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (32-hit)
Opteron x86-64 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (64-hit)
Pentium 4 3.06GHz Intel Pentium 4 2GB Ubuntu 7.10, Linux 2.6.22
Pentium M 1.0GHz Intel Pentium M 1GB Ubuntu 7.04, Linux 2.6.10
Xeon 2x2 3.06GHz Intel Xeon 2GB Debian 3.1, Linux 2.6.18

Figure4: Systemsused during vx32evaluation. The two Opteronlistings are asingle machine running dfferent operating systems.
The natation 1x2indicaes asingle-processor machine with two cores. All benchmarks used gcc 4.1.2.

o | n 3 @
~|© } W0 ©
0] -~
5 = o
©
< <
R
@ o o
4 — X x x %) 0 O
EZ2¢2 ©r
=33 | <
¥ S = |5 @ @
X 2 m(\]ﬁ' 3 o o™
nS $&29 2 T oF_ 29
3 x O xR8e 3 B o @ @
3 =3 XRX 3 N
E 5 x x SEEY = o < [N
Xxj.Egg Sgi‘ggg x X X £ Q
HE< 233 wnEvSge 222 © g
Sed o< 3 2 o 533
O»g“?%g nggoo X5 x s ‘c—nixxx T S| x| x S| x| x
2 — S=2EQ Y & So€ooo NDE299I 233 - ElE 2|53 HEIE]
=] c Q@8 O3e383883 [R Y el o|E|E|E Slc|c sl c
AEFXRR rgenen -9 e @ < 5[5 x| |S|12[5 (5 < =155 < =155
~« 2%y 2 (‘-QHD_HHH S 4LR Xl x|l = = X<l 5 = X lai| = X elai| | =
Eo @95 o o o a x D213 || D2 S |7 | D 2318 || D238 o]
(St S = =2 EEY C ¢ O|E|E[D|™|o ol& 2|om|o© O|E|E[D|»]|© O|E|E|D|»|©
©S oag g o S © O O) B RS Dl] O |,] B P2 Dl] S P Dl
Qo 4= 5 2 — N 2 2T = & S o o e e - ®|©|© S e el e e S o o R)
1 o 2 e EoclQ g ol X|R|R—8 x|[R|R—8 ol X | Q| R = o[X|R|R—
[< OO S0 o¢ o o S|=2 |« x [X% S[= x [< = x [< = < [<
S| o o @ Sads606 [Ogleldls|s| 12|l [Bls|s| |2]|elel3lsls| (|2]g|el3s|s
S N NN < o NIsl3|g[g(e NISE |gl|g(e Nfsl13|glg(e ~Nfsl13lglg(e
] o a4 o|E|E|S|a|la o|E Slo|o o|E|E|S|ala o|E|E(o|a|a
S o o o9 q4 e[E[E o) o 2(e elEfEe 2(e 22 hs o) ©
d [R S|lala Sl|la|o =1 =11 = =gy
s2ssee |Sl2[gg|s|o] S| [=Z]s]s] |S|&|&|Z|S]S] |S|e|&[=[S]|S
0 =19 271
jump jumpal jumpfar call callind nullrun syscall

Figure 5: Normalized run times for microbenchmarks running under vx32. Each bar plots run time using vx32 dvided by run
time for the same benchmark runring retively (small er bars mark faster vx32 runs). The benchmarks are described in Sedion 4.2.
Results for the Intel Xeon matched the Pentium 4 almost exadly and are omitted for spacereasons.

case for native exeaution, espedaly if the processor’s
instruction cadhe uses only the low 12 hits of the instruc-
tion addressas the cahe index. Vx32runsthis case sig-
nificantly faster on all processors, becaise of better in-
struction cache performancein the trandation.

Call. This benchmark repeaedly cdlsafunctioncon-
taining ony a return instruction. The cdl is a dired
branch, thoughthereturnis gill anindirea branch.

Callind. This benchmark is the same & call, but the
cdl isnow an indired branch, via aregister.

Comparing the bars for call against the bars for call-
ind may suggest that vx32 takes longer to exeaute dired
function cdls than indirea function cdls, but only rela
tiveto theunderlying hardware: avx32indired cdl takes
abou twice & longas avx32 dred cdl, while anative
indirea cdl takes abou four times as long as a native
dired cdl. The call bars are taller than the callind bars
not because vx32 exeautes dired cdls more slowly, but
because native hardware exeautes them so much faster.

