
Computing Science Technical Report No. 143

Newsqueak: A Language
for

Communicating with Mice

Rob Pike

April 9, 1994

Newsqueak: A Language
for

Communicating with Mice

Rob Pike

ABSTRACT

This is the reference manual for the revised Squeak language, a concur-
rent language designed for writing interactive graphics programs. The lan-
guage is, however, much more generally applicable. This manual defines the
language. Separate documents will describe the libraries and give a ratio-
nale for the design.

April 9, 1994

Newsqueak: A Language
for

Communicating with Mice

Rob Pike

This is an informal reference manual for the concurrent language Newsqueak.
Newsqueak’s roots are in Squeak, a language designed a few years ago by Luca Cardelli and
Rob Pike to illustrate concurrent solutions to problems in user interface design. Newsqueak
addresses the same problems but in a broader context: Squeak was for designing devices
such as menus and scroll bars; Newsqueak is for writing entire applications, and in particu-
lar a window system. Besides a wholesale redesign of Squeak’s syntax, Newsqueak therefore
has several major components absent in Squeak: a type system, dynamic process creation,
and dynamic channel creation. Also, Squeak deferred most mundane programming details to
the language it compiled into, C. Newsqueak is instead a self-contained language. An inter-
preter for it, called squint, has been implemented.

Newsqueak draws heavily from CSP and C, and the discussion that follows assumes
modest familiarity with both these languages. Roughly, the syntax and basic semantics
come from C, while the message-passing primitives come from CSP. The way these are put
together is, however, unique to Newsqueak.

1. Text

Input is free-form. An identifier consists of alphanumeric characters, including under-
score, and does not begin with a number. A sharp character # begins a comment, which con-
tinues until a new-line character. Files may be included; an occurrence of

include " file name"

is replaced by the contents of the file. (In this manual, italic text distinguishes syntactic con-
structions from literal text.)

An include may occur anywhere the word include is recognizable as an identifier;
include does not need to begin a line. If the file twentythree contains the text 23 then

x=include "twentythree";

sets x to 23.

If the named file is not found in the current directory, and does not begin with a slash
or period, it is sought in a standard repository.

2. Simple Types

Three basic types exist:

unit is a type with exactly one entry, itself named unit . It prints as

(unit)

int is the basic signed integer type, typically 32 bits long.

char is an unsigned character, 8 bits long. chars and ints — the integral types — are
interchangeable as in C, but, when printed, an int is a numeric value and a char appears
as its output form (the letter A, new-line, etc.).

The syntax for integer and character constants is as in C. Character constants are of

- 2 -

type int .

3. Compound Types

Four type constructors build compound types.

array builds an array of objects, indexed by integral values starting at zero. The syntax is

array[size] of type

where size is an integral expression that is evaluated to determine the number of elements.
Thus the type

array[10] of int

is an array of ten integers, a[0] through a[9] .

The size of an array is not part of its type, so the size may change on assignment. If
a10 is an array of ten objects, and a5 is an array of five, after executing

a5=a10

a5 has ten elements. Moreover, the size may be omitted from the declaration (e.g. array of
int) if the size is to be determined later or is implicit, for instance in the declaration of for-
mal parameters.

struct builds a compound data structure:

struct of { list of element declarations }

where the list has the normal declaration syntax, described below.

prog declares a program, much as in lambda calculus. The syntax is

prog(list of formals) of type

where the formals may be empty, a single declaration, or a comma-separated list of several
declarations. The final type is that of the expression yielded by the prog when it is exe-
cuted. There is no distinction between functions and procedures; a procedure corresponds to
a function returning unit . If the return type is unit , the of clause may be elided.

chan defines a bufferless communication channel. The syntax is

chan of type

Channels are discussed below, in the section on communications.

4. Strings

Arrays of characters are also called strings. String constants are written as in C, so

"hello"

is a string with 5 characters. Strings are not null-terminated, but rather have a known
length. (See Section 8, on expressions.)

