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ABSTRACT

The implementation of the concurrent applicative language Newsqueak has several

unusual features. The interpreter,squint , uses a copy-on-write scheme to manage stor-

age honoring Newsqueak’s strictly applicative (by-value) semantics for data. There is no

explicit scheduler. Instead, the execution of processes is interleaved very finely, but ran-

domly, by an efficient scheme that integrates process switching into the interpreter’s main

loop. The implementation ofselect , the non-deterministic, multi-way communica-

tions operator, exploits details in the implementation of processes.

This paper describes much of the interpreter but explains only small aspects of the

language. Further detail about the language may be found in the references.

Storage

Since the management of storage is central to the implementation of any language, it is a good start-

ing point for the description of the Newsqueak interpreter. But it is especially pertinent for Newsqueak

because the design of the language hinges on its strictly by-value (applicative) management of data.

Concurrent and applicative programming complement each other. The ability to send messages on

channels provides I/O without side effects, while the avoidance of shared data helps keep concurrent pro-

cesses from colliding. Newsqueak is an applicative concurrent language based on the concurrent composi-

tion of processes communicating on synchronous channels [Pike 89, McIl 89]. Two computations share a

value only if they share a variable. All assignment of values to objects— including function return, bind-

ing of parameters to functions and processes, and passing values on channels— is done by making a copy

of the assigned value. Although Newsqueak permits global variables, programming without them is conve-

nient and implicitly encouraged. The language promotes independent functions and processes operating in

environments defined exclusively by their parameters. Since those parameters may include communication

channels, the language feels considerably different from traditional applicative languages.

Newsqueak does not require that its implementation copy values in an assignment, but the behavior

must be as though the value were copied. The Newsqueak interpreter,squint , combines reference-count

garbage collection with a lazy copying scheme to defer copying as long as possible. The result is similar to

copy-on-write page management schemes in operating systems.
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Reference counting was chosen because it is easy to implement [Knuth 73]. It was (correctly)

expected that storage management would not dominate performance. Moreover, when the language was

being designed there were several candidates for the CPU it would eventually be run on, so it seemed pru-

dent to use simple, inherently portable techniques.

Each object in Newsqueak is represented using a single word containing the address of a data struc-

ture describing the object, except for integers, which are just stored in the word. (The language itself has no

pointer types, but the implementation uses pointers extensively.) The data structure begins with a header

that includes a reference count and a description of the size and layout of the object, which simplifies copy-

ing the structures. (The static type system requires no run-time checking of the type of objects, but the

interpreter uses a single routine to copy all objects.) The data contained in arrays of characters and integers

are stored immediately after the header. Arrays of non-integral objects are represented recursively by stor-

ing an array of pointers to the component objects after the initial header. Records, defined using the

struct keyword, are stored using a hybrid scheme; a bit array at the beginning of the data part of the

object indicates which elements of the structure are represented by pointers.

An object is freed (collected) when the number of references to it goes to zero, which can occur when

a link to the object is broken by assignment or when a variable pointing to the object is released at the end

of an executing block. When an object is freed, pointers contained within it are followed and their refer-

ence counts are decremented. When these counts go to zero, the algorithm continues recursively.

When an object is assigned to a variable, its reference count is increased. However, when a compo-

nent of an object is updated, the resulting assignment may be done in place only if the containing object has

a reference count of one. If not, the object must first be copied. Consider the isolated assignments

A = somearray

B = A

A[i] = p.