Nullrun. This benchmark compares creding and ex-
eauting a vx32 gest instance that immediately exits
against forkingahaost processthat immediately exits.

Syscall. This benchmark compares a virtual system
cdl relayed to the host system against the same system
cdl exeauted netively. (The system cdl is close(-1),
which shoud betrivial for the OS to exeaute.)

4.3 Large-scalebenchmarks
The microbenchmarks help to charaderize vx32's per-
formance exeauting particular kinds of instructions, but
the exeaution o red programs dependscriticaly on hov
often the expensive instructions occur. To test vx32
on red programs, we wrote a500-line host application
cdled vxrun that loads ELF binaries [41] compiled for
a generic Unix-like system cadl interface The system
cdl interfaceis complete enoughto suppat the SFEC
CPU2006 integer benchmark programs, which we ran
both using vx32(vxrun) and retively. We ran orly the C
integer benchmarks; we excluded 403gcc and 429mcf
because they caused our test machines, most of which
have only 1GB of RAM, to swap.

Figure 6 shows the performanceof vx32 compared to
the native system on five different 32-bit x86 procesors.
On threeof the seven benchmarks, vx32incurs a perfor-

O~
™~
— [~ Te}
- 3 2 —— 3 Q9
[R - 9 N - =il
8 b= ¥ oy © 8]
) 10 : Sl 8o
i § < S5] 3
© = = < - ©
< i © o & q o
4 3 o ~ ® . al e = o Ral —
48894 S 9 a2y Kal Rl
NS o S i gt > o <@
o — o o e —

1 = 3| 3855 x 2 x| x|] x|] o -
3 Q325 o~ =13 I x S| x S| x S| x
£(2 o 221g|2 o =HE g2 HE HE £(2

1 X<l [Z]= BV ERE <o |22 <Ixlso| |27 x|l 2|7 x|l (2|2 x| (2=
0213 S 023 S 023 S AEE= St w23 Sl w23 i 0213 S
O|E|E d kel O|E|E d ksl ol|E|E 2o O|E|E 2l O|E|E 2l O|E|E 2l O|E|E kel
) © | . g5 © | . g5 © | . e o |- -y © |- JS © | L -y O &
4 szl x]2|8 sl=|2 x]|2(8 S|zl x]12(8 sl 2|28 AEEE SEEE R R
BEQE:X 82"5::* 8§¢g:x S»Evéz:x SEwE:x BEwE:x aﬁwgéx
E|lE[Z|e|S E|lE[D|e|S E|IE|D|e|S E|IE|D|e|S EIE|D|o|S EIE|D|o|S ElE|(S|o| S
N33 z[5]2 NIS[2]z[5]2 N33 zl5]2 NEIEIEEE NEIEIEEE NI312[z[5]2 NIS12]z[5]2
4 lol|2|2|<c|E| & NEIEREE NEIE REE MNE = HEE |22l <|8]5 NEL = BHEE NEL = REE
5|5(6|3|E|a S EEE S EEE R S EEEE G EEE G EEE R EEE

0 Ofafa|X|<|O Ofa|a|X|<|O0 O|la|a|X|<|O0 Ofafa|X|<|O Ofafa|X|<|O Ofafa|X|<|O ola|a|X|<|O

401.bzip2 456.hmmer 462.libquantum 445.gobmk 458.sjeng 400.perlbench 464.h264ref

Figure 6: Normalized runtimes for SFEC CPU2006 kenchmarks runring under vx32. Each bar plots runtime using vx32 dvided
by run time for the same benchmark running retively (smaller bars mark faster vx32 runs). The left three benchmarks use fewer
indired branches than the right four, resultingin lessvx32 owerhead. Theresults are discussed further in Sedion 4.3.

