
Security in Plan 9

Russ Cox, MIT LCS
Eric Grosse, Bell Labs
Rob Pike, Bell Labs

Dave Presotto, Avaya Labs and Bell Labs
Sean Quinlan, Bell Labs

rsc,ehg,rob,presotto,seanq
@

plan9.bell−labs.com

What comprises a security architecture? ..

An interface for applications to
� authenticate users and services
� establish secure channels

A mechanism to manage authentication secrets (keys)

Lots of code to implement cryptographic protocols and
functions

OS protection: user id, access permission, etc.

Plan 9..

Research operating system developed at Bell Labs
� development since late 1980s
� base for other research since 1995

Easy for us to work on:
� we wrote and control all the source
� simple design makes everything easier

Plan 9 principles (and security implications)...

Plan 9 principles (and security implications)...

Everything isa file
� uniform access control mechanism: file permissions
� alrwxrwxrwx, a is append-only,l is exclusive use
� system logs area−rw−rw−rw−
no syslog daemon: programs write directly to log
� mail spool files arealrw−−w−−w−
to deliver mail, just open mailbox and write a message

Plan 9 principles (and security implications)...

Everything isa file
� uniform access control mechanism: file permissions
� alrwxrwxrwx, a is append-only,l is exclusive use
� system logs area−rw−rw−rw−
no syslog daemon: programs write directly to log
� mail spool files arealrw−−w−−w−
to deliver mail, just open mailbox and write a message

All file systemsarepresented to kernel using onefile
protocol: 9P

� authentication is only in one place: 9P

Plan 9 principles (and security implications)...

Everything isa file
� uniform access control mechanism: file permissions
� alrwxrwxrwx, a is append-only,l is exclusive use
� system logs area−rw−rw−rw−
no syslog daemon: programs write directly to log
� mail spool files arealrw−−w−−w−
to deliver mail, just open mailbox and write a message

All file systemsarepresented to kernel using onefile
protocol: 9P

� authentication is only in one place: 9P

Each processhasits own private, malleablenamespace
� easy to remove resources from a process:unmount /net.
� easy to keep a process from adding resources:
rfork(RFNOMNT) disallows mounting new resources into the name
space
� easy sandboxing

Plan 9 host owner ...

Local machineresourcesowned by thehost owner
� normal user account
� no a priori special privileges (notroot)
� on terminals, the user who booted the terminal
� on CPU servers, a pseudo-user

Problems with Plan 9 authentication (now fixed)

Problems with Plan 9 authentication (now fixed)

One security domain
� can’t be rsc in one place and rcox in another
� can’t have different passwords

Problems with Plan 9 authentication (now fixed)

One security domain
� can’t be rsc in one place and rcox in another
� can’t have different passwords

Auth protocol hard wired into 9P
� fixing an auth bug would require redefining 9P

Problems with Plan 9 authentication (now fixed)

One security domain
� can’t be rsc in one place and rcox in another
� can’t have different passwords

Auth protocol hard wired into 9P
� fixing an auth bug would require redefining 9P

Auth code in all servers, clients, kernels
� fixing an auth bug would require extensive code changes

Problems with Plan 9 authentication (now fixed)

Onesecurity domain
� can’t bersc in one place andrcox in another
� can’t have different passwords

Auth protocol hard wired into 9P
� fixing an auth bug would require redefining 9P

Auth codein all servers, clients, kernels
� fixing an auth bug would require extensive code changes

Needham-Schroeder-likeshared key authentication
� passwords, DES keys short: vulnerable to eavesdropper dictionary
attack

Redesign around an agent ..

Factotum, from the OED:
 a. In L. phrases: Dominus factotum, used for ‘one who controls
everything’, a ruler with uncontrolled power; Johannes factotum, a
Jack of all trades, a would-be universal genius. Also fig.

 b. One who meddles with everything, a busybody.

c. In mod. sense: A man of all-work; also, a servant who has the
entire management of his master’s affairs.

Redesign around an agent ..

Factotum, from the OED:
 a. In L. phrases: Dominus factotum, used for ‘one who controls
everything’, a ruler with uncontrolled power; Johannes factotum, a
Jack of all trades, a would-be universal genius. Also fig.

 b. One who meddles with everything, a busybody.

c. In mod. sense: A man of all-work; also, a servant who has the
entire management of his master’s affairs.