After the second assignment, the array pointed to byA and B has a reference count of at least two. To

assignp to A[i] , A is copied, the old array’s reference count is decremented (A no longer points to it, but

B still does), all its component objects’ reference counts are incremented (the new array points to the same

components), andA is made to point to the new object. This new object has a reference count of one. The

original object pointed to byA[i] andB[i] has its reference count decremented (after assignmentA[i]

will not point to it butB[i] will), and A[i] may finally be pointed atp, whose reference count incre-

ments. All these operations occur as a single atomic action. Care must be taken in the implementation to

guarantee that assignments such as

A[i] = A[i]

work properly, even when disguised, for example by communication on a channel. But the method is not

hard to implement, and is beneficial for many common cases such as passing an array to a function that

examines it but does not change it.
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Processes and scheduling

The unusual handling of processes and scheduling insquint is most easily approached the same

way it was developed: by successive refinement of a basic interpreter. Many interpreters represent the tar-

get program as an array of function pointers, each of which represents pseudo-instructions in a simulated

CPU, and use a program counter to step through those functions. The end of the program is indicated by a

pseudo-instruction that returns zero (false); non-terminal pseudo-instructions return one (true). The code in

C looks like:

typedef int (*Inst)(void);

Inst *pc;

Inst program[];

compile();

pc=program;

while((**pc++)())

;

As well, there are often some global pseudo-registers, such as a stack pointer, and some associated data,

such as a stack. These global variables are manipulated by the pseudo-instructions to push variables on the

stack and perform other low-level operations.

Newsqueak needs processes. Since the implementation is a single (real) process in a C program, we

need to simulate processes by interleaving the execution of various Newsqueak programs in a single

instance of the basic loop. When a (simulated) process is not actively executing, its state can be held in a

data structure such as— schematically at least—

typedef struct{

Inst *pc; /* program counter */

int *sp; /* stack pointer */

int stack[N]; /* stack storage */

}Proc;

A typical operating systems approach at this point would be to use theProc structure to hold thepc and

sp of a suspended process and to swap them with the global variables when the process is enabled again.

(The stack storage in theProc structure could be used as is, without copying.) The execution loop might

then become

while(a process can run){

while(randomtimer()!=0 && (**pc++)())

;

swap(schedule());

}

whereschedule selects a process (i.e., aProc pointer) to run andswap exchanges the globals with the

named process. Again, this is a CPU-like model; the timer represents some sort of clock that drives the
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preemptive scheduling algorithm. It might be implemented by having a software interrupt set a flag, or just

by running a counter.

Of course, these processes should be communicating, so some scheduling can be tied to communica-

tion. For example, when a sending process, say A, detects (through a data structure representing a channel,

which will be described in the next section) that another process, say B, is ready to receive its message, A

can execute

swap(B)

thereby passing the flow of control to the receiving process. In general, though, this approach does not

obviate the need for preemptive scheduling. If a process does not communicate often, it may never get run.

Worse, tying the scheduling to communication makes the system very deterministic. Concurrent lan-

guages, particularly those originating with Hoare’s Communicating Sequential Processes (CSP) [Hoare 78],

have a tradition of non-determinism derived from a combination of Dijkstra’s guarded commands [Dijk 76]

and distributed computation. Non-determinism also has the advantage of avoiding certain classes of live-

lock that can occur when communicating with a chatty process. Newsqueak therefore should be non-

deterministic when scheduling and when choosing between multiple potential communicators. To provide

non-deterministic scheduling without interrupting timers, we need a different structure for the interpreter

loop.

Squint has no scheduler and no global program counter or stack pointer. Instead, the state of all

processes is described only by theProc structures, using a model related to hardware microtasking [Thack

79] and the HUB miniature operating system [ODell 87] [Mas 76]. Rather than running the pseudo-

instructions by executing

(**pc++)()

squint executes

(**proc->pc++)(proc)

whereproc points to the head of a queue of active processes. Each pseudo-instruction needs theProc

pointer of the current process to access the appropriate stack and registers. These indirections may cost

some execution time, of course, but the hope is to gain some back by not having to save and restore process

state when scheduling. By not saving state when scheduling, all that is required is to changeproc to run

the new process. That is inexpensive enough to do after every pseudo-instruction, if we can cycle through

the process queue cheaply. Given a process queue and anext pointer in eachProc the code becomes:
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typedef int (*Inst)(Proc*);