2] ~ ~
~ ~ n n
— -
- g 8 88 M~ 2 8
= = = = 1]
i 39 o
il — 3 S ~ S 0 0
— = o S o 2
1 = =1 - e A I
™~ =]
] o
Q [(3 Q [[Q [(3 4 [[Q [
= o = k) = S =) 2NN = S = k) = S =) 2NN = S = k)
1 |18|2|8|2 B|R|8|2 B|R|8|2 B|%|8|2 B|R|8|2 B|R|8|2 B|2|8|2
c|l>|<| > c|>|<c|> c|>|<c)|> c|l>|<)|> c|>|<c)|> c|>|<c)|> c|l > >
1 1511512 12151513 [RIRIEIE] |BIRI5I1E [BIRIEIE] |RIRIG(5] |B|%|5|5
INEESE S NN S| N[N S NN S NN S N[N NN S
O MM |©O|O Mm|m|o|©o MmO |© MmO |O Mm|m|o|©o MmO |© (32l ol o) Ko}
401.bzip2 456.hmmer 462.libquantum 445.gobmk 458.sjeng 400.perlbench 464.h264ref

Figure7: Normalized runtimesfor SFEC CPU2006 kenchmarks runringin four corfigurations onthe same AMD Opteron system:
natively on 32bit Linux, under vx32 haosted by 32bit Linux, natively on 64bit Linux, and undr vx32 hasted by 64bit Linux
Eadc bar plots run time divided by run time for the same benchmark running retively on 32hbit Linux (smaller bars mark faster
runs). Vx32 performanceis independent of the host operating system’s choice of processor mode, because vx32 always runs guest
code in 32-bit mode. The results are discussed further in Sedion 4.3.

mancepenalty of lessthan 1%, yet onthe other four, the
penalty is 50% or more. The difference between these
two groupsistherelative frequency of indired branches,
which, as discussed in Sedion 3, are the most expensive
kind o instructionthat vx32 must handle.

Figure 8 showsthe percentage of indired branchesre-
tired by ou Pentium 4 system during ead SPFEC bench-
mark, obtained viathe CPU’s performance ourters[21].
The benchmarks that exhibit a high percentage of indi-
red cdl, jump, andreturn instructionsare predsely those
that suffer a high performancepenalty under vx32.

We dso examined vx32s performancerunning under
a 32-bit host operating system compared to a 64-bit host
operating system. Figure 7 graphs the results. Even
under a 64-bit operating system, the processor switches
to 32bit mode when exeauting vx32s 32-bit code seg-
ments, so vx32s exeaution time is essentially identica
in ead case. Native 64-bit performance often differs
from 32-bit performance, however: the x86-64 architec
ture's eight additional general-purpose registers can im-
prove performance by requiring lessregister spilling in

401.bzip2
456.hmmer
462.libquantum
445.gobmk
458.sjeng [|
400.perlbench [
464.h264ref [|

T T
1% 2%

[other indirect branches retired

0%

O return instructions retired

Figure8: Indired branches asapercentage of total i nstructions
retired duing SFEC CPU2006 kenchmarks, measured using
performance murters on the Pentium 4. The left portion o
ead bar corresponds to return instructions; the right portion
corresponds to indired jumps and indired cdls. The indired-
heary workloads are exadly those that experience noticedle
slowdowns under vx32.

compiled code, but its larger pointer size can hut per-
formance by deaeasing cade locdity, and the balance
between these fadors depends on the workload.

5 Applications

In additionto evaluating vx32in isolation, we evaluated
vx32 in the context of several applicaions built using
it. This ®dion evaluates the performance of these go-
plicaions, but equally important is the ability to creae
them in the first place vx32 makes it possble to creae
interesting new applications that exeaute untrusted x86
code onlegacy operating systems withou kernel modifi-
cdions, at only amodest performance mst.

5.1 Archival storage

VXA [13] isan archival storage system that usesvx32to
“future proof” compressed data archives against changes
in data compresdon formats. Data compresgon algo-
rithms evolve much more rapidly than processor archi-
tedures, so VXA padkages exeautable decodersinto the
compressd archives along with the compressed data it-
self. Unpading the achive in the future then depends
only on being able to run on(or simulate) an x86 po-
cesor, not on having the original codecs used to com-
pressthe data and being able to run them natively onthe
latest operating systems. Crucialy, archival storage sys-
tems need to be dficiently usable now as well asin the
future: if “future proofing” an archive using sandboxed
deaoders costs too much performancein the short term,
the achive system is unlikely to be used except by pro-
fesgonal archivists.

