
Vx32: Lightweight User-level Sandboxing on the x86

Bryan Ford and RussCox
Massachusetts Instituteof Technology

{ baford,rsc} @pdos.csail .mit.edu

Abstract

Code sandboxing is useful for many purposes, but most
sandboxing techniques require kernel modifications, do
not completely isolate guest code, or incur substantial
performance costs. Vx32 is a multipurpose user-level
sandboxthat enables any application to load and safely
executeoneor moreguest plug-ins, confiningeach guest
to a system call API controlled by the host application
and to a restricted memory region within the host’s ad-
dress space. Vx32 runs guest code efficiently on several
widespread operatingsystems without kernel extensions
or special privileges; it protects the host program from
both readsandwritesby itsguests; andit allowsthehost
to restrict the instructionset available to guests. Thekey
to vx32’scombination of portabilit y, flexibilit y, and effi-
ciency is its use of x86 segmentation hardware to sand-
box the guest’s data accesses, along with a lightweight
instruction translator to sandbox guest instructions.

We evaluate vx32 using microbenchmarksand whole
system benchmarks, and we examine four applications
based on vx32: an archival storage system, an extensi-
ble public-key infrastructure, an experimental user-level
operating system running atop another host OS, and a
Linux system call j ail . The first three applications ex-
port custom APIs independent of the host OS to their
guests, makingtheir plug-insbinary-portable acrosshost
systems. Compute-intensive workloads for the first two
applicationsexhibit betweena30%slowdownanda30%
speedup on vx32relative to native execution; speedups
result from vx32’s instruction translator improving the
cachelocality of guest code. The experimental user-level
operatingsystem allows the use of the guest OS’s appli -
cations alongside the host’s native applications and runs
faster than whole-system virtual machine monitors such
as VMware and QEMU. The Linux system call j ail i n-
cursupto 80%overhead but requiresno kernel modifica-
tionsand isdelegation-based, avoidingconcurrency vul-
nerabiliti espresent in other interpositionmechanisms.

1 Introduction

A sandbox is a mechanism by which a host software
system may execute arbitrary guest code in a confined
environment, so that the guest code cannot compromise
or affect the host other than according to a well -defined
policy. Sandboxing is useful for many purposes, such
as running untrusted Web applets within a browser [6],
safely extending operating system kernels [5, 32], and
limiting potential damage caused by compromised ap-
plications [19,22]. Most sandboxingmechanisms, how-
ever, either requireguest codeto be(re-)written in atype-
safe language[5,6], depend onspecial OS-specific facil -
ities [8, 15, 18, 19], allow guest code unrestricted read
accessto the host’s state [29, 42], or entail a substantial
performance cost [33,34,37].

Vx32 is a lightweight sandboxfor the x86 architec-
ture that enables applications to run untrusted code effi-
ciently on standard operating systems without requiring
special privileges or kernel extensions. The vx32 sand-
box runs standard x86 instructions, so guest code may
bewritten in any languageincludingassembly language,
and may use advanced processor features such as vec-
tor (SSE) instructions. An applicationmay host multiple
sandboxinstancesat once; vx32 giveseach guest itsown
dynamically movable andresizable address spacewithin
the host’s space. Vx32 confines both guest reads and
guest writes to the guest’s designated addressregion in
the host, protecting both the host’s integrity and the pri-
vacy of any sensitive data (e.g., SSL keys) it may hold
in its address space. Vx32 confines each guest’s system
calls to an API completely determined by thehost appli -
cation. The guest system call API need not have any re-
lationship to that of thehost operatingsystem, so thehost
applicationcan keep its guest environmentsindependent
of and portable acrosshost operatingsystems.

The key to vx32’s combination of flexibilit y and effi-
ciency isto usedifferent mechanismsto sandbox data ac-
cesses and instruction execution. Vx32 sandboxesguest

Published in Proceedings of 2008 USENIX Annual Technical Conference

data accesses using the x86 processor’s segmentation
hardware, by loadinga special data segment into theds,
es, and ss registers before executing guest code. Ac-
cessing datathroughthis segment automatically confines
both reads and writes to the guest’s designated address
region, with no performanceoverhead since the proces-
sor alwaysperforms segment translationanyway.

Since the vx32 sandbox runs entirely in user mode,
however, vx32 cannot rely on the processor’s privilege
level mechanism to prevent the guest from escaping its
sandbox—for example, the x86 privilege levels alone
would not prevent the guest from changing the segment
registers. Vx32 therefore prevents guest code from ex-
ecuting “unsafe” instructions such as segment register
loads by using dynamic instruction translation [9, 34],
rewritingeach guest codesequenceinto a “safe” formbe-
fore executing it. This dynamic translation incurs some
performancepenalty, especially on control flow instruc-
tions, which vx32 must rewrite to keep execution con-
fined to itscacheof safe, rewrittencode. Sincevx32con-
fines data accesses via segmentation, it does not need to
rewritemost computation instructions, leavingsafe code
sequencesascompact andefficient astheguest’soriginal
code. Vx32’son-demandtranslationcan in fact improve
the cache locality of the guest code, sometimes result-
ing in better performancethan the original code, as seen
previously in dynamic optimizationsystems[4].

Because common OS kernels already provide user-
level access to the x86 segmentation hardware, vx32
does not require any special privileges or kernel exten-
sions in order to fully sandbox all memory reads and
writes that guest codeperforms.

Vx32 is implemented as a library that runs on Linux,
FreeBSD, and Mac OS X and is being used in several
applications. VXA [13] is an archival storage system
that stores executable decoders along with compressed
content in archives, using vx32to run these decoders at
extraction time; thus the archives are “self-extracting”
but also safe and OS-independent. Alpaca [24] is an
extensible PKI framework based on proof-carrying au-
thorization [3] that uses vx32 to execute cryptographic
algorithms such asSHA-1 [12] that form componentsof
untrusted PKI extensions. Plan 9 VX is a port of the
Plan 9 operatingsystem [35] to user space: Plan 9 kernel
code runs as a user-level processatop another OS, and
unmodified Plan 9 user applicationsrun under thePlan 9
kernel’s control inside vx32. Vxlinux is a delegation-
based system call i nterposition tool for Linux. All of
these applications rely on vx32 to provide near-native
performance: if an extensionmechanism incurs substan-
tial slowdown, then in practice most users will forego
extensibilit y in favor of faster but lessflexibleschemes.

Previouspaperson VXA [13] and Alpaca[24] briefly
introducedandevaluated vx32in the context of those ap-

plications. This paper focuses on the vx32 virtual ma-
chineitself, describingits sandboxingtechniquein detail
and analyzing its performanceover a variety of applica-
tions, host operatingsystems, and hardware. On real ap-
plications, vx32 consistently executes guest code within
afactor of two of nativeperformance; often theoverhead
is just a few percent.

Thispaper first describesbackgroundandrelatedwork
in Section 2, then presents the design of vx32 in Sec-
tion 3. Section 4 evaluates vx32 on its own, then Sec-
tion 5 evaluates vx32 in the context of the above four
applications, andSection 6concludes.

2 Related Work

Many experimental operating system architectures per-
mit one user processto isolate and confine others to en-
force a “principle of least privilege”: examples include
capabilit y systems [25], L3’s clan/chief model [26],
Fluke’s nested process architecture [14], and generic
software wrappers [15]. The primary performance cost
of kernel-mediatedsandboxesliketheseisthat of travers-
ing hardware protection domains, thoughwith careful
design this cost can be minimized [27]. Other systems
permit the kernel itself to be extended with untrusted
code, via domain-specific languages [31], type-safe lan-
guages [5], proof-carrying code [32], or special kernel-
spaceprotection mechanisms [40]. The main challenge
in all of these approaches is deploying a new operating
system architecture andmigratingapplicationsto it.

Other work has retrofitted existing kernels with sand-
boxing mechanisms for user processes, even taking ad-
vantage of x86 segments much as vx32 does [8]. These
mechanisms still require kernel modifications, however,
which arenot easily portable even between different x86-
based OSes. In contrast, vx32 operates entirely in user
space and is easily portable to any operatingsystem that
provides standard featuresdescribed in Section 3.

System call i nterposition, asandboxingmethodimple-
mented by Janus [19] and similar systems [7,17,18,22,
36], requires minor modifications to existing kernels to
provide ameans for one user processto filter or handle
selected system calls made by another process. Since
the sandboxed process’s system calls are still fielded by
the host OS before being redirected to the user-level
“supervisor” process, system call i nterposition assumes
that the sandboxed processuses the same basic system
call API as the host OS: the supervisor process can-
not efficiently export a completely different (e.g., OS-
independent) API to the sandboxed process as a vx32
host application can. Some system call i nterposition
methodsalso have concurrency-related security vulnera-
biliti es [16,43], whose only clear solution is delegation-
based interposition [17]. Although vx32 has other uses,

it can be used is to implement efficient delegation-based
system call i nterposition, asdescribed in Section 5.4.