5. mk

Newsqueak has an object constructor, called mk:

mk(type)

returns an uninitialized object of the named type.

mk(type = initial value)

gives the object a value. For instance,

mk(int=10)

creates a storage cell holding the integer 10. For compound objects, mk creates storage for

- 3 -

only the outermost type. Thus

mk(array[3] of array[2] of int)

creates a 3-element array of 2-element arrays of integers, but the 2-element arrays are still
undefined, so attempting to access them will yield an error.

Some syntax allows more complicated initializations. The initializers for compound
objects must be enclosed in braces, as in

mk(array[2] of int={1,2})

or, recursively,

mk(array[2] of array[3] of int={{1,2,3},{4,5,6}})

Any object of compatible type may be used in a mk. For example, the following two mk’s are
equivalent:

mk(array of char={’h’,’e’,’l’,’l’,’o’})
mk(array of char="hello").

(The size of these arrays will be derived from the initializers.) The order of evaluation of ini-
tializers is undefined. (See also Section 7, on deriving type.)

6. Declarations

Declarations consist of a comma-separated list of identifiers, a colon, an optional type,
and an optional equals sign and initial expression. For instance,

o:int

declares o to be an integer,

p,q:int

declares two more integer variables, and

nl:char=’\n’

defines nl to be a character with initial value new-line. The declaration

p,q:int=1

is identical to the two declarations

p:int=1
q:int=1

except that the initializing expression is evaluated only once. Any part of the declaration
may be elided if its form is clear. For instance, the following are all equivalent:

i:int=mk(int=100)
i:=mk(int=100)
i:int=100
i:=100

When compound objects are being created, the most convenient form is often

a:=mk(array[10] of int)

Observe that := is not an assignment operator. It is two operators, one to declare and one to
assign.

Variables may be declared constant by prefixing the declaration with const , so

const NBUF:int=200

declares NBUFto be the constant 200. It is an error to change the value of a constant object.

An identifier may be used to identify a type, using the type keyword. For example,

- 4 -

type point: struct of{ x, y: int; }

defines a data type to represent coordinates in Z×Z.

Statements, of which declarations are one form, are terminated by semicolons, so the
declarations above must all be followed by a semicolon. This is why a semicolon appears in
the declaration of type point.

Declarations may appear anywhere a statement is legal, except where the syntax
explicitly mentions executable statement.

7. Deriving type

The type of an object may often be inferred. Newsqueak infers type in declarations and
assignments, including the binding of actual parameters to formals in progs and in the val-
ues returned by progs . In declarations, therefore, the type may be left off if it may be
implied from an initializing expression, as in the declaration from above

i:=100;

which declares i to be an integer with initial value 100. Given i , another variable may be
declared using the value of i:

i_plus_one:=i+1 .

and so on.

For compound objects, initializations may be provided by grouping the initializing
expressions, element by element, in braces:

p:point={2, 3} .

If a type is given, it overrides the type of the initializing expression, which matters only
in cases related to these:

c:char=’\n’ # ’\n’ is of type int
a:array[10] of int={1,2,3} # remaining elements of a are undefined
b:array of int=1

Type is also derived in assignments (described below), so given

p:point

the assignment

p={5,6}

is equivalent to

p=mk(point={5,6}).

Similarly, if f is a prog that acts on points , it may be called as

f({2,3}).

When type may be derived, mk needs no explicit type. Thus

c:chan of int;
c=mk();

defines a new channel and assigns it to c .

It is an error to reference an undefined variable, except to assign a value to it. An
undefined integer, however, has value zero, and it is not an error to access it.

- 5 -

8. Expressions

Expressions are syntactically and semantically much as they are in C. They include
the assignment operator =, the arithmetic operators + - * / %, the bitwise operators & | ^ ~
<< >> , the logical operators ! && || . The . (dot) operator accesses elements of structs .
Newsqueak does not have the ?: operator or pointer indirection. It also does not have the
augmented assignment operators += and its ilk. It does, however, have postfix ++ and prefix
-- , which operate only on ints and are guaranteed to be atomic in their update. They are
therefore useful for synchronizing shared variables.

The comparison operators == >= <= != < > may be applied to integral types, and (lexico-
graphically) to strings, yielding zero for failure and one for success. As in C, zero is a false
Boolean value and non-zero true.