VXA uses vx32 to implement a minimal system call
APl (read, write, exit, sbrk). Vx32 provides exadly
what the archiver neals: it proteds the host from buggy
or malicious archives, it isolates the decoders from the
host's system cdl API so that archivesare portable acoss
operating systems and OS versions, and it exeautes de-
coders efficiently enoughthat VXA can be used as a
general-purpose achiva storage system without natice-
able dowdown. To ensure that VXA dewders behave
identicdly on all platforms, VXA instructs vx32to dis-
able inexad instructions like the 387 intrinsics whose
predseresults vary from one procesor to ancther; VXA
demders smply use SSE and math library equivalents.

Figure 9 shows the performance of vx32-based de-
coders compared to native ones on the four test archi-
tedures. All runwithin 30% of native performance, of-
ten much closer. The jpeg decoder is consistently faster
under vx32than natively, dueto better cade locdity.

5.2 Extensible public key infrastructure

Alpaca[24] is an extensible pubic-key infrastructure
(PK1) and authorization framework built on the ideaof
proof-carrying authorization (PCA) [3], in which ore
party authenticaes itself to ancther by using an explicit
logicd language to prove that it deserves a particular
kind o accessor is authorized to request particular ser-

vices. PCA systems before Alpaca aumed a fixed set
of cryptographic dgorithms, such as pulic-key encryp-
tion, signature, and hash algorithms. Alpacamovesthese
algorithmsinto the logicd languageitself, so that the ex-
tensibility of PCA extends not just to delegation pdicy
but also to complete ayptographic suites and certificae
formats. Unfortunately, cryptographic dgorithms like
roundbased hash functions are inefficient to expressand
evaluate explicitly using Alpacas proof language.

Alpacauses Python bndings for the vx32 sandboxto
suppat native implementations of expensive dgorithms
like hashes, which run as untrusted “plug-ins’ that are
fully isolated from the host system. The lightweight
sandboxng vx32 povides is again crucial to the gpli-
céaion, becaise an extensible pubdic-key infrastructure
is unlikely to be used in pradiceif it makes al crypto-
graphic operations orders of magnitude slower than na-
tive implementations would be.

Figure 10 shows the performance of vx32-based hash
functionscomparedto nativeones. All runwithin 25% of
native performance One surpriseisthe Core 2 Duo's ex-
cdlent performance espedally onwhirlpod. We believe
the Core 2 Duois espedaly sensitive to cade locdity.

5.3 Plan9VX

Plan 9 VX (9vx for short) is a port of the Plan 9 oper-
ating system [35] to run ontop of commodity operating
systems, al owingthe use of bath Plan 9andthe host sys-
tem simultaneously and also avoiding the need to write
hardware drivers. To run user programs, 9vx credes an
appropriate address pacein awindow within its own ad-
dress pace adinvokes vx32to simulate user mode exe-
cution. Where ared kernel would exeaute i ret to enter
user mode and wait for the processor to trap badk into
kernel mode, 9vx invokes vx32 to simulate user mode,
waiting for it to return with a virtual trap code. 9vx
usesatemporary file assasimulation of physica memory,
cdlingthe host mmap andmprotect system cdlsto map
individual memory pages as needed. This architecure
makes it possble to smulate Plan 9's dhared-memory
semantics exadly, so that standard Plan 9 x86 bnaries
run umodified under 9vx. For example, Plan 9 threads
have ashared address pace ecept that ead has a pri-
vate stack. Thisbehavior isforeignto other systems and
very hard to simulate diredly. Because dl user-mode ex-
eaution happensviavx32, 9vx can implement this easily
with appropriate memory mappings.