Virtualization hasbeen in usefor decadesfor purposes
suchas sharingresources[10] andmigratingapplications
to new operatingsystems[20]. Sincethex86architecture
did not provide explicit support for virtualization until re-
cently, x86-based virtual machines such as VMware [1]
had to use dynamic instruction translation to run guest
kernel code in an unprivileged environment while sim-
ulating the appearanceof being run in privileged mode:
thedynamic translator rewritesinstructionsthat might re-
veal the current privilegelevel. Virtual machinesusually
do not translateuser-modeguest code, relyinginstead on
host kernel extensions to run user-mode guest code di-
rectly in a suitably constructed execution environment.
As described in Section 5.3, vx32’s dynamic translation
can be used to construct virtual machines that need no
host kernel extensions, at someperformance cost.

Dynamic instruction translation is frequently used for
purposes other than sandboxing, such as dynamic opti-
mization [4], emulating other hardwareplatforms[9,44]
or code instrumentation and debugging [28, 34]. The
latter two uses require much more complex code trans-
formations than vx32 performs, with a correspondingly
larger performance cost [37].

A software fault isolation (SFI) system [29,42] stati-
cally transforms guest code, preprocessing it to create a
specialized version in which it is easy for the verifier to
check that all data write instructionswrite only to a des-
ignated “guest” addressrange, and that control transfer
instructions branch only to “safe” code entrypoints. SFI
originally assumed a RISC architecture [42], but PittS-
FIeld adapted SFI to the x86 architecture [29]. SFI’s
preprocessing eliminates the need for dynamic instruc-
tion translation at runtime but increases program code
size: e.g., 60%-100% for PittSFIeld. For efficiency,
SFI implementations typically sandbox only writes and
branches, not reads, so theguest can freely examinehost
code and data. This may be unacceptable if the host ap-
plication holds sensitive data such as passwords or SSL
keys. The main challenge in SFI on x86 is the archi-
tecture’s variable-length instructions: opcode sequences
representing unsafeinstructionsmight appear in themid-
dle of legitimate, safe instructions. PittSFIeld addresses
thisproblemby inserting no-ops so that all branch targets
are 16-byte aligned and then ensures that branchesclear
the bottom four bits of the target address. MiSFIT [39]
sidesteps this problem for direct jumps by loading only
codethat wasassembledandcryptographically signed by
a trusted assembler. Indirect jumps consult a hash table
listing valid jump targets.

Applications can use type-safe languages such as
Java [6] or C# [30] to implement sandboxingcompletely
in user space. This approach requires guest code to be

written in a particular language, making it difficult to
reuse existinglegacy codeor use advanced processor fea-
tures such as vector instructions (SSE) to improve the
performanceof compute-intensive code.

3 The Vx32 Virtual Machine

The vx32 virtual machine separates data sandboxing
from code sandboxing, using different, complementary
mechanisms for each: x86 segmentation hardware to
sandbox data references and dynamic instruction trans-
lation to sandboxcode. The dynamic instruction trans-
lation prevents malicious guest code from escaping the
data sandbox. Vx32’s dynamic translation is simple and
lightweight, rewriting only indirect branchesand replac-
ing unsafe instructions with virtual traps. The use of
dynamic translation also makes it possible for client li -
braries to restrict the instructionset further.

This section describes the requirements that vx32
places on its context—the processor, operating system,
and guest code—andthen explains thevx32 design.

3.1 Requirements
Processor architecture. Vx32 is designed aroundthe

x86 architecture, making the assumption that most sys-
tems now and in the foreseeable future are either x86-
based or will be able to emulate x86 code efficiently.
This assumption appears reasonable in the current desk-
top and server computing market, althoughit may pre-
vent vx32from spreadingeasily into other domains, such
asgame consolesand handheld mobiledevices.

Vx32 uses protected-mode segmentation, which has
been integral to the x86 architecture sincebefore its ex-
tensionto 32 bits[21]. Therecent 64-bit extension of the
architecture disables segment translation in 64-bit code,
but still provides segmentationfor 32-bit code[2]. Vx32
therefore cannot use segmentation-based data sandbox-
ing to run 64-bit guest code, but it can still run 32-bit
sandboxed guest codewithin a 64-bit host application.

Host operatingsystem. Vx32requiresthat thehost OS
provide amethod of inserting custom segment descrip-
torsinto the application’slocal descriptor table(LDT), as
explained below. Thehost OS can easily andsafely pro-
vide this service to all applications, provided it checks
and restricts the privileges of custom segments. All
widely-used x86 operatingsystemshavethis feature.1

To catch and isolate exceptionscaused by guest code,
vx32 needsto register itsown signal handlersfor proces-
sor exceptions such as segmentation faults and floating
point exceptions. For full functionality and robustness,
thehost OSmust allow vx32to handlethesesignalsona

1OneWindowsvulnerabilit y, MS04-011, wascaused byinadequate
checks on application-provided LDT segments: this was merely a bug
in the OS and not an issuewith custom segments in general.

separatesignal stack, passing vx32thefull saved register
state when such a signal occurs. Again, all widely-used
x86 operatingsystemshave thiscapabilit y.

Finally, vx32can benefit from being able to map disk
files into the host application’s address space and to
control the read/write/executepermissionson individual
pages in the mapping. Althoughthese features are not
strictly required by vx32, they are, once again, provided
by all widely-used x86 operatingsystems.

On modern Unix variants such as Linux, FreeBSD,
and OS X, specific system calls satisfying the above re-
quirementsaremodify_ldt/i386_set_ldt, sigaction,
sigaltstack, mmap, andmprotect. WindowsNT, 2000,
and XP support equivalent system calls, thoughwe have
not ported vx32 to Windows. We have not examined
whether WindowsVista retains this functionality.

Guest code. Although vx32 uses x86 segmentation
for data sandboxing, it assumes that guest code running
in the sandboxconforms to the 32-bit “flat model” and
makesnoexplicit referenceto segment registers. In fact,
vx32rewritesany guest instructionsreferringto segment
registers so that they raise a virtual ill egal instruction
exception. This “flat model” assumption is reasonable
for practically all modern, compiled 32-bit x86 code; it
would typically be aproblem only if, for example, the
sandboxed guest wished to run 16-bit DOS or Windows
codeor wished to runa nested instanceof vx32 itself.

Some modern multithreading libraries use segment
registers to provide quick accessto thread-local storage
(TLS); such librariescannot beused in guest codeunder
the current version of vx32, but this isnot a fundamental
limitation of the approach. Vx32 could be enhanced to
allow guest codeto createnew segmentsusingemulation
techniques, perhapsat someperformance cost.

Host applications may impose further restrictions on
guest codethroughconfigurationflagsthat direct vx32to
reject specific classes of instructions. For example, for
consistent behavior across processor implementations,
the VXA archiver described in Section 5.1 disallows the
non-deterministic387floating-point instructions, forcing
applicationsto use deterministic SSE-based equivalents.

3.2 Data sandboxing: segmentation
In thex86architecture, segmentationisan addresstrans-
lationstep that theprocessor applies immediately before
pagetranslation. In additionto the eight general-purpose
registers (GPRs) accessible in user mode, the processor
provides six segment registers. During any memory ac-
cess, the processor uses the value in one of these seg-
ment registersasan index into oneof two segment trans-
lation tables, the global descriptor table (GDT) or lo-
cal descriptor table (LDT). The GDT traditionally de-
scribes segments shared byall processes, while the LDT
contains segments specific to a particular process. Upon

Figure 1: Guest and Host AddressSpaceStructure

findingthe appropriatedescriptor table entry, theproces-
sor checkspermission bits (read, write, andexecute) and
compares the virtual address of the requested memory
accessagainst the segment limit in the descriptor table,
throwing an exception if any of these checks fail . Fi-
nally, the processor adds the segment base to the virtual
address to form the linear address that it subsequently
uses for page translation. Thus, a normal segment with
baseb and limit l permitsmemory accessesat virtual ad-
dressesbetween 0and l, andmapsthesevirtual addresses
to linear addresses from b to b+l. Today’sx86 operating
systemstypically makesegmentationtranslationano-op
by usingabaseof 0 andalimit of 232−1. Even in this so-
called “flat model,” the processor continues to perform
segmentationtranslation: it cannot bedisabled.

Vx32 allocates two segments in the host application’s
LDT for each guest instance: aguest data segment anda
guest control segment, asdepicted in Figure1.

The guest data segment corresponds exactly to the
guest instance’s address space: the segment base points
to the beginning of the address space(address0 in the
guest instance), and the segment size is the guest’s ad-
dress space size. Vx32 executes guest code with the
processor’s ds, es, and ss registers holding the selec-

Figure 2: Guest Control Segment Structure

tor for the guest data segment, so that data reads and
writesperformed bytheguest accessthis segment by de-
fault. (Code sandboxing, described below, ensures that
guest code cannot override this default.) The segmenta-
tion hardware ensures that the address space appears at
address0 in the guest and that the guest cannot access
addresses past the end of the segment. The translation
also makesit possiblefor thehost to unmap aguest’sad-
dress spacewhen it is not in use and remap it later at a
different host address, to relieve congestion in the host’s
address spacefor example.