Finally, there are several operators unique to Newsqueak. The first are the unary
operators def and len .

def a

tells if the object a is defined, that is, if it has storage allocated. For example, given

a:=mk(array[2] of point);

def a yields 1 (true), but def a[0] yields 0 (false).

len a

for an array a tells how many elements (defined or not) the array contains.

There are two infix array operators.

a del n

where a is an array and n an integer, yields a with the first n elements dropped. Therefore

a=a del 1

shortens a by deleting the first element. If n is negative, the last n elements are dropped.

a1 cat a2

yields the concatenation of the arrays a1 and a2 .

The communications operator <- is discussed in Section 14, on communications.

9. progs

A prog expression is a body of executable code that may be assigned to a variable and
executed. A prog expression is a prog type followed by a brace-enclosed body:

prog(formals) of type { body }

where formals is a comma-separated list of declarations of formal parameters and the body is
a sequence of statements, defined below. The lone type is that of the resulting value, unit
by default.

The value returned to the caller of a prog is produced by the become statement, dis-
cussed in the section on statements. Here is a prog that adds its two integer arguments:

prog(a,b:int) of int{
become a+b;

}

To bind this program to a variable, declare one, say add , and assign to it:

add:=prog(a,b:int) of int{
become a+b;

};

- 6 -

Now add may be called anywhere an expression of integral type is legal, using the tradi-
tional syntax, for example as

twoplusthree:=add(2, 3);

Note, however, that a prog is an expression, and may be called directly. Thus the declara-
tion of twoplusthree may be equivalently written

twoplusthree:=prog(a:int, b:int) of int{
become a+b;

}(2, 3);

10. rec

The rec keyword, prefixing a declaration or brace-enclosed group of declarations, per-
mits declarations of self- and mutually-recursive variables and types. For example, the fac-
torial function can be written

rec fact:=prog(n:int) of int{
if(n==0) become 1;
become n*fact(n-1);

};

A tree may be declared as a recursive type:

rec type tree: struct of{
value: int;
left,right: tree;

};

11. Data

Variables in Newsqueak, even compound objects, are manipulated entirely by value.
For instance, after the declarations

a:="hello";
b:=a;

a and b have the same value, but they do not share storage. After the assignment

a[0]=’j’;

a now has the value jello but b is still hello . This rule applies to all handling of data,
including passing variables to progs , so if a prog wishes to overwrite some elements of an
array, it must arrange to return the array to its caller, using a global variable or by using an
appropriate return (become) value. (For efficiency, the implementation only creates copies of
variables when they are needed, so data are shared as long as possible, but the semantics is
as described here.)

12. Scope

A variable, once declared, is visible until the end of the brace-enclosed block of state-
ments in which it is declared. Its value may, however, be passed outside. A variable defined
outside any block is a global object, as though the entire program were enclosed in a set of
braces.

13. Statements

The simplest statement is the empty statement, a bare semicolon. It is equivalent to
the empty compound statement {} .

A compound statement is one of

- 7 -

{}
{ list of statements}

where a list of statements is a concatenation of one or more statements.

Any expression, followed by a semicolon, is a statement. For instance, assignment to a
variable is an expression that yields the value assigned:

b=2

sets b to 2 and yields 2 as its value. This allows chains of assignments:

a=b=2;

is a statement that assigns 2 to b and then to a. (C handles this differently; it assigns 2 to b
and then b to a.)

A declaration is a statement.

Control statements are much as in C. The if statement has form:

if(expression)
executable statement

or

if(expression)
executable statement

else
executable statement

The expression (of integral type) is evaluated. If the result is non-zero, the first statement is
executed; if zero and an else clause is present, its statement is instead executed. An exe-
cutable statement is any statement except a declaration.

The for loop is

for(expr1 ; expr2 ; expr3)
executable statement

The first expression is evaluated. Then, while the second expression is non-zero, the state-
ment is executed and the third expression is evaluated. Any of the expressions in parenthe-
ses may be elided; if the second is missing, it is taken to be 1.

The break statement,

break;

which is legal only within a loop, terminates the loop immediately. The continue state-
ment,

continue;

transfers the loop control immediately to the third expression, bypassing the remaining body
of the loop.