The most surprising asped of 9vx's implementation
was how few changesit required. Besides removing the
hardware drivers, it required writing about 1,000li nes of
codeto interfacewith vx32, and ancther 500to interface
with the underlying host operating system. The changes
mainly have to dowith page faults. 9vx treas vx32 like
an architecure with a software-managed TLB (the aode

|leasAs

91Ag-adid

Ming-adid

IMplI

0lozTeYS

np

Jw

'suoireue|dy aouewloyRd Jo) £G UOIPaSaS U 6 Ueld e Bulp |ng “Yw pue ‘weisAs a|1} ay) busenenssaooid

Lpeg ‘UOKLRPG RULRY nwabd ay} Bumn xnuiquo NIAZO pUn 6 Uejd pue XNUITUO 2’09 UOIRISHIOM deMAA Kpun 6 Ueld

ajpuse np ‘ysey TYHS S Bundwod pue ouasz/Asp/ Bulpealssedold sfuise ‘0pzTeys L Lnu/Asp/ 0] 049z/Asp/ WOl Bukdod
yuolpue xpeqalfgapuise bupus sss90ud oMl ‘B1Aq-adid (((0)dea [S) Yyoums eI e Buisned $s9204d UL aul SO Npayasal
eyl [P Wes/As e ‘yovs Ble Sise1ayl “(suni Jeise) dlew Sieq o |[ewS) swil unl 6 Ueld aAIRU a8yl Aq papIaIp swiy uni siofd feq
‘XA 6 Ueld ‘ApAITaU Buuunl g Ueld 01puodsallod Sieq NoJay | Syewyous] 6 Ueld a|duis o] Sawi uni pez IewlioN :TT 84nbi

ssa004d apuss e umpl ‘adid e seno eep ynqg Bullejsuel) (JoAsdal auo ‘jepuss auo) sss900.d om) Yng-adid ‘sadid Jo Jred e Jono

O T S
i o I
S a BSa
c S Q35
= @ g ® o o =
3 o g g © 1 1 1 1
@ zZ
—- 2 @D
Q3 8 o 9 Core 2 Duo, OS X 099
= = —
© = N L > = 3 g % a Pentium M, Linux [olos
I I I o 2 © = s g <~ [Pentium 4, Linux 1.00
e % a L L L L W® B T | Xeon Linux 1.00
= J160 D = Core 2 Duo, OS X [0.92 =z Athlon64 x86-32, Linux |1.08
VX A n N -
e 5 § 5 Pentium M, Linux [1.11 g c 3 Opteron x86-32, Linux [1.08
ware - 3 = 3 [Pentium 4, Linux |1.23 Q. g E
QEMU 3 5 a 2 ["xeon, Linux [1.08 =3 2B
29 Athlon64 x86-32, Linux |1.18 gt COEI2IDIONOSPY |04
e ~Q Opteron x86-32, Linux [117 § g g RentumiM:Einux |0.97
= o | Pentium 4, Linux 1.00
vx32 21 % 8 ‘ o 5‘ § N [Xeon, Linux 1.00
VMware 38 3. T < > : ;
OEVU o 58 Saie 210U, G5 % |10 % T a Athlon64 x86-32, Linux | 106
Qg senuimIMiRInt |114 o g @ Opteron x86-32, Linux [1.04
g8 & [Pentium4, Linux [1.08 228
= > -
native 5- g & [Xeon, Linux . [104 % @ a—
Vx32 25 < = Athlon64 x86-32, Linux |1.15 P50 Core 2 Duo, OS X |0.71
: —~ Opteron x86-32, Linux [107 g2z Pentium M, Linux 073
VMware 238 g Qs - -
= =33 ko] Pentium 4, Linux 0.68
QEMU 2 B — lozs <3 8 & [xeon, Linux 0.75
i o famd -
e 3 : - 5= Athlon64 x86-32, Linux____ |0.91
_ = | Pentium M, Linux |1.02 SEY c -
native go = - - a =] Opteron x86-32, Linux [o.89
L 2 3 | Pentium4, Linux |1.06 = Q’
IXSCN|0-93 g e 91 [xeon, Linux [1.04 @ f <
Vl\évaTJre 26 = 2 g N ["Athlon64 x86-32, Linux [111 g a (>‘<0 Core 2 Duo, OS X |1_07
Q ~ 3 Opteron x86-32, Linux |114 % 0N Pentium M, Linux |122
ﬁ (g D c E)H 5 |_Pentium 4, Linux [118
native Q 3 Core 2 Duo, OS X logs 8 @ g ™ | Xeon Linux 10
vx32 1.00 _C‘ & - Pentium M, Linux |1‘07 8— Athlon64 x86-32, Linux |1A28
VMware 1.90 @ § '(BD' Pentium 4, Linux [1.07) é’ g Opteron x86-32, Linux [127
QEMU 1.90 ’ % 3 | Xeon, Linux [1.03 > -% ‘
! 3 _
¥ 35 9
o gth:o"M);63322':7'””)(HE o @ Core 2 Duo, OS X |121
native g [T REIo-E, DI ’ P < Pentium M, Linux [0.92
32 057 Q. S | Pentium 4, Li 1.02
vx33 05 g 2= 9 entium 4, Linux |
VMware 27 Core 2 Duo, OS X 0.74 8 % 2 | xeon, Linux [0.98
QEMU 91 k5 £ | Pentium M, Linux |1.03 3 c Athlon64 x86-32, Linux | 102
@ & [Pentium 4, Linux |121 g 2 Opteron x86-32, Linux [0.97
= o ~ o
p— S g [Xeon, Linux . [110 ?a
| S 2 [Athlon64 x86-32, Linux |1.16 Qs
vx32| 0. 33| § Opteron x86-32, Linux |1.17 Q. % Core 2 Duo, OS X I70.99
VMware [1.32 D ‘ %) Pentium M, Linux 0.92
QEMU 39 g. = 2' gz [[Pentium 4, Linux 116
\ > o o | Xeon,Linux [1.03
Q o :
< = Athlon64 x86-32, Linux |113
Py & & Opteron x86-32, Linux [1.00
N T |
Q
=
5 c =
Q 3
3