The format of the guest data segment is up to vx32’s
client: vx32 only requires that it be a contiguous, page-
aligned range of virtual memory within the host address
space. Vx32 providesa loader for ELF executables[41],
but clientscan load guestsby other means. For example,
Plan 9 VX (seesection 5.3) uses mmap and mprotect to
implement demand loading of Plan 9executables.

The guest control segment, shown in Figure 2, con-
tains the data needed by vx32 during guest execution.
The segment begins with a fixed data structure contain-
ing saved host registers and other data. The entrypoint
hash tableandcodefragment cachemakeupmost of the
segment. The hash table mapsguest virtual addresses to
code sequences in the code fragment cache. The trans-
lated code itself needs to be included in the guest con-
trol segment so that vx32 can write to it when patching
previously-translated unconditional branchesto jump di-
rectly to their targets [38].

Vx32 executes guest code with the processor’s fs or
gs register holdingtheselector for theguest control seg-
ment. Thevx32runtime accessesthe control segment by
specifyinga segment overrideon its data accessinstruc-
tions. Whether vx32 uses fs or gs depends on the host
system, asdescribed in the next section.

3.3 Code sandboxing: dynamic translation
Datasandboxingensuresthat, usingtheproper segments,
data reads and writes cannot escape the guest’s address
space. Guests could still escape using segment override
prefixes or segment register loads, however, which are
unprivileged x86 operations. Vx32 therefore uses code

scanning and dynamic translation to prevent guest code
from performingsuch unsafeoperations.

As in Valgrind [34] and just-in-time compilation [11,
23], vx32’s code scanning and translation is fully dy-
namic andrunson demand. Theguest isallowed to place
arbitrary code sequences in its address space, but vx32
never executes this potentially-unsafe code directly. In-
stead, whenever vx32entersaguest instance, it translates
a fragment of codestartingat theguest’scurrent instruc-
tion pointer (eip) to produce an equivalent safefragment
in vx32’s code fragment cache, which lies outside the
guest’s address space. Vx32 also records the eip and
addressof the translated fragment in the entrypoint hash
tablefor reuseif theguest branchesto that eip again. Fi-
nally, vx32 jumps to the translated code fragment; after
executing, the fragment either returnscontrol to vx32 or
jumpsdirectly to the next translated fragment.

On 32-bit hosts, vx32 never changesthe codesegment
register (cs): it jumps directly to the appropriate frag-
ment in theguest’scodefragment cache. This is safebe-
cause the code fragment cache only contains safe trans-
lations generated by vx32itself. The code translator en-
sures that all branches inside translated code only jump
to the beginning of other translated fragmentsor back to
vx32 to handle events like indirect branches or virtual-
ized guest system calls.

On 64-bit hosts, since segmentation only operates
while executing 32-bit code, vx32 must create aspecial
32-bit codesegment mappingthelow 4GB of thehost ad-
dress spacefor use when running guest code. The guest
control and data segments must therefore reside in the
low 4GB of the host address spaceon such systems, al-
though other host code and datamay be above4GB.

Because vx32 never executes code in the guest’s ad-
dress spacedirectly, vx32 requires no static preprocess-
ing or verification of guest code before it is loaded, in
contrast with most other sandboxing techniques. In-
deed, reliably performingstatic preprocessingand verifi-
cation isproblematic on thex86 dueto the architecture’s
variable-length instructions [29,39].

Translation overview. Vx32’s translation of guest
codeinto codefragmentsisasimpleprocedurewith four
stages: scan, simpli fy, place, and emit. The stages share
a “hint table” containinginformationabout each instruc-
tion in the fragment being translated. The eventual out-
put is both the translated code and the hint table, which
the translator saves for later useby exception handlers.

1. Scan. The translator first scans guest code starting
at the desired eip, decoding x86instructions to de-
termine their lengths and any required transforma-
tions. The translator scans forward until it reaches
an unconditional branch or a fragment size limit
(currently about 128 bytes of instructions). The

scan phase records the length, original offset, in-
struction type, and worst-case translated size in the
hint table. Jumps are the only instructions whose
translated sizeis not known exactly at thispoint.

2. Simplify. Thenext phasescans thehint table for di-
rect branches within the fragment being translated;
it markstheonesthat can betranslated into short in-
trafragment branchesusing 8-bit jump offsets. After
this phase, the hint table contains the exact size of
the translation for each original guest instruction.

3. Place. Using the now-exact hint table information,
the translator computes the exact offset of each in-
struction’s translation. These offsets are needed to
emit intrafragment branches in the last phase.

4. Emit. The final phase writes the translation into
the code fragment cache. For most instructions, the
translation is merely a copy of the original instruc-
tion; for “unsafe” guest instructions, the translation
isan appropriatesequence chosen by vx32.

Vx32 saves the hint table, at a cost of four bytes per
original instruction, in the code fragment cache along-
side each translation, for usein exception handlingasde-
scribed in Section 3.4. The hint table could be discarded
and recomputed during exception handling, trading ex-
ception handling performancefor code cachespace.

The rest of this section discusses specific types of
guest instructions. Figure3 showsconcrete examples.

Computational code. Translation leaves most instruc-
tions intact. All ordinary computation and data access
instructions(add, mov, andso on) andeven floating-point
and vector instructions are “safe” from vx32’s perspec-
tive, requiring notranslation, because the segmentation
hardware checks all data reads and writes performed by
these instructionsagainst the guest data segment’s limit.
The only computation instructions that vx32 does not
permit the guest to perform directly are those with x86
segment override prefixes, which change the segment
register used to interpret memory addresses and could
thusbeused to escape thedatasandbox.

Guest code may freely use all eight general-purpose
registers provided by the x86 architecture: vx32 avoids
both thedynamic register renamingandspilli ng of trans-
lation engines like Valgrind [34] and the static register
usage restrictions of SFI [42]. Allowing guest code to
use all the registers presents a practical challenge for
vx32, however: it leaves no general-purpose register
available where vx32 can store the addressof the saved
host registers for use while entering or exiting guest
code. As mentioned above, vx32solves this problem by
placing the information in theguest control segment and
using an otherwise-unused segment register (fs or gs)
to addressit. (Although vx32 does not permit segment

override prefixes in guest code, it is freeto insert them
for itsown use in the code fragment translations.)

It is common nowadaysfor thread libraries to use one
of these two segment registers—fs or gs—as a pointer
to thread-local storage. If vx32 reused the thread-local
segment register, it would have to restore the segment
register before calli ng any thread-aware library routines,
includingroutinesthat perform locking, such asprintf.
On recent GCC-based systems, the thread-local segment
register iseven used in functioncall prologuesto look up
thestack limit duringastack overflow check. Also, some
64-bit x86 operatingsystems(e.g., Linux) useprivileged
instructionsto initializethethread-local segment register
with a base that is impossible to represent in an ordinary
32-bit segment descriptor. On such systems, restoring
the thread-local segment register would require asystem
call , increasing the cost of exiting guest code. For these
reasons, vx32 useswhichever segment register isnot be-
ing used by thehost OS’s thread library. With care, vx32
could share the thread library’s segment register.

Control transfers. To keep guest executionsafely con-
fined to its cache of translated code fragments, vx32
must ensure that all control transfer instructions—calls,
jumps, and returns—go to vx32-generated translations,
not to theoriginal, unsafeguest code.

In the worst case, a control transfer must search the
translation hash table, invoking the instruction transla-
tor if no translation exists. Once atranslation has been
found, vx32 can rewrite or “patch” direct jumps and di-
rect calls to avoid future lookups[34,38]. To implement
thispatching, theinstructiontranslator initially translates
each fixed-target jump or call i nstruction to jump to a
stubthat invokesthehash table lookupand branch patch-
ing function. The branch patching function looks up the
target addressand then rewrites the jump or call i nstruc-
tion to transfer directly to the target translation.

Patchingcannot be used for indirect branches, includ-
ing indirect calls and returns. This hash table lookupfor
indirect branches, especially during return instructions,
is themain sourceof slowdown in vx32.

Other dynamic translation systems optimize indirect
branches by caching the last target of each indirect
branch and the corresponding translation address, or by
maintaining a cache of subroutine return targets analo-
gousto what many modern processorsdo [37]. Such op-
timizationswould beunlikely to benefit vx32: itsindirect
target lookup path isonly 21 instructions in the common
case of an immediate hash table hit. Only the computa-
tion of the hash index—5 instructions—would be elimi-
nated by using a single-entry branch cache. Most of the
other instructions, which save andrestore thex86condi-
tioncodeflagsandafew guest registersto givethetarget
lookupcode “room to work,” would still be required no
matter how simple the lookupitself.