The while loop

while(expression)
executable statement

is equivalent to

for(; expression;)
executable statement

The do loop

- 8 -

do executable statement
while(expression);

is equivalent to

executable-statement
while(expression)

executable statement

The switch statement

switch(expression){
case expression:

list of executable statements
case expression:

list of executable statements
default:

list of executable statements
}

evaluates the first expression, and then compares the value top-to-bottom with the expres-
sions (which need not be constants) in the various cases. When a particular case ’s expres-
sion equals the switch expression, the corresponding statement list is executed, and execu-
tion then continues after the switch statement. At most one case is executed. If no earlier
case matches, and a default is present (it is optional), its statement list is executed.
Because strings may be compared using the logical operators, switch expressions may be
strings as well as integers.

The become statement

become expression;

is legal only inside a prog . Its effect is to replace the execution of the prog by the evalua-
tion of the expression. The resulting value is returned to the caller of the prog as its value.
For example, consider the prog

rec sumorial:=prog(n,sum:int) of int{
if(n==0) become sum;
become sumorial(n-1, sum+n);

};

If n is zero, the first become yields to the caller the value of sum. Otherwise, the second
become replaces the executing prog by a version of itself with different arguments. In gen-
eral, when a prog P executes a become whose expression is a call of Q, the effect is exactly as
if the caller of P had instead called Qwith the appropriate arguments. No new stack space is
consumed; become is a form of process call.

The begin statement starts a process — an independently executing computation. The
syntax is

begin prog(parameters);

so it may begin only a prog as a separate process. (The return value of the prog is dis-
carded if the prog finishes.) All processes execute concurrently; the current implementation
interleaves the execution of processes very finely. Processes are discussed further in the next
section.

14. Communications

Newsqueak’s communication mechanisms are as in CSP, with channels acting as ren-
dezvous points for processes. Channels have explicit type:

c:=mk(chan of int);

- 9 -

creates a channel c that may be used to send integers.

The communication operator is <- and exists as a prefix and postscript form. The pre-
fix form is a receipt:

<-c

yields the next value transmitted on the channel. The postfix form is legal only on the left
side of an assignment:

c<- = 3;

sends the integer 3 on c .* (If the type of the channel is unit , the assignment may be elided;
unitchan<- sends unit on such a channel.) For example, given two integer channels c1
and c2 the loop

for(;;) c1<- = <-c2;

receives integers on c2 and sends them out on c1 .

For a communication to complete, two distinct processes must simultaneously be able
to communicate on the stated channel, one to send and one to receive. Given a channel c
shared by two processes, when one process executes

c<- = 3;

it blocks (suspends execution) until another process executes

<-c;

and vice versa. When both are ready, the sending process evaluates the expression to send,
and sends it to the receiving process. Both processes then resume execution. Note that the
rendezvous is done before the expression to be sent is evaluated, so in

c1<- = <-c2;

the rendezvous on c1 occurs before the rendezvous on c2 . If the other order is required to
avoid deadlock, the statement can be rewritten as

{a:= <-c2; c1<- = a;}

The select statement allows a process to choose among a set of channels on which to
communicate. The syntax is

select{
case communication:

list of executable statements
...
}

There is no default in a select. The communications in the cases are one of the follow-
ing:

<- channel
variable = <- channel
channel<- = expression

where a channel is either a simple channel or an array expression of one of the forms a[] or
a[variable=] , and a is an array of channels and variable is an assignable object. In the
array forms, all the channels in the array are made available for communication. If the last
form is used, and that case proceeds, the index in the array of the channel that communi-
cated is assigned to the indexing variable.

* Mnemonic: c<- is a send because the arrow points to the channel; <-c is a receipt because the arrow
points from the channel.