was arealy present in Plan 9 to suppat architecures
like the MIPS). 9vx unmaps all mapped pages during a
process context switch (a single munmap cdl) and then
remaps pages on demand duing vx32exeaution. A fault
on a missng page caises the host kernel to send 9vx a
signal (most often SIGSEGV), which causes vx32to stop
and return a virtua trap. 9vx handes the fault exadly
as Plan 9 would and then passes control badk to vx32
9vx preempts user proceses by asking the host OS to
deliver SIGALRM signals at regular intervals; vx32 trans-
lates these signalsinto virtual clock interrupts.

To evaluate the performance of 9vx, we ran bench-
marks on ou Pentium M system in four configurations:
native Plan 9, 9vx on Linux, Plan 9 undr VMware
Workstation 6.0.2 (build 59824 on Linux, and Plan 9
under QEMU on Linux with the kgemu modde. Fig-
urellshowstheresults. 9vxis dower than Plan 9at con-
text switching, so switch-heary workloads uffer (swtch,
pipe-byte, pipe-bulk). System cdls that don't context
switch (rdwr) and ardinary computation (shalzero) run
at full spead under 9vx. Infad, 9vx's Smulation o sys-
tem cdlsisfaster than VMware'sand QEMU'’s, becaise
it doesn’t require simulating the processor’s entry into
and exit from kernel mode. File system access(du, mk)
is also faster under 9vx than Plan 9, because 9vx uses
Linuxsin-kernel file system while the other setups use
Plan 9's user-level file server. User-level file servers are
particularly expensivein VMware and QEMU dueto the
extra mntext switches. We have not tested Plan 9 un
der VMware ESX server, which could be more dficient
than VMware Workstation sinceit bypasss the host OS
completely.

The new functionality 9vx credes is more important
than its performance. Using vx32 means that 9vx re-
quires no spedal kernel suppat to make it possble to
run Plan 9 programs and retive Unix programs sde-by-
side, sharing the same resources. This makes it easy to
experiment with and use Plan 9's feaures while avoid-
ing the need to maintain hardware drivers and pat large
pieces of software (such asweb browsers) to Plan 9.

54 Vxlinux

We implemented a 250line host applicaion, vxlinux,
that provides delegation-based interposition[17] by run-
ning urmodified, single-threaded Linux binaries under
vx32andrelayingthe guest’s g/stem cdl sto the host OS.
A complete interposition system would include apalicy
controlli ng which system cdls to relay, but for now we
merely wish to evaluate the basic interposition mecda-
nism. The benefit of vxlinux ower the OS-independent
vxrun (described in Sedion 4) is that it runs unmodi-
fied Linux kinaries withou requiring recompil ation for
vx32. The downside is that since it implements g/stem
cdls by passng arguments throughto the Linux kernel,

it can only run onLinux. The performance of the SFEC
benchmarks under vxlinuxis esentialy the same as the
performanceunder vxrun; we omit the graph.