(a) An indirect jump to the address stored at 08049248:
08048160 jmp [0x08049248]

⇓

b7d8d0f9 mov ebx, fs:[0x2c]

b7d8d100 mov fs:[0x2c], ebx

b7d8d107 mov ebx, [0x08049248]

b7d8d10d jmp vxrun_lookup_indirect

Thefs segment register points to the guest control segment.
Thefirst lineof every translated code fragment isaprologue
that restores the guest’s ebx (at b7d8d0f9 in this case), be-
cause vx32 jumps into a fragment using a jmp [ebx] in-
struction.

The translation of the jmp instruction itself begins on the
second line (at b7d8d100). The translated code saves ebx

back into theguest control segment, loads thetarget eip into
ebx, and then jumps to vxrun_lookup_indirect, which lo-
catesand jumps to the cached fragment for theguest address
in ebx.

The first two lines cannot be optimized out: other frag-
ments may directly jump past the first instruction, as shown
below.

(b) A direct jump to 08048080:
08048160 jmp 0x08048080

⇓

b7d8d0f9 mov ebx, fs:[0x2c]

b7d8d100 jmp 0xb7d8d105

b7d8d105 mov fs:[0x5c], 0x00008115

b7d8d110 jmp vxrun_lookup_backpatch

b7d8d115 dword 0x08048080

b7d8d119 dword 0xb7d8d105

The first jmp in the translation is initially a no-op that just
jumpsto thenext instruction, but vxrun_lookup_backpatch
will rewrite it to avoid subsequent lookups. The word
stored into fs:[0x5c] is an fs-relative offset telli ng
vxrun_lookup_backpatch where in the control segment to
find the two dwords arguments at b7d8d115. The control
segment for the guest begins at b7d85000 in this example.

The first argument is the target eip; the second is the
addressof the end of the 32-bit jump offset to be patched.
Since ebx has not been spill ed at the point of the jump,
vxrun_lookup_backpatch patchesthejump to skip theone-
instruction prologue in thetarget fragment that restoresebx.

(c) A return instruction:
08048160 ret

⇓

b7d8d0f9 mov ebx, fs:[0x2c]

b7d8d100 mov fs:[0x2c], ebx

b7d8d107 pop ebx

b7d8d108 jmp vxrun_lookup_indirect

A return is an indirect jump to an address popped off the
stack.

(d) An indirect call:

08048160 call [0x08049248]

⇓

b7d8d0f9 mov ebx, fs:[0x2c]

b7d8d100 mov fs:[0x2c], ebx

b7d8d107 mov ebx, [0x08049248]

b7d8d10d push 0x08048166

b7d8d112 jmp vxrun_lookup_indirect

The translation is almost identical to the one in (a). The
added push instruction saves the guest return addressonto
the stack.

(e) A direct call:

08048160 call 0x8048080

⇓

b7d8d0f9 mov ebx, fs:[0x2c]

b7d8d100 push 0x8048165

b7d8d105 jmp 0xb7d8d10a

b7d8d10a mov fs:[0x5c], 0x0000811a

b7d8d115 jmp vxrun_lookup_backpatch

b7d8d11a dword 0x08048080

b7d8d11e dword 0xb7d8d10a

The translation is identical to the one in (b) except for the
addition of thepush that saves the return address.

(f) A software interrupt:

08048160 int 0x30

⇓

b7d8d0f9 mov ebx, fs:[0x2c]

b7d8d100 mov fs:[0x20], eax

b7d8d106 mov eax, 0x230

b7d8d10b mov fs:[0x40], 0x8048162

b7d8d116 jmp vxrun_gentrap

The translation saves the guest eax into the guest control
segment, loads the virtual trap number into eax (the 0x200

bit indicates an int instruction), saves the next eip into the
guest control segment, and then jumps to the virtual trap
handler, which will stop the execution loopand return from
vx32, letting the library’s caller handle the trap.

(g) An unsafe or illegal instruction:

08048160 mov ds, ax

⇓

b7d8d0f9 mov ebx, fs:[0x2c]

b7d8d100 mov fs:[0x20], eax

b7d8d106 mov eax, 0x006

b7d8d10b mov fs:[0x40], 0x8048160

b7d8d116 jmp vxrun_gentrap

The translation generates a virtual trap with code 0x006. In
contrast with (f), for ill egal instructions the saved eip points
at the guest instruction itself rather than just past it.

Figure 3: Guest code and vx32translations. Most instructions—arithmetic, data moves, and so on—are unchanged by trans-
lation.

Traps. Vx32translatesinstructionslikeint, syscall,
andsysenter, which normally generatehardware traps,
into code sequences that generate virtual traps instead:
they record the trap code and then cause vx32 to return
to its caller, allowing the host application to handle the
trap as it wishes. Typical applications look for a specific
trap code to interpret as a “virtual system call ” and treat
any other trap as reasonto terminate theguest.

Privileged or unsafe instructions. Vx32 translates
privileged or unsafe instructions (for example, kernel-
mode instructions or those user-mode instructions that
manipulate the segment registers) into sequences that
generate(virtual) ill egal instruction traps.

3.4 Exception handling
With help from the host OS, vx32 catches processor ex-
ceptions in guest code—for example, segmentation vi-
olations and floating point exceptions—and turns them
into virtual traps, returningcontrol to thehost application
with full i nformationabout the exceptionthat occurred.

Sincethe eip reported by the host OS on such an ex-
ception points into oneof vx32’scodetranslations, vx32
must translate this eip back to the corresponding eip

in the guest’s original instruction stream in order for it
to make sense to the host application or the developer.
To recover this information, vx32 first locates the trans-
lation fragment containing the current eip and converts
theeip’s offset within the fragment to an offset from the
guest code addresscorrespondingto the fragment.

To locate the translation fragment containing the trap-
ping eip efficiently, vx32 organizes the code fragment
cache into two sections as shown earlier in Figure 2:
the code translations and instruction offset tables are al-
located from the bottom up, and the fragment index is
allocated from the top down. The top-down portion of
the cache is thus a table of all the translation fragments,
sorted in reverse order by fragment address. The excep-
tion handler uses a binary search in this table to find the
fragment containing a particular eip as well as the hint
table constructed duringtranslation.

Oncevx32’sexception handler has located the correct
fragment, it performsa second binary search, thisone in
the fragment’shint table, to find the exact addressof the
guest instructioncorrespondingto the current eip.

Once the exception handler has translated the fault-
ing eip, it can finally copy the other guest registers un-
changed and exit the guest execution loop, transferring
control back to thehost application to handle the fault.

3.5 Usage
Vx32 is a generic virtual execution library; applications
decide how to use it. Typically, applications use vx32
to execute guest code in a simple control loop: load a
register set into the vx32 instance, and call vx32’s run

function; whenrun eventually returnsavirtual trap code,
handle the virtual trap; repeat. Diversity in vx32appli -
cations arises from what meaning they assign to these
traps. Section 5 describes a variety of vx32 applications
andevaluatesvx32 in those contexts.

Vx32 allows the creation of multiple guest contexts
that can be run independently. In a multithreaded host
application, different host threadscan run different guest
contexts simultaneously with nointerference.

4 Vx32 Evaluation

This section evaluates vx32 in isolation, comparing
vx32’s execution against native execution through mi-
crobenchmarks and whole-system benchmarks. Sec-
tion 5evaluates vx32 in the context of real applications.
Both sectionspresent experimentsrun onavariety of test
machines, listed in Figure4.

4.1 Implementation complexity
The vx32 sandbox library consists of 3,800 lines of C
(1,500 semicolons) and 500lines of x86 assembly lan-
guage. The code translator makes up about half of the
C code. Vx32 runs on Linux, FreeBSD, and MacOS X
without kernel modifications or accessto privileged op-
eratingsystem features.

In addition to the library itself, the vx32 system pro-
vides a GNU compiler toolchain and a BSD-derived C
library for optional use by guests hosted by applications
that provide aUnix-like system call i nterface. Host ap-
plicationsare, of course, freeto use their own compilers
and librariesand to design new system call i nterfaces.

4.2 Microbenchmarks
To understand vx32’s performance costs, we wrote a
small suite of microbenchmarks exercising ill ustrative
cases. Figure5 showsvx32’sperformanceonthesetests.

Jump. This benchmark repeats a sequenceof 100 no-
op short jumps. Because ashort jump is only two bytes,
thetargetsareonly aligned on 2-byteboundaries. In con-
trast, vx32’s generated fragments are aligned on 4-byte
boundaries. Theprocessorswe tested vary in how sensi-
tive they are to jump alignment, but almost all run con-
siderably faster on vx32’s4-byte aligned jumps than the
2-byte jumps in the native code. The Pentium 4 and the
Xeonareunaffected.