Proc *proc; /* head of process queue */

Proc *ptail; /* tail of process queue */

while(proc){

while((**proc->pc++)(proc)){

ptail->next = proc;

ptail = proc; /* append proc to tail */

proc = proc->next; /* delete proc from head */

}

}

The queue manipulation succeeds even if the queue has only one process. Nonetheless, in the common

case that only a single process is running, we can improve the loop by leaving the queue alone ifproc

equalsptail :

while(proc){

while((**proc->pc++)(proc)){

if(proc != ptail){

ptail->next = proc;

ptail = proc; /* append proc to tail */

proc = proc->next; /* delete proc from head */

}

}

}

If only one process is running, the scheduling overhead is one comparison per pseudo-instruction, plus the

cost of accessing the simulated registers through a pointer (which may be negligible; it depends on the

architecture of the real CPU). If several processes are active, though,proc is not equal toptail and

each execution of the loop accesses several global variables. We can do better by amortizing the cost over

several instructions, by scheduling less often. By being statistical rather than absolute in deciding how

often, we have an opportunity to introduce non-determinism into the scheduler.

To randomize the interleaving of the processes, we need an extremely cheap way to decide how to

interleave. The first requirement is a cheap random number generator. It does not have to be good, it just

needs to be good enough that programs cannot exploit any correlations. The following generator, courtesy

of Jim Reeds, uses a 31-bit linear feedback shift register to derive a random enough number in a handful of

minor instructions on most 32-bit computers:
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long x = 0xFFFFFFFFL;

x += x;

if(x < 0)

x ^= 0x88888EEFL;

n = x&MASK;

(The& operator is bitwise and;̂ is bitwise exclusive or.) The resultingn is a random number between 0

andMASK; MASKis 15 insquint. With the generator in the loop, the result is:

while(proc){

x += x;

if(x < 0)

x ^= 0X88888EEFL;

n = x&MASK;

while(--n>=0 && (**proc->pc++)(proc))

;

if(proc != ptail){

ptail->next = proc;

ptail = proc; /* append proc to tail */

proc = proc->next; /* delete proc from head */

}

}

With x andn in registers, this loop runs insignificantly slower than the non-random one on a VAX-11 with

a single process, and about 40% faster with several processes. It also offers non-determinism and requires

no timer. The only remaining problem is to work in the scheduling requirements of inter-process communi-

cation, the subject of the next section.

Newsqueak provides a process creation operator (begin ) but no explicit process destruction opera-

tor. When a process is instantiated, it is wrapped in an envelope that converts what would be its top-level

function return into the sequence that releases the function’s resources (by decrementing reference counts

of the top-level data structures) and removes the process from the run queue. Garbage collection does the

rest.

Communication

Consider a processS sending an integeri to a processR, using a channelc . S executes

c<- = i

andRexecutes

v = <-c

to save the value inv . Communication in Newsqueak is synchronous, which means that bothS andRmust

be ready to communicate before either can do so; if, for instance,S tries to send on a channel when no

receiver is ready, it suspends execution until a receiver, hereR, tries to read from the same channel. If a
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process is prepared to communicate on a set of channels, it uses aselect statement, which announces the

possibility of communication and then executes a sequence of statements labeled by the single communica-

tion that finally proceeds. For example,

select{

case i = <-c1:

a = 1;

case c2<- = i:

a = 2;

}

setsa to 1 if the process receives a value from channelc1 , or to 2 if the process sends a value onc2 . If

neitherc1 nor c2 can communicate, the process suspends until one can. If both can, a non-deterministic

choice is made. The semantics of these operations, but not the syntax, is taken from CSP [Hoare 78] and

Occam [INMOS 84].

Assume thatS reaches the communication point (rendezvous) first.S must wait— suspend execu-

tion — until R arrives, and whenR does arriveS must resume execution. The channelc has a pair of

queues of processes,sendq andrcvq , to which processes append themselves while awaiting rendezvous.

The following sequence, structured as pseudo-instructions executed byS andR, ensues. Each num-

bered step is a single pseudo-instruction, labeled by the process that executes it, except that steps 1, 5, and 7

may be many pseudo-instructions in a more complex example. StepsS3 andR3 are executed implicitly

and described in the text. Some of the details in the sequence allowselect to work, and will be

explained later. As described, these actions assume that no other processes are executing, that the queues

are initially empty, and so on, but the sequence works (implements first-in-first-out rendezvous and com-

munication) when arbitrarily many processes are communicating in arbitrary order. AssumeS arrives at

the rendezvous first:

1. S1: -Evaluatec .

The channel is now onS’s stack.