6 Conclusion

Vx32 is a multi purpose user-level sandboxthat enables
any applicaion to load and safely exeaute one or more
guest plug-ins, confining ead guest to a system cdl
API controll ed by the host applicaionandto arestricted
memory region within the host’s address pace It exe-
cutes sandboyed code dficiently on x86architedure ma-
chines by using the x86's segmentation hardware to iso-
late memory accesses alongwith dynamic code tranda-
tionto disall ow unsafe instructions.

Vx32's ahility to sandbox urrusted code dficiently
has enabled a variety of interesting applicdions. self-
extrading archival storage, extensible pubdic-key infras-
tructure, a user-level operating system, and patable or
restricted exeaution environments. Becaise vx32 works
on widely-used x86 operating systems withou kernel
modifications, these gplicaionsare eay to deploy.

In the context of these goplications (and also on the
SPEC CPU2006 tenchmark suite), vx32 always deliv-
ers ssndboxed exeaution performance within a fador of
two of native exeaution. Many programs exeaute within
10% of the performance of native exeaution, and some
programs exeaute faster under vx32 than natively.

Acknowledgments

Chris Lesniewski-Laas is the primary author of Alpaca
We thank Austin Clements, Stephen McCamant, and the
anonymous reviewers for valuable feadbadk. This re-
seach is porsored by the T-Party Projed, a joint re-
search program between MIT and QuantaComputer Inc.,
Taiwan, and by the National Science Foundition under
FIND projed 0627065 User Information Architedure).

References

[1] Keith Adamsand Ole Agesen. A comparison o software
and hardware techniques for x86 virtualization. In ASP-
LOSXIlI, Decenber 2006

[2] Advanced Micro Devices, Inc. AMD x86-64 architecture
programmer’s manual, September 2002

[3] Andrew W. Appel and Edward W. Felten. Proof-carying
authentication. In 6th ACM CCS, November 1999

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjees Baner-
jia Dynamo: atransparent dynamic optimization system.
ACM SIGPLAN Notices, 35(5):1-12 200Q

[5] Brian N. Bershad et al. Extensibility, safety and perfor-
manceinthe SAN operating system. In 15th SOSP, 1995

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

(1]

(16]

(17

(18]

(19

(20

(21]

(22

(23]

(24

Brian Case. Implementing the Java virtual machine. Mi-
croprocesor Report, 10(4):12—-17 March 1996

Suresh N. Chari and Pau-Chen Cheng. BlueBox: A
palicy-driven, host-based intrusion detedion system. In
Network andDistributed System Seaurity, February 2002
Tzi-cker Chiueh, Ganesh Venkitachalam, and Prashant
Pradhan. Integrating segmentation and peging protedion
for safe, efficient and transparent software extensions. In
17th SOSP, pages 140—-153 Deceamber 1999

Bob Cmelik and David Keppel. Shade: A fast instruction-
set simulator for exeaution profiling. SGMETRICSPER
22(1):128-137 May 1994

R. J. Creasy. The origin of the VM/370 time-sharing
system. IBM Journa of Research and Devedopment,
25(5):483-490 1981

L. Peter Deutsch and Allan M. Schiffman. Efficient im-
plementation o the Smalltalk-80 system. In Principles of
Programning Langua@s, pages 297—-302 Salt Lake City,
UT, January 1984

D. Eastlake 3rd and T. Hansen. US seaure hash algorithms
(SHA and HMAC-SHA), July 2006 RFC 4634

Bryan Ford. VXA : A virtual architecdurefor durable com-
presed archives. In 4th USENIX FAST, San Francisco,
CA, Deceamber 2005

Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tull mann,
Godmar Badk, and Stephen Clawson. Microkernels meet
reaursive virtual madines. In 2ndOSDI, pages 137-151
1996

Timothy Fraser, Lee Badger, and Mark Feldman. Hard-
ening COTS software with generic software wrappers. In
IEEE Symposium on Saurity and Privacy, pages 2-16
1999

Tal Garfinkel. Traps and ptfals: Pradicd problemsin
system cdl i nterpaosition based seaurity tods. In Network
andDistributed System Seaurity, February 2003

Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia:
A delegating architecure for seaure system cdl i nterposi-
tion. In Network and Distributed System Seaurity, Febru-
ary 2004

Doudas P. Ghormley, David Petrou, Steven H. Ro-
drigues, and Thomas E. Anderson. SLIC: An extensibil -
ity system for commodity operating systems. In USENIX,
June 1998

lan Goldberg, David Wagner, Rand Thomas, and Eric A.
Brewer. A seaure environment for untrusted helper appli-
caions. In 6th USENIX Seaurity Sympaosium, San Jose,
CA, 1996

Honeywell Inc. GCOS Environment Smulator. Decenm-
ber 1983 Order Number AN05-02A.