Jumpal. This benchmark repeats a sequence of 100
short jumps that are spaced so that each jump target is
aligned ona 16-byteboundary. Most processorsexecute
vx32’s equivalent 4-byte aligned jumps a littl e slower.
ThePentium 4 andXeonare, again, unaffected.

Jumpfar. This benchmark repeats a sequence of 100
jumps spaced so that each jump target is aligned on a
4096-byte (page) boundary. This is a particularly hard

Label CPU(s) RAM Operating System
Athlon64 x86-32 1.0GHz AMD Athlon64 2800+ 2GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Core 2 Duo 1x2 2.33GHz Intel Core 2 Duo 1GB Mac OS X 10.4.10
Opteron x86-32 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Opteron x86-64 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (64-bit)
Pentium 4 3.06GHz Intel Pentium 4 2GB Ubuntu 7.10, Linux 2.6.22
Pentium M 1.0GHz Intel Pentium M 1GB Ubuntu 7.04, Linux 2.6.10
Xeon 2x2 3.06GHz Intel Xeon 2GB Debian 3.1, Linux 2.6.18

Figure 4: Systemsused during vx32evaluation. Thetwo Opteronlistingsare asinglemachinerunning different operatingsystems.
The notation 1x2indicates asingle-processor machine with two cores. All benchmarks used gcc 4.1.2.

jump jumpal jumpfar call callind nullrun syscall
0

1

2

3

4

5

0.
42

 C
or

e
2

D
uo

, O
S

 X
0.

55

 P

en
tiu

m
 M

, L
in

ux
1.

00

 P

en
tiu

m
 4

, L
in

ux
0.

28

 A

th
lo

n6
4

x8
6-

32
, L

in
ux

0.
28

 O
pt

er
on

 x
86

-3
2,

 L
in

ux
0.

28

 O

pt
er

on
 x

86
-6

4,
 L

in
ux

1.
25

 C
or

e
2

D
uo

, O
S

 X
1.

50

 P

en
tiu

m
 M

, L
in

ux
1.

00

 P

en
tiu

m
 4

, L
in

ux
1.

50

 A

th
lo

n6
4

x8
6-

32
, L

in
ux

1.
50

 O
pt

er
on

 x
86

-3
2,

 L
in

ux
1.

50

 O

pt
er

on
 x

86
-6

4,
 L

in
ux

0.
08

 C
or

e
2

D
uo

, O
S

 X
0.

14

 P

en
tiu

m
 M

, L
in

ux
0.

00
6

 P
en

tiu
m

 4
, L

in
ux

0.
03

 A
th

lo
n6

4
x8

6-
32

, L
in

ux
0.

11

 O

pt
er

on
 x

86
-3

2,
 L

in
ux

0.
11

 O
pt

er
on

 x
86

-6
4,

 L
in

ux

C
or

e
2

D
uo

, O
S

 X
7.

3

P

en
tiu

m
 M

, L
in

ux
6.

9

P

en
tiu

m
 4

, L
in

ux
 1

.9
6

A
th

lo
n6

4
x8

6-
32

, L
in

ux
 5

.1

O
pt

er
on

 x
86

-3
2,

 L
in

ux
 5

.3

O
pt

er
on

 x
86

-6
4,

 L
in

ux
 5

.4

C
or

e
2

D
uo

, O
S

 X
 3

.6

P
en

tiu
m

 M
, L

in
ux

 3
.9

1.

43

 P

en
tiu

m
 4

, L
in

ux
A

th
lo

n6
4

x8
6-

32
, L

in
ux

 4
.3

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 4
.4

O

pt
er

on
 x

86
-6

4,
 L

in
ux

 4
.6

C
or

e
2

D
uo

, O
S

 X
6.

8

P

en
tiu

m
 M

, L
in

ux
 5

.1

P
en

tiu
m

 4
, L

in
ux

 3
.4

A

th
lo

n6
4

x8
6-

32
, L

in
ux

 3
.3

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 3
.9

O

pt
er

on
 x

86
-6

4,
 L

in
ux

 3
.9

C
or

e
2

D
uo

, O
S

 X
 2

.5

P
en

tiu
m

 M
, L

in
ux

 3
.0

P

en
tiu

m
 4

, L
in

ux
 3

.3

A
th

lo
n6

4
x8

6-
32

, L
in

ux
 2

.8

O
pt

er
on

 x
86

-3
2,

 L
in

ux
 3

.0

O
pt

er
on

 x
86

-6
4,

 L
in

ux
 3

.0

Figure 5: Normalized run times for microbenchmarks running under vx32. Each bar plots run time using vx32 divided by run
time for the same benchmark running natively (smaller bars mark faster vx32 runs). The benchmarks are described in Section 4.2.
Results for the Intel Xeon matched the Pentium 4 almost exactly andare omitted for spacereasons.

case for native execution, especially if the processor’s
instructioncacheusesonly the low 12 bitsof theinstruc-
tionaddressas the cache index. Vx32 runs thiscase sig-
nificantly faster on all processors, because of better in-
structioncacheperformancein the translation.

Call . Thisbenchmark repeatedly callsa functioncon-
taining only a return instruction. The call i s a direct
branch, thoughthe return is still an indirect branch.

Calli nd. This benchmark is the same as call , but the
call i snow an indirect branch, via aregister.

Comparing the bars for call against the bars for call -
ind may suggest that vx32 takes longer to executedirect
function calls than indirect function calls, but only rela-
tiveto theunderlying hardware: avx32indirect call takes
about twice as longas a vx32 direct call , while anative
indirect call takes about four times as long as a native
direct call . The call bars are taller than the calli nd bars
not because vx32 executes direct calls more slowly, but
becausenativehardware executesthem so much faster.

Null run. This benchmark compares creating and ex-
ecuting a vx32 guest instance that immediately exits
against forkingahost processthat immediately exits.

Syscall . This benchmark compares a virtual system
call relayed to the host system against the same system
call executed natively. (The system call i s close(-1),
which should be trivial for theOS to execute.)

4.3 Large-scale benchmarks
The microbenchmarks help to characterize vx32’s per-
formance executing particular kinds of instructions, but
the execution of real programsdependscritically on how
often the expensive instructions occur. To test vx32
on real programs, we wrote a500-line host application
called vxrun that loads ELF binaries [41] compiled for
a generic Unix-like system call i nterface. The system
call i nterfaceis complete enoughto support the SPEC
CPU2006 integer benchmark programs, which we ran
both using vx32(vxrun) and natively. We ran only the C
integer benchmarks; we excluded 403.gcc and 429.mcf
because they caused our test machines, most of which
haveonly 1GB of RAM, to swap.

Figure 6 shows the performanceof vx32 compared to
thenativesystem onfivedifferent 32-bit x86 processors.
On threeof the seven benchmarks, vx32 incursa perfor-

401.bzip2 456.hmmer 462.libquantum 445.gobmk 458.sjeng 400.perlbench 464.h264ref
0

1

2

C
or

e
2

D
uo

, O
S

 X
 0

.9
7

P
en

tiu
m

 M
, L

in
ux

 1
.1

4

P

en
tiu

m
 4

, L
in

ux
 1

.0
6

X
eo

n,
 L

in
ux

 1
.0

5

A

th
lo

n6
4

x8
6-

32
, L

in
ux

 1
.0

8

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 1
.1

4

C
or

e
2

D
uo

, O
S

 X
 0

.9
2

P
en

tiu
m

 M
, L

in
ux

 0
.8

3

P

en
tiu

m
 4

, L
in

ux
 0

.8
7

X
eo

n,
 L

in
ux

 0
.8

7

A

th
lo

n6
4

x8
6-

32
, L

in
ux

 1
.0

7

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 1
.0

8

C
or

e
2

D
uo

, O
S

 X
 0

.9
2

P
en

tiu
m

 M
, L

in
ux

 0
.7

8

P

en
tiu

m
 4

, L
in

ux
 1

.0
2

X
eo

n,
 L

in
ux

 1
.0

4

A

th
lo

n6
4

x8
6-

32
, L

in
ux

 0
.9

9

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 1
.0

1

C
or

e
2

D
uo

, O
S

 X
 1

.2
6

P
en

tiu
m

 M
, L

in
ux

 1
.4

0

P

en
tiu

m
 4

, L
in

ux
 1

.5
0

X
eo

n,
 L

in
ux

 1
.5

1

A

th
lo

n6
4

x8
6-

32
, L

in
ux

 1
.6

2

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 1
.6

0

C
or

e
2

D
uo

, O
S

 X
 1

.1
6

P
en

tiu
m

 M
, L

in
ux

 1
.4

7

P

en
tiu

m
 4

, L
in

ux
 1

.4
1

X
eo

n,
 L

in
ux

 1
.4

4

A

th
lo

n6
4

x8
6-

32
, L

in
ux

 1
.6

1

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 1
.5

9

C
or

e
2

D
uo

, O
S

 X
 1

.1
6

P
en

tiu
m

 M
, L

in
ux

 1
.2

2

P

en
tiu

m
 4

, L
in

ux
 1

.5
2

X
eo

n,
 L

in
ux

 1
.5

0

A

th
lo

n6
4

x8
6-

32
, L

in
ux

 1
.7

8

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 1
.7

7

C
or

e
2

D
uo

, O
S

 X
 1

.2
4

P
en

tiu
m

 M
, L

in
ux

 1
.6

4

P

en
tiu

m
 4

, L
in

ux
 1

.3
9

X
eo

n,
 L

in
ux

 1
.2

8

A

th
lo

n6
4

x8
6-

32
, L

in
ux

 1
.6

7

O

pt
er

on
 x

86
-3

2,
 L

in
ux

 1
.6

5

Figure 6: Normalized run times for SPEC CPU2006 benchmarks running under vx32. Each bar plots run time using vx32 divided
by run time for the same benchmark running natively (smaller bars mark faster vx32 runs). The left threebenchmarks use fewer
indirect branches than the right four, resulting in lessvx32 overhead. Theresults are discussed further in Section 4.3.