This is Plan 9: factotum is a file server
% cd /mnt/factotum
% ls −l
−lrw−−−−−−− gre gre 0 Jul 31 10:14 confirm
−−rw−−−−−−− gre gre 0 Jul 31 10:14 ctl
−lr−−−−−−−− gre gre 0 Jul 31 10:14 log
−lrw−−−−−−− gre gre 0 Jul 31 10:14 needkey
−−r−−r−−r−− gre gre 0 Jul 31 10:14 proto
−−rw−rw−rw− gre gre 0 Jul 31 10:14 rpc
%

Overview...

Overview...

Factotum
� holds keys
� uses keys to execute authentication protocols
� host owner’s factotum moderates identity changes on that machine
� user can run his own factotum; programs use whatever is mounted

at /mnt/factotum

Overview...

Factotum
� holds keys
� uses keys to execute authentication protocols
� host owner’s factotum moderates identity changes on that machine
� user can run his own factotum; programs use whatever is mounted

at /mnt/factotum

Secstore
� provides safe for holding keys
� consulted by factotum to retrieve keys

Overview...

Factotum
� holds keys
� uses keys to execute authentication protocols
� host owner’s factotum moderates identity changes on that machine
� user can run his own factotum; programs use whatever is mounted

at /mnt/factotum

Secstore
� provides safe for holding keys
� consulted by factotum to retrieve keys

Kernel
� allows host owner’s factotum to issue identity change capabilities

Example ..

Example ..

Boot time
� Factotum fetches keys from secstore

user[none]: gre
secstore password: ******
STA PIN+SecurID: **********

Example ..

Boot time
� Factotum fetches keys from secstore

Apop mail client C connects to server S
� authenticates by proxying messages between factotum and network

F S ← S start proto=apop role=server
C → F C start proto=apop role=client

Example ..

Boot time
� Factotum fetches keys from secstore

Apop mail client C connects to server S
� authenticates by proxying messages between factotum and network

F S ← S start proto=apop role=server
C → F C start proto=apop role=client

F S → S → C → F C +OK POP3 challenge

Example ..

Boot time
� Factotum fetches keys from secstore

Apop mail client C connects to server S
� authenticates by proxying messages between factotum and network

F S ← S start proto=apop role=server
C → F C start proto=apop role=client

F S → S → C → F C +OK POP3 challenge

F S ← S ← C ← F C APOP gre response

Example ..

Boot time
� Factotum fetches keys from secstore

Apop mail client C connects to server S
� authenticates by proxying messages between factotum and network

F S ← S start proto=apop role=server
C → F C start proto=apop role=client

F S → S → C → F C +OK POP3 challenge

F S ← S ← C ← F C APOP gre response

F S → S → C → F C +OK welcome

Example ..

Boot time
� Factotum fetches keys from secstore

Apop mail client C connects to server S
� authenticates by proxying messages between factotum and network

F S ← S start proto=apop role=server
C → F C start proto=apop role=client

F S → S → C → F C +OK POP3 challenge

F S ← S ← C ← F C APOP gre response

F S → S → C → F C +OK welcome

F S ← S authinfo
F S → S ok client=gre capability=capability

C → F C authinfo
C ← F C ok

Example ..

Boot time
� Factotum fetches keys from secstore

Apop mail client C connects to server S
� authenticates by proxying messages between factotum and network

Apop server process changes identity to gre before
proceeding

� passes capability (issued by server factotum) to kernel

Keys...

Key is a list of attribute=value pairs:
key proto=p9sk1 dom=cs.xyz.com user=gre

!password=xyzzy confirm=yes

key proto=apop server=comcast.net user=gre12345
!password=boo

� The ‘!’ prefix means don’t print this value when displaying keys.

Attributes are free-form, but some have meaning to:
� factotum itself: proto, confirm
� the protocols: password, user, server, dom
� the user: anything else

Factotum and keys ...