- 10 -

The execution of a select proceeds as follows. First, all the channels named, includ-
ing all the channels in arrays, are evaluated in the order listed. If one or more channels are
free to communicate immediately, one of those available is selected at random (by calling a
pseudo-random number generator) and the corresponding communication proceeds. Other-
wise, the process blocks until one or more communications can proceed. When some can, one
of those available is selected at random, and the appropriate case is selected. If it is a send,
the expression to be sent is next evaluated. If the case is an indexed array, the index is
then assigned. The value is then passed as appropriate. If the communication is a receipt
with a variable named to receive the value (the case a=<-c) the variable receives the value
sent. Execution then proceeds with the statement list attached to the successful case, after
which execution resumes after the select statement.

For example, the following prog prints the value and array index of the first receiving
communication to proceed on any of the channels in its argument:

prog(a:array of chan of int){
i,v: int;
select{
case v=<-a[i=]:

print("chan index ", i, " result ", v, "\n");
}

}

(The print expression is discussed below.)

15. val

The val expression has syntax

val { list of statements }

One or more of the statements in the statement list is a result statement:

result expression;

The semantics of val is to execute the statement list, and to yield the value of the expression
associated with the first result statement executed. It is an error to complete a val state-
ment without executing a result statement. For example, this sets c to the maximum of a
and b:

c = val{
if(a>=b) result a;
result b;

}

16. Printing

The print expression, with syntax

print(list of expressions)

where the expressions are comma-separated, yields a string containing formatted represen-
tations of the expressions, concatenated. If this expression is promoted directly to a state-
ment, without being stored or evaluated, it is written to the standard output. For example:

print("23+45=", 23+54, "\n");

prints

23+45=77

but

x:=print("23+45=", 23+54, "\n");

- 11 -

saves the resulting string in x and produces no output.

17. The interpreter

The Newsqueak interpreter, squint, implements the language described above. Its
input is a list of statements, executed in the order presented. Expressions at the top level of
the interpreter, when promoted to a statement by a following semicolon, have their values
printed automatically, so the interpreter may be used as a sort of calculator. A typical pro-
gram defines several progs , then begins them and starts some communication.

- 12 -

18. Example

The following program comprises several progs . The last, sieve, returns a channel of
integers that produces the successive prime numbers.

counter:=prog(c:chan of int)
{

i:=2;
for(;;)

c<-=i++;
};
filter:=prog(prime:int, listen,send:chan of int)
{

i:int;
for(;;)

if((i=<-listen)%prime)
send<-=i;

};
sieve:=prog() of chan of int
{

c:=mk(chan of int);
begin counter(c);
prime:=mk(chan of int);
begin prog(){

p:int;
newc:chan of int;
for(;;){

prime<-=p=<-c;
newc=mk();
begin filter(p, c, newc);
c=newc;

}
}();
become prime;

};
prime:=sieve();

This program may be run by typing

$ squint
include "sieve"
<-prime;
2
<-prime;
3
i:int;
for(i=0; i<10; i++) print(<-prime, " ");
5 7 11 13 17 19 23 29 31 37

($ is the prompt from the Unix shell, and output is in italics.) The interpreter may also be
invoked

$ squint sieve /dev/stdin

19. Implementation bugs

The current implementation does not allow local variables to exist past the lifetime of
the prog in which they were created. This causes problems when local progs are created
that access variables neither global nor local to themselves. The situation is flagged as an
error. For example,

- 13 -

bad1:=prog(){
a:int;
p:=prog(){

a=1;
};

};

draws an error. To mitigate the problem somewhat, squint internally rewrites the program

bad2:=prog(){
a:int;
begin prog(){

a=1;
}();

};

into the form

bad2:=prog(){
a:int;
begin prog(a:int){

a=1;
}(a);

};

since the argument list for a begin is always present. Thus local progs not begun as pro-
cesses must access only globals and variables local to themselves.

20. Future

A couple of things should be tidied up: type derivation should be formalized, and the
array forms of communication should be applicable outside select statements.

Developments being considered for Newsqueak include buffered channels and environ-
ments. Buffered channels would have syntax

chan[10] of int

with the number defining the size of a buffer. A synchronous channel, as currently imple-
mented, would be equivalent to

chan[0].

Environments are a way to specify the variables accessible to a body of code. They
make it possible to maintain strong typing while allowing arbitrary strings to be accepted as
programs. In other words, they make a sort of eval or compile-on-the-fly operator type safe.