401.bzip2 456.hmmer 462.libquantum 445.gobmk 458.sjeng 400.perlbench 464.h264ref
0

1

2

32
-b

it,
 n

at
iv

e

32
-b

it,
 v

x3
2

 1
.1

4

64
-b

it,
 n

at
iv

e
 0

.8
1

64
-b

it,
 v

x3
2

 1
.1

2

32
-b

it,
 n

at
iv

e

32
-b

it,
 v

x3
2

 1
.0

8

64
-b

it,
 n

at
iv

e
 0

.7
4

64
-b

it,
 v

x3
2

 1
.0

9

32
-b

it,
 n

at
iv

e

32
-b

it,
 v

x3
2

 1
.0

1

64
-b

it,
 n

at
iv

e
 0

.8
1

64
-b

it,
 v

x3
2

 1
.0

3

32
-b

it,
 n

at
iv

e

32
-b

it,
 v

x3
2

 1
.6

0

64
-b

it,
 n

at
iv

e
 0

.9
2

64
-b

it,
 v

x3
2

 1
.5

9

32
-b

it,
 n

at
iv

e

32
-b

it,
 v

x3
2

 1
.5

9

64
-b

it,
 n

at
iv

e
 0

.9
9

64
-b

it,
 v

x3
2

 1
.5

9

32
-b

it,
 n

at
iv

e

32
-b

it,
 v

x3
2

 1
.7

7

64
-b

it,
 n

at
iv

e
 0

.9
5

64
-b

it,
 v

x3
2

 1
.7

7

32
-b

it,
 n

at
iv

e

32
-b

it,
 v

x3
2

 1
.6

5

64
-b

it,
 n

at
iv

e
 0

.9
5

64
-b

it,
 v

x3
2

 1
.6

5

Figure 7: Normalized runtimesfor SPEC CPU2006 benchmarksrunning in four configurationsonthesameAMD Opteronsystem:
natively on 32-bit Linux, under vx32 hosted by 32-bit Linux, natively on 64-bit Linux, and under vx32 hosted by 64-bit Linux.
Each bar plots run time divided by run time for the same benchmark running natively on 32-bit Linux (smaller bars mark faster
runs). Vx32 performanceis independent of the host operating system’s choiceof processor mode, because vx32 always runs guest
code in 32-bit mode. Theresults are discussed further in Section 4.3.

mancepenalty of lessthan 10%, yet ontheother four, the
penalty is 50% or more. The difference between these
two groupsis therelativefrequency of indirect branches,
which, as discussed in Section 3, are the most expensive
kind of instruction that vx32must handle.

Figure8 showsthepercentageof indirect branchesre-
tired by our Pentium 4 system duringeach SPEC bench-
mark, obtained viatheCPU’sperformance counters[21].
The benchmarks that exhibit a high percentage of indi-
rect call , jump, andreturn instructionsareprecisely those
that suffer a high performancepenalty under vx32.

We also examined vx32’s performancerunning under
a 32-bit host operatingsystem compared to a 64-bit host
operating system. Figure 7 graphs the results. Even
under a 64-bit operating system, the processor switches
to 32-bit mode when executing vx32’s 32-bit code seg-
ments, so vx32’s execution time is essentially identical
in each case. Native 64-bit performance often differs
from 32-bit performance, however: the x86-64architec-
ture’s eight additional general-purpose registers can im-
prove performanceby requiring less register spilli ng in

0 % 1 % 2 %

401.bzip2
456.hmmer

462.libquantum
445.gobmk

458.sjeng
400.perlbench

464.h264ref

return instructions retired other indirect branches retired

Figure 8: Indirect branchesasapercentageof total instructions
retired during SPEC CPU2006 benchmarks, measured using
performance counters on the Pentium 4. The left portion of
each bar corresponds to return instructions; the right portion
corresponds to indirect jumps and indirect calls. The indirect-
heavy workloads are exactly those that experience noticeable
slowdowns under vx32.

compiled code, but its larger pointer size can hurt per-
formanceby decreasing cache locality, and the balance
between these factorsdependson theworkload.

5 Applications

In addition to evaluating vx32in isolation, we evaluated
vx32 in the context of several applications built using
it. This section evaluates the performanceof these ap-
plications, but equally important is the abilit y to create
them in the first place: vx32 makes it possible to create
interesting new applications that execute untrusted x86
codeon legacy operatingsystemswithout kernel modifi-
cations, at only amodest performance cost.

5.1 Archival storage
VXA [13] isan archival storagesystem that usesvx32to
“ futureproof ” compressed data archivesagainst changes
in data compression formats. Data compression algo-
rithms evolve much more rapidly than processor archi-
tectures, so VXA packagesexecutable decoders into the
compressed archives alongwith the compressed data it-
self. Unpacking the archive in the future then depends
only on being able to run on(or simulate) an x86 pro-
cessor, not on having the original codecs used to com-
pressthedata and beingable to run them natively on the
latest operatingsystems. Crucially, archival storage sys-
tems need to be efficiently usable now as well as in the
future: if “ future proofing” an archive using sandboxed
decoders costs too much performancein the short term,
the archive system is unlikely to be used except by pro-
fessional archivists.

VXA uses vx32 to implement a minimal system call
API (read, write, exit, sbrk). Vx32 provides exactly
what the archiver needs: it protects the host from buggy
or malicious archives, it isolates the decoders from the
host’s systemcall API so that archivesareportable across
operating systems and OS versions, and it executes de-
coders efficiently enoughthat VXA can be used as a
general-purpose archival storage system without notice-
able slowdown. To ensure that VXA decoders behave
identically on all platforms, VXA instructs vx32 to dis-
able inexact instructions like the 387 intrinsics whose
preciseresultsvary from oneprocessor to another; VXA
decoders simply useSSE andmath library equivalents.

Figure 9 shows the performance of vx32-based de-
coders compared to native ones on the four test archi-
tectures. All run within 30% of native performance, of-
ten much closer. The jpeg decoder is consistently faster
under vx32 than natively, dueto better cache locality.

5.2 Extensible public key infrastructure
Alpaca [24] is an extensible public-key infrastructure
(PKI) and authorization framework built on the ideaof
proof-carrying authorization (PCA) [3], in which one
party authenticates itself to another by using an explicit
logical language to prove that it deserves a particular
kind of accessor is authorized to request particular ser-

vices. PCA systems before Alpaca assumed a fixed set
of cryptographic algorithms, such as public-key encryp-
tion, signature, and hash algorithms. Alpacamovesthese
algorithmsinto thelogical languageitself, so that the ex-
tensibilit y of PCA extends not just to delegation policy
but also to complete cryptographic suites and certificate
formats. Unfortunately, cryptographic algorithms like
round-based hash functionsare inefficient to expressand
evaluate explicitly usingAlpaca’sproof language.

Alpacauses Python bindings for the vx32 sandboxto
support native implementations of expensive algorithms
like hashes, which run as untrusted “plug-ins” that are
fully isolated from the host system. The lightweight
sandboxing vx32 provides is again crucial to the appli -
cation, because an extensible public-key infrastructure
is unlikely to be used in practice if it makes all crypto-
graphic operations orders of magnitude slower than na-
tive implementationswould be.

Figure 10 shows the performanceof vx32-based hash
functionscomparedto nativeones. All runwithin 25%of
nativeperformance. OnesurpriseistheCore2 Duo’sex-
cellent performance, especially onwhirlpool. Webelieve
theCore2 Duo isespecially sensitive to cache locality.