Intel Corporation. |A-32 Intel architedure software de-
veloper’'s manual, June 2005

K. Jain and R. Sekar. User-level infrastructure for system
cdl interpasition: A platform for intrusion detedion and
confinement. In Network and Distributed System Seau-
rity, February 200Q

Andress Krall. Efficient JavaVM just-in-time compila
tion. In Parallel Architedures and Compilation Tech-
niques, pages 54—61, Paris, France, October 1998
Christopher Lesniewski-Laas, Bryan Ford, Jacmb Strauss

[25]

[26]
[27]
(28]

(29

(30

(31]

(32

(33]

(34]

(3]
(36]

(37]

(38]

(39

[40]

[41]

[42]

[43]

[44]

M. Frans Kaashoek, and Robert Morris. Alpaca extensi-
ble authorization for distributed services. In ACM Com-
puter and Commnunications Seaurity, October 2007.
Henry M Levy. Capalbklity-based Computer Systems.
Digital Press 1984

Jochen Liedtke. A persistent system in red use: experi-
ences of thefirst 13 yeas. In IWOOQS 1993
Jochen Liedtke. On micro-kernel construction.
SOSP, 1995

Chi-KeungLuk et d. Pin: building customized program
analysis tods with dyramic instrumentation. In PLDI,
June 2005

Stephen McCamant and Greg Morrisett. Evaluating SH
for a CISC architedure. In 15th USENIX Seaurity Sym-
posium, August 2006

Microsoft Corporation. C# languege spedficaion, ver-
sion 30, 2007

Jeffrey C. Mogu, Richard F. Rashid, and Michad J. Ac-
cetta. The padket filter: An efficient mechanism for user-
level network code. In Symposium on Operating System
Principles, pages 39-51 Austin, TX, November 1987.
George C. Neaula and Peter Lee Safe kernel extensions
withou rurrtime chedking. In 2nd OSDI, pages 229-243
1996

Nicholas Nethercote and Julian Seward. Valgrind: A pro-
gram supervision framework. In Third Workshop onRun-
time Verification (RV 03), Boulder, CO, July 2003
Nichoas Nethercote and Julian Seward. Valgrind: A
framework for hearyweight dynamic binary instrumen-
tation. In PLDI, June 2007

Rob Pike ¢ a. Plan 9 from Bell Labs. Computing S/s-
tems, 8(3):221-254 Summer 1995

Niels Provos. Improving host seaurity with system cdl
pdicies. In 12th USENIX Seaurity Symposium, August
2003

K. Scott et al. Overhead reductiontechniques for software
dynamic translation. In NSF Workshop onNext Genera-
tion Sdtware, April 2004

Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Mau-
riceP. Marks, and Scott G. Rohinson. Binary tranglation.
Comnunications of the ACM, 36(2):69—-81 1993
Christopher Small and Margo Seltzer. MIiSHT: Con-
structing safe extensible systems. |EEE Concurrency,
6(3):34-41, 1998

Michad M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the reliability of commodity operating sys-
tems. In 19th ACM SOSP, 2003

Tod InterfaceStandard (T1S) Committee Exeautable and
linking format (ELF) spedfication, May 1995

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient software-based fault i solation.
ACM S GOPS Operating Sstems Review, 27(5):203—
216, December 1993

Robert N. M. Watson. Exploiti ng concurrency vulnerabil -
itiesin system cdl wrappers. In 1st USENIX Workshop on
Offensive Techndogies, August 2007.

Emmett Witchel and Mendel Rosenblum. Embra: Fast
and flexible machine smulation. In Measurement and
Modeling o Computer Systems, pages 68—79 1996

In 15th