Keys are added to factotum by writing them to the ctl file.
% cd /mnt/factotum
% cat >ctl
key dom=bell−labs.com proto=p9sk1 user=gre

!password=’don’’t tell’
key proto=apop server=x.y.com user=gre

!password=’bite me’
^D
% cat ctl
key dom=bell−labs.com proto=p9sk1 user=gre !password?
key proto=apop server=x.y.com user=gre !password?
%

Key patterns ..

Key patterns are attribute=value pairs. The key must be a
superset of the pattern.

% cat ctl
key dom=bell−labs.com proto=p9sk1 user=gre !password?
key proto=apop server=x.y.com user=gre !password?
% echo ’delkey proto=apop’ >ctl
% cat ctl
key dom=bell−labs.com proto=p9sk1 user=gre !password?
%

Secstore..

Secure, encrypted file store for small, precious files
� a safe to hold keys

PAK protocol provides password-based access
� hash password to yield auth key
� actively attacking PAK is equivalent to computational Diffie-

Hellman

File encryption/decryption performed by client
� hash password another way to yield crypt key
� if server is compromised, attacker has to break the individual files

Secstore and factotum ..

Factotum fetches file named factotum from secstore at boot
time.

� assumed to hold initial set of keys

user[none]: gre
secstore password: ******
STA PIN+SecurID: **********

� can reload the secstore key file into factotum at any time

secstore −G factotum >/mnt/factotum/ctl

� can edit the key file (fetch to ramfs, edit, put back)

User must remember only one password
� can be fairly high entropy
� stored keys can be arbitrarily high entropy

Factotum interface for programs ..

Auth_proxy executes RPCs over /mnt/factotum/rpc to
proxy a conversation between factotum and a file descriptor.

AuthInfo *ai;
AuthGetkey *getkey;

ai = auth_proxy(fd, getkey,
"proto=p9any role=client");

Last argument is a key pattern
� Actually a printf-style string:

ai = auth_proxy(fd, getkey,
"proto=p9any role=client server=%s", machine);

AuthInfo holds
� user name and domain at other end
� nonce keys for the conversation
� possibly a capability to change user id

Identity changes via capabilities ..

User id changes are managed by capabilities
� string oldname@newname@random-bytes
� allows a process running as oldnameto start running as newname
� single use

Host owner’s factotum informs the kernel of newly issued
capabilities by writing their SHA1 hashes to /dev/caphash

echo rsc@rob@xyzzy | sha1sum >/dev/caphash

Factotum hands capability to another process, which then
writes it to /dev/capuse

echo rsc@rob@xyzzy >/dev/capuse

/dev/caphash is removed once the host owner’s factotum
starts, so other host owner processes can’t use it.

Unprivileged, safe servers ...

Servers run as none, the opposite of a superuser.
� can’t debug any processes
� explicitly excluded from some file systems (e.g., dump)
� (like everyone else,) requires a capability in order to become another

user

Bugs in servers are less critical
� on Unix, servers run as root: breaking a server gives you full access
� on Plan 9, servers run as none: breaking a server gives you hardly

any access

Moving Factotum to Unix? ..

Still have source for (almost) everything
� no one group controls all the source
� in long term, would be good to convince owners to go along with

you

Factotum can’t be user-level file system.
� RPCs over Unix socket named by environment variable
� lose the use of cat, echo to manage keys. Need simple

replacements.

Factotum must be separate process
� all authentication logic is encapsulated in one place
� buggy clients cannot compromise factotum
� only one program runs with special privileges

Factotum must not be shared library
� shared libraries share memory space with buggy clients
� shared libraries require clients to run with special privileges

Moving Factotum to Unix? ..

Nothing Plan 9-specific about secstore

Easy to write /dev/caphash kernel driver
� goodbye, setuid bit!
� even /bin/login and /bin/su don’t need to run as root

Summary ..

Everything is a file, so everything has a uniform access
control mechanism: file permission bits

Factotum, a protocol-agnostic trusted agent, handles both
client and server authentication.

Secstore provides convenient but secure storage of keys

Clean separation of security and applications

Mostly applicable to Unix

More in paper:
� one line of code to start TLS on a file descriptor
� factotum protected against debuggers, swapping
� 9P auth protocol is now textual metaprotocol to choose real protocol
� links to more information in paper