5.3 Plan 9 VX
Plan 9 VX (9vx for short) is a port of the Plan 9 oper-
ating system [35] to run ontop of commodity operating
systems, allowingtheuseof both Plan 9andthehost sys-
tem simultaneously and also avoiding the need to write
hardware drivers. To run user programs, 9vx creates an
appropriate address spacein awindow within itsown ad-
dress space andinvokesvx32to simulateuser mode exe-
cution. Where areal kernel would executeiret to enter
user mode and wait for the processor to trap back into
kernel mode, 9vx invokes vx32 to simulate user mode,
waiting for it to return with a virtual trap code. 9vx
usesatemporary file asasimulation of physical memory,
calli ng the host mmap andmprotect system calls to map
individual memory pages as needed. This architecture
makes it possible to simulate Plan 9’s shared-memory
semantics exactly, so that standard Plan 9 x86 binaries
run unmodified under 9vx. For example, Plan 9 threads
have ashared address space except that each has a pri-
vate stack. Thisbehavior is foreign to other systemsand
very hard to simulatedirectly. Because all user-mode ex-
ecution happensviavx32, 9vx can implement thiseasily
with appropriatememory mappings.

The most surprising aspect of 9vx’s implementation
was how few changes it required. Besides removing the
hardwaredrivers, it required writingabout 1,000linesof
codeto interfacewith vx32, andanother 500to interface
with the underlying host operatingsystem. The changes
mainly have to dowith page faults. 9vx treats vx32 like
an architecture with a software-managed TLB (the code

zlib
bz2

jpeg
jp2

vorbis
flac

0 1
Core 2 Duo, OS X 0.99

Pentium M, Linux 0.95

Pentium 4, Linux 1.00

Xeon, Linux 1.00

Athlon64 x86-32, Linux 1.08

Opteron x86-32, Linux 1.06

Core 2 Duo, OS X 0.94

Pentium M, Linux 0.97

Pentium 4, Linux 1.00

Xeon, Linux 1.00

Athlon64 x86-32, Linux 1.06

Opteron x86-32, Linux 1.04

Core 2 Duo, OS X 0.71

Pentium M, Linux 0.73

Pentium 4, Linux 0.68

Xeon, Linux 0.75

Athlon64 x86-32, Linux 0.91

Opteron x86-32, Linux 0.89

Core 2 Duo, OS X 1.07

Pentium M, Linux 1.22

Pentium 4, Linux 1.18

Xeon, Linux 1.10

Athlon64 x86-32, Linux 1.28

Opteron x86-32, Linux 1.27

Core 2 Duo, OS X 1.21

Pentium M, Linux 0.92

Pentium 4, Linux 1.02

Xeon, Linux 0.98

Athlon64 x86-32, Linux 1.02

Opteron x86-32, Linux 0.97

Core 2 Duo, OS X 0.99

Pentium M, Linux 0.92

Pentium 4, Linux 1.16

Xeon, Linux 1.03

Athlon64 x86-32, Linux 1.13

Opteron x86-32, Linux 1.09

F
igure

9:
N

orm
alized

run
tim

es
for

V
X

A
decoders

running
under

vx32.
E

ach
bar

plots
run

tim
e

using
vx32

divided
by

run
tim

e
for

the
sam

e
benchm

ark
running

natively
(sm

aller
bars

m
ark

faster
vx32

runs).
S

ection
5.1

gives
m

ore
details.

T
he

jpeg
test

runs
faster

because
the

vx32
translation

has
better

cache
locality

than
the

originalcode.

m
d5

sha1
sha512

ripem
d

w
hirlpool

0 1

Core 2 Duo, OS X 0.92

Pentium M, Linux 1.11

Pentium 4, Linux 1.23

Xeon, Linux 1.08

Athlon64 x86-32, Linux 1.18

Opteron x86-32, Linux 1.17

Core 2 Duo, OS X 1.03

Pentium M, Linux 1.14

Pentium 4, Linux 1.08

Xeon, Linux 1.04

Athlon64 x86-32, Linux 1.15

Opteron x86-32, Linux 1.07

Core 2 Duo, OS X 0.85

Pentium M, Linux 1.02

Pentium 4, Linux 1.06

Xeon, Linux 1.04

Athlon64 x86-32, Linux 1.11

Opteron x86-32, Linux 1.14

Core 2 Duo, OS X 0.98

Pentium M, Linux 1.07

Pentium 4, Linux 1.07

Xeon, Linux 1.03

Athlon64 x86-32, Linux 1.11

Opteron x86-32, Linux 1.11

Core 2 Duo, OS X 0.74

Pentium M, Linux 1.03

Pentium 4, Linux 1.21

Xeon, Linux 1.10

Athlon64 x86-32, Linux 1.16

Opteron x86-32, Linux 1.17

F
igure

10:
N

orm
alized

run
tim

es
for

cryptographic
hash

functions
running

under
vx32.

E
ach

bar
plots

run
tim

e
using

vx32
divided

by
run

tim
e

for
the

sam
e

benchm
ark

running
natively

(sm
aller

bars
m

ark
faster

runs).

syscall
pipe-byte

pipe-bulk
rdw

r
sha1zero

du
m

k
0 1 2 3 4

native

vx32 1.69

VMware 4.8

QEMU 23

native

vx32 2.7

VMware 3.8

QEMU 21

native

vx32 2.5

VMware 2.8

QEMU 22

native

vx32 0.93

VMware 2.6

QEMU 18

native

vx32 1.00

VMware 1.90

QEMU 1.90

native

vx32 0.57

VMware 2.7

QEMU 9.1

native

vx32 0.63

VMware 1.32

QEMU 3.9

F
igure

11:
N

orm
alized

run
tim

es
for

sim
ple

P
lan

9
benchm

arks.
T

he
four

bars
correspond

to
P

lan
9

running
natively,P

lan
9

V
X

,
P

lan
9

under
V

M
w

are
W

orkstation
6.0.2

on
L

inux,
and

P
lan

9
under

Q
E

M
U

on
L

inux
using

the
k
q
e
m
u

kernel
extension.

E
ach

bar
plots

run
tim

e
divided

by
the

native
P

lan
9

run
tim

e
(sm

aller
bars

m
ark

faster
runs).

T
he

tests
are:

sw
tch,

a
system

callthat
reschedules

the
currentprocess,causing

a
contextsw

itch
(s
l
e
e
p
(
0
));pipe-byte,tw

o
processes

sending
a

single
byte

back
and

forth
over

a
pair

of
pipes;

pipe-bulk,
tw

o
processes

(one
sender,

one
receiver)

transferring
bulk

data
over

a
pipe;

rdw
r,a

single
process

copying
from

/
d
e
v
/
z
e
r
o

to
/
d
e
v
/
n
u
l
l;

sha1zero,a
single

processreading
/
d
e
v
/
z
e
r
o

and
com

puting
its

S
H

A
1

hash;du,a
single

processtraversing
the

fi
le

system
;and

m
k,building

a
P

lan
9

kernel.
S

ee
S

ection
5.3

for
perform

ance
explanations.

was already present in Plan 9 to support architectures
like the MIPS). 9vx unmaps all mapped pages during a
processcontext switch (a single munmap call) and then
remapspageson demand during vx32execution. A fault
on a missing page causes the host kernel to send 9vx a
signal (most often SIGSEGV), which causes vx32 to stop
and return a virtual trap. 9vx handles the fault exactly
as Plan 9 would and then passes control back to vx32.
9vx preempts user processes by asking the host OS to
deliver SIGALRM signals at regular intervals; vx32 trans-
lates thesesignals into virtual clock interrupts.

To evaluate the performance of 9vx, we ran bench-
marks on our Pentium M system in four configurations:
native Plan 9, 9vx on Linux, Plan 9 under VMware
Workstation 6.0.2 (build 59824) on Linux, and Plan 9
under QEMU on Linux with the kqemu module. Fig-
ure11showstheresults. 9vx is slower thanPlan 9at con-
text switching, so switch-heavy workloads suffer (swtch,
pipe-byte, pipe-bulk). System calls that don’ t context
switch (rdwr) and ordinary computation (sha1zero) run
at full speed under 9vx. In fact, 9vx’s simulation of sys-
tem calls is faster than VMware’sandQEMU’s, because
it doesn’ t require simulating the processor’s entry into
and exit from kernel mode. File system access(du, mk)
is also faster under 9vx than Plan 9, because 9vx uses
Linux’s in-kernel file system while the other setups use
Plan 9’s user-level file server. User-level file servers are
particularly expensivein VMware andQEMU dueto the
extra context switches. We have not tested Plan 9 un-
der VMware ESX server, which could be more efficient
than VMware Workstation sinceit bypasses the host OS
completely.

The new functionality 9vx creates is more important
than its performance. Using vx32 means that 9vx re-
quires no special kernel support to make it possible to
run Plan 9 programs and native Unix programs side-by-
side, sharing the same resources. This makes it easy to
experiment with and use Plan 9’s features while avoid-
ing the need to maintain hardwaredriversand port large
piecesof software (such asweb browsers) to Plan 9.