2. S2: -Examinec , notice thatc.rcvq is empty.

-AppendS to c.sendq .

-Suspend execution.

If c.rcvq had an entry,R would have arrived first, and the order of execution betweenS andR

would be mirrored. But since the queue is empty,S announces inc.sendq that it is waiting for

a receiver, and suspends execution by returning zero (false) from this pseudo-instruction. At

some later time,R reaches the rendezvous.

3. R1: -Evaluatec .

The channel is now onR’s stack.

4. R2: -Examinec , notice thatc.sendq has an entry.

-Therefore remove the head (that is,S) from c.sendq.

-ExecuteS3 for S (see text).

-PlaceRandc onS’s stack.
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-Skip R3 by incrementingR->pc .

-EnableS by placingS in the queue of running processes.

-SuspendR.

R finds S in c.sendq and prepares to communicate with it.R must tellS who is receiving its

data; the channel data structure (to identify which communication succeeded in aselect ) and

the pointer toRare now placed onS’s stack.

BecauseR arrives second at the rendezvous, it must be the process to remove the queued process

(S) from the channel’s queue. It does this by executingS3 (that is,(**S->pc++)(S) ) which

is a single pseudo-instruction the interpreter has generated to removeS from c.sendq . This

must be done before allowing any other process to execute, to avoid conflicts should another pro-

cess be attempting to communicate usingc . Rather than just unqueueingS, R temporarily calls

upon S becauseS may be in aselect and have more bookkeeping to do. The next pseudo-

instruction inR’s stream, R3, would removeR from c.rcvq , and would be called byS hadS

arrived second. SinceRdid, the operation is just skipped.

5. S4: -Evaluatei .

S now wakes up and evaluatesi , placing it on its stack. The value to be sent may, of course, be

an arbitrary expression, even one involving communication. We will return to this subject below.

6. S5: -RemoveR from stack.

-Placei onR’s stack.

-ResumeR.

S now completes its half of the exchange. With the receiving process and value to be sent in

hand, all that remains is to hand off the value and resumeR by appending it to the queue of run-

ning processes.

7. R4: -Continue.

Rnow has the value on its stack and can proceed with that value by normal execution.

This sequence is an expansion of the independently developed, abstract model by Cardelli [Card 84],

which does not integrate the communications operations into an interpreter.

If a process, sayS, is executing aselect , the sequence remains essentially the same but the indi-

vidual operationsS executes are more involved. WhetherS is selecting is invisible toR.

Imagine thatS is executing a select. In stepS1, the process evaluates all channels involved, pushing

all of them on its stack and recording which are being used to send and which to receive. (Although our

process isS, it may be sending in aselect that also has receiving communications.) This may, of course,

take many pseudo-instructions. In stepS2, S looks at all channels at once. There are two possibilities: no

communication may proceed, or some may. In this example, we assume none may, soS atomically

appends itself to all appropriate queues for channels mentioned in the select, and suspends execution.

WhenR arrives at the rendezvous, it findsS in c.sendq . WhenR then executes(S->pc++)(S) , S

removes itself from all queues on which it has attempted communication.R’s arrival chooses which com-

munication proceeds.

Newsqueak allowsselect to be applied to arrays of channels. Given an array
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a: array[N] of chan of int;

the statement

select{

case <-a[]:

i = 1;

}

is identical in behavior to the statement

select{

case <-a[0]:

i = 1;

case <-a[1]:

i = 1;

...

case <-a[N-1]:

i = 1;

};

in other words, each element of the array participates equally in the selection. Array selections are easy to

implement; all that needs to be done is to post each element as a potentially communicating channel, that is,

to perform at run-time the rewriting above.

A complicating factor is thatS needs to knowwhich channel communicated, so it can execute the

appropriate subsequent statements. This is why the channel is passed fromR to S during the rendezvous.

The rest of the execution is straightforward.

Some of the details of the execution sequence are necessary to makeselect work, and in particular

to keep a process unaware of its partner’s participation in aselect statement. The largest effect of this

constraint is in the order of evaluation. A selecting, sending process must not evaluate the communicated

value before the rendezvous, as the evaluation may involve side effects that would be inappropriate if a dif-

ferent communication in theselect proceeded. Newsqueak therefore specifies that the rendezvous

occurs before the transmitted value is evaluated, which has some subtle effects. For example, in the expres-

sion

c1<- = <-c2

(send onc1 the value received onc2 ), thec1 rendezvous happens before thec2 rendezvous.

Selection brings up the possibility of nondeterminism: a process must choose which of a set of ready

channels should communicate and, similarly, which of a set of cases corresponding to the same channel

should be executed. This latter issue is exemplified in the code fragment:
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select{

case <-c:

i = 1;

case <-c:

i = 2;

}

Both of these problems may be addressed efficiently by applying the following little-known single-

pass choice algorithm. Given an array of integersa of known length, but containing an unknown number

of non-zero entries, the problem is to choose, fairly, one non-zero element. The following algorithm leaves

c set to the index of the chosen element. Ifc is -1 after the loop, no non-zero elements exist.

int a[N]

n = 1

c = -1

for(i=0 to N){

if(a[i] ≠ 0){

if((random() mod n) == 0)

c = i

n = n+1

}

}

Proof by induction: When the first non-zero element is found,n is one so(random() mod n) is zero,

andc records the current element. Ifn-1 elements have been found, when thenth element is found, the

probability that the current element should replace the choice so far is
n
1_ _ , which is simulated by

(random() mod n)==0 whererandom() generates integers much larger thann. For this algorithm,

squint uses the simple congruential random number generator from the ANSI C standard [K&R 88],

except that it includes the modulus calculation:

int

nrand(int n)

{

static unsigned long next=1;

next = next*1103515245 + 12345;

return (next/65536) mod n;

}

A better generator would be overkill, and there are advantages of testability and portability to including the

generator in the program rather than calling upon a library function.
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Discussion

The implementation of processes used in the Newsqueak interpreter allows for fine-grained non-

deterministic interleaving without resort to interrupts or timers. Because process switching is almost free,

there is negligible penalty for using many processes in an application. As McIlroy demonstrates [McIl 89],

the interpreter’s performance is acceptable for the jobs the language was intended to handle. Applications

that may profitably be written as sets of communicating processes run in time comparable to the same pro-

grams expressed using more traditional methods. On a VAX 8550, a simple test program executes about

8000 transactions per second on achan of int . This is creditable but not spectacular performance.

Because the system is an interpreter, however, communication is very cheap relative to more traditional cal-

culations. If the interpreter were instead a compiler, simple computations would execute more quickly but

the communications operators would probably not run much faster, which might cancel some of the charm

of using communications in programs (there would be temptations to improve performance by optimizing

out communications).

Although the interpreter uses reference-count garbage collection for reasons of simplicity and porta-

bility, the greatest benefit of reference counting is that it makes copy-on-write storage management possi-

ble. The philosophical advantages of efficient array management in a completely by-value language are

clear and worthwhile. For Newsqueak programs, which can contain no pointer cycles and which will tend

to use arrays rather than lists, sophisticated collection methods are unnecessary and may in fact not gain

much performance over copy-on-write reference counting. The ease of porting the interpreter was also an

issue. Fancy collection schemes often involve low-level implementations. Partly because storage manage-

ment, like the rest of the Newsqueak interpreter, is implemented entirely in C, the system has been com-

piled and run successfully without change on half a dozen architectures.

Finally, a word about size. The complete program, including parser, type checker, interpreter and

run-time libraries, is fewer than ten thousand lines of C code. This is a comfortable size for an experimen-

tal language, small enough to encourage experimentation with the language and its implementation.
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