5.4 Vxlinux
We implemented a 250-line host application, vxlinux,
that providesdelegation-based interposition [17] by run-
ning unmodified, single-threaded Linux binaries under
vx32andrelayingtheguest’s system callsto thehost OS.
A complete interposition system would include apolicy
controlli ng which system calls to relay, but for now we
merely wish to evaluate the basic interposition mecha-
nism. The benefit of vxlinux over the OS-independent
vxrun (described in Section 4) is that it runs unmodi-
fied Linux binaries without requiring recompilation for
vx32. The downside is that since it implements system
calls by passing arguments throughto the Linux kernel,

it can only run onLinux. The performanceof the SPEC
benchmarksunder vxlinux is essentially the same as the
performanceunder vxrun; weomit thegraph.

6 Conclusion

Vx32 is a multipurpose user-level sandboxthat enables
any application to load and safely execute one or more
guest plug-ins, confining each guest to a system call
API controlled by thehost applicationandto a restricted
memory region within the host’s address space. It exe-
cutes sandboxed code efficiently on x86architecturema-
chines by using the x86’s segmentation hardware to iso-
late memory accesses alongwith dynamic code transla-
tion to disallow unsafe instructions.

Vx32’s abilit y to sandbox untrusted code efficiently
has enabled a variety of interesting applications: self-
extracting archival storage, extensible public-key infras-
tructure, a user-level operating system, and portable or
restricted execution environments. Because vx32 works
on widely-used x86 operating systems without kernel
modifications, these applicationsare easy to deploy.

In the context of these applications (and also on the
SPEC CPU2006 benchmark suite), vx32 always deliv-
ers sandboxed execution performancewithin a factor of
two of native execution. Many programsexecute within
10% of the performanceof native execution, and some
programsexecute faster under vx32 than natively.

Acknowledgments

Chris Lesniewski-Laas is the primary author of Alpaca.
We thank Austin Clements, Stephen McCamant, and the
anonymous reviewers for valuable feedback. This re-
search is sponsored by the T-Party Project, a joint re-
search programbetweenMIT andQuantaComputer Inc.,
Taiwan, and by the National Science Foundation under
FIND project 0627065(User InformationArchitecture).

References

[1] Keith Adams andOleAgesen. A comparison of software
and hardware techniques for x86 virtualization. In ASP-
LOSXIII , December 2006.

[2] Advanced Micro Devices, Inc. AMD x86-64architecture
programmer’s manual, September 2002.

[3] Andrew W. Appel and Edward W. Felten. Proof-carrying
authentication. In 6th ACM CCS, November 1999.

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Baner-
jia. Dynamo: atransparent dynamic optimizationsystem.
ACM SIGPLAN Notices, 35(5):1–12, 2000.

[5] Brian N. Bershad et al. Extensibilit y, safety and perfor-
mancein theSPIN operatingsystem. In 15th SOSP, 1995.

[6] Brian Case. Implementing the Java virtual machine. Mi-
croprocessor Report, 10(4):12–17, March 1996.

[7] Suresh N. Chari and Pau-Chen Cheng. BlueBox: A
policy-driven, host-based intrusion detection system. In
Network andDistributed SystemSecurity, February 2002.

[8] Tzi-cker Chiueh, Ganesh Venkitachalam, and Prashant
Pradhan. Integrating segmentation and paging protection
for safe, efficient and transparent software extensions. In
17th SOSP, pages 140–153, December 1999.

[9] BobCmelik andDavid Keppel. Shade: A fast instruction-
set simulator for execution profiling. SIGMETRICSPER,
22(1):128–137, May 1994.

[10] R. J. Creasy. The origin of the VM/370 time-sharing
system. IBM Journal of Research and Development,
25(5):483–490, 1981.

[11] L. Peter Deutsch and Allan M. Schiffman. Efficient im-
plementation of theSmalltalk-80system. In Principlesof
ProgrammingLanguages, pages297–302, Salt LakeCity,
UT, January 1984.

[12] D. Eastlake3rd andT. Hansen. USsecurehash algorithms
(SHA and HMAC-SHA), July 2006. RFC 4634.

[13] Bryan Ford. VXA : A virtual architecturefor durable com-
pressed archives. In 4th USENIX FAST, San Francisco,
CA, December 2005.

[14] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann,
Godmar Back, andStephen Clawson. Microkernels meet
recursivevirtual machines. In 2ndOSDI, pages 137–151,
1996.

[15] Timothy Fraser, LeeBadger, and Mark Feldman. Hard-
eningCOTSsoftware with generic software wrappers. In
IEEE Symposium on Security and Privacy, pages 2–16,
1999.

[16] Tal Garfinkel. Traps and pitfalls: Practical problems in
system call i nterposition based security tools. In Network
andDistributed System Security, February 2003.

[17] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia:
A delegatingarchitecturefor securesystem call i nterposi-
tion. In Network andDistributed System Security, Febru-
ary 2004.

[18] Douglas P. Ghormley, David Petrou, Steven H. Ro-
drigues, and Thomas E. Anderson. SLIC: An extensibil -
ity system for commodity operatingsystems. In USENIX,
June 1998.

[19] Ian Goldberg, David Wagner, Randi Thomas, andEric A.
Brewer. A secure environment for untrusted helper appli -
cations. In 6th USENIX Security Symposium, San Jose,
CA, 1996.

[20] Honeywell Inc. GCOSEnvironment Simulator. Decem-
ber 1983. Order Number AN05-02A.

[21] Intel Corporation. IA-32 Intel architecture software de-
veloper’s manual, June 2005.

[22] K. Jain andR. Sekar. User-level infrastructure for system
call i nterposition: A platform for intrusion detection and
confinement. In Network and Distributed System Secu-
rity, February 2000.

[23] Andreas Krall . Efficient JavaVM just-in-time compila-
tion. In Parallel Architectures and Compilation Tech-
niques, pages 54–61, Paris, France, October 1998.

[24] Christopher Lesniewski-Laas, Bryan Ford, JacobStrauss,

M. FransKaashoek, and Robert Morris. Alpaca: extensi-
ble authorization for distributed services. In ACM Com-
puter andCommunications Security, October 2007.

[25] Henry M Levy. Capabilit y-based Computer Systems.
Digital Press, 1984.

[26] Jochen Liedtke. A persistent system in real use: experi-
ences of the first 13 years. In IWOOOS, 1993.

[27] Jochen Liedtke. On micro-kernel construction. In 15th
SOSP, 1995.

[28] Chi-KeungLuk et al. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI,
June 2005.

[29] Stephen McCamant and Greg Morrisett. Evaluating SFI
for a CISC architecture. In 15th USENIX Security Sym-
posium, August 2006.

[30] Microsoft Corporation. C# language specification, ver-
sion 3.0, 2007.

[31] Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Ac-
cetta. The packet filter: An efficient mechanism for user-
level network code. In Symposium on Operating System
Principles, pages 39–51, Austin, TX, November 1987.

[32] George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. In 2ndOSDI, pages229–243,
1996.

[33] NicholasNethercote andJulian Seward. Valgrind: A pro-
gram supervision framework. In Third Workshop onRun-
timeVerification (RV’03), Boulder, CO, July 2003.

[34] Nicholas Nethercote and Julian Seward. Valgrind: A
framework for heavyweight dynamic binary instrumen-
tation. In PLDI, June 2007.

[35] Rob Pike et al. Plan 9 from Bell Labs. Computing Sys-
tems, 8(3):221–254, Summer 1995.

[36] Niels Provos. Improving host security with system call
policies. In 12th USENIX Security Symposium, August
2003.

[37] K. Scott et al. Overhead reductiontechniquesfor software
dynamic translation. In NSF Workshop onNext Genera-
tion Software, April 2004.

[38] Richard L. Sites, AntonChernoff, Matthew B. Kirk, Mau-
riceP. Marks, and Scott G. Robinson. Binary translation.
Communications of the ACM, 36(2):69–81, 1993.

[39] Christopher Small and Margo Seltzer. MiSFIT: Con-
structing safe extensible systems. IEEE Concurrency,
6(3):34–41, 1998.

[40] Michael M. Swift, Brian N. Bershad, andHenry M. Levy.
Improving the reliabilit y of commodity operating sys-
tems. In 19th ACM SOSP, 2003.

[41] Tool InterfaceStandard (TIS) Committee. Executable and
linking format (ELF) specification, May 1995.

[42] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient software-based fault isolation.
ACM SIGOPS Operating Systems Review, 27(5):203–
216, December 1993.

[43] Robert N. M. Watson. Exploitingconcurrency vulnerabil -
itiesin system call wrappers. In 1st USENIX Workshop on
OffensiveTechnologies, August 2007.

[44] Emmett Witchel and Mendel Rosenblum. Embra: Fast
and flexible machine simulation. In Measurement and
Modeling of Computer Systems, pages 68–79, 1996.

