
Vivaldi
Practical, Distributed Internet Coordinates

Russ Cox, Frank Dabek,
Frans Kaashoek, Robert Morris,

and many others

rsc@mit.edu

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

January 11, 2005
February 7, 2005

at IDA-CCS, Bowie, Maryland



Overview

Circa 2001: file sharing networks extremely popular

harness huge numbers of machines

but don’t scale well (at least asymptotically)

Academics study how to build scalable peer-to-peer systems.

Chord, Pastry, OceanStore, ...

How can we make them perform better in practice?

predict round trip times with Vivaldi



P2P circa 2001: an exciting social development

Internet users cooperating to share, for example, music files.
Napster, Gnutella, Morpheus, KaZaA, ...

Lots of attention from the popular press (and the RIAA!)
“The ultimate form of democracy on the Internet.”
“The ultimate threat to copyright protection on the Internet.”

Not much new technologically.



What is a P2P System?

System without any central servers.
Every node is a server
No particular node is vital to the network
Nodes all have the same functionality

Huge number of nodes, many node failures

Enabled by technology improvements



P2P: useful for building reliable services?

Many critical services use the Internet.
Hospitals, some government agencies, etc.
(but not other Agencies)

Non-Internet systems exist at large scales too.
corporations, government agencies, etc.

Can we build large-scale robust distributed services?
Node and communication failures
Load fluctuations (e.g., flash crowds)
Attacks (including DDoS)



The promise of P2P computing

Reliability: no central point of failure.
Many replicas
Geographic distribution

High capacity through parallelism
Many disks
Many network connections
Many CPUs

Automatic configuration

Useful in public and proprietary settings



Distributed Hash Table

Building block for “principled” peer-to-peer systems.

DHTs provide location service: map key to a set of machines.



DHT as Location and Rendezvous Service

Put(K,D) @ t = 0



DHT as Location and Rendezvous Service

Put(K,D) @ t = 0
Get(K) @ t = 1



DHT as Location and Rendezvous Service

Many useful primitives can be and have been built on top of this
rendezvous.

File sharing

Web cache

Archival/Backup storage

Censor-resistant stores

DB query and indexing

Event notification

Naming systems

Communication primitives

We will concentrate on storage.

but first, how to implement DHT?



Chord: One Peer-to-Peer System

Developed at MIT in 2000.
Recipe differs from others, but flavor is same.

Assign nodes and keys big identifiers (SHA1 hashes).

Traverse identifier space during lookup.

Provide lookup first; layer storage on top.



Chord: Successor Defines Ownership

N43

N1

N48

K45

Identifier space arranged in a logical ring.

A key’s successor is first node clockwise after key on ring.

That node is the owner of the key.



Chord: Successors Ensure Correctness

N43

N1

N48

K45

Nodes maintain list of r successors.

On failure of node n, successor takes over keys.

Nodes ping predecessors regularly to detect failure.

Can traverse ring by following successors.

a bit slow if there are millions of nodes.



Chord: Fingers Speed Lookups

N43

N1

N48

1/2

1/4

1/8

1/16
1/32

K45

Nodes maintain pointers to larger hops around the ring.

Like using skip lists in a linked list.

O(log N) exponentially-distributed fingers.



Chord: Lookup Requires log N Hops

N1

N50
K47

N33

N1: N50 is the successor of K47

Looking for K47.
Tell N1

Each hop halves the distance to the key.



DHash: a Storage Infrastructure

Now we have lookup; add storage (and then apps).

To fetch a block in DHash:
Block replicated on r successors of key
Use Chord (DHT) to find servers responsible for block
Download block from one of those servers. Which?



Problem: Predicting Round Trip Times on Internet

Example: server selection in a system where:

no centralized infrastructure

nodes act as servers and clients

many thousands of nodes

exchanges with server are short

server choice changes
for each exchange

Want to choose server with lowest
round trip time to client.

How?

S1

S2

S3

S4

S5

C Internet



Possible Solutions

Can avoid predictions, wasting time or bandwidth:
measure RTT on demand
measure RTT in advance
talk to multiple servers at once

Can predict using synthetic coordinates as in GNP
(Infocom 2002).



Synthetic Coordinates with GNP

GNP assigns Euclidean coordinates to nodes such that coordinate
distance predicts round trip time.



Synthetic Coordinates with GNP

GNP assigns Euclidean coordinates to nodes such that coordinate
distance predicts round trip time.

L4
L2

L3

L5
L1

A

Node A pings landmarks to
compute its own position.

Coord Dist

L1 (40,320)
L2 (60,180)
L3 (160,250)
L4 (250,160)
L5 (280,300)



Synthetic Coordinates with GNP

GNP assigns Euclidean coordinates to nodes such that coordinate
distance predicts round trip time.

L4
L2

L3

L5
L1

A

Node A pings landmarks to
compute its own position.

Coord Dist

L1 (40,320) 117 ms
L2 (60,180) 201 ms
L3 (160,250) 110 ms
L4 (250,160) 223 ms
L5 (280,300) 143 ms



Synthetic Coordinates with GNP

GNP assigns Euclidean coordinates to nodes such that coordinate
distance predicts round trip time.

L4
L2

L3

L5
L1

ANode A pings landmarks to
compute its own position.

Coord Dist

L1 (40,320) 117 ms
L2 (60,180) 201 ms
L3 (160,250) 110 ms
L4 (250,160) 223 ms
L5 (280,300) 143 ms



Synthetic Coordinates with GNP

GNP assigns Euclidean coordinates to nodes such that coordinate
distance predicts round trip time.

L4
L2

L3

L5
L1

A

B

Node A pings landmarks to
compute its own position.

Node B does the same.



Synthetic Coordinates with GNP

GNP assigns Euclidean coordinates to nodes such that coordinate
distance predicts round trip time.

L4
L2

L3

L5
L1

A

B

Node A pings landmarks to
compute its own position.

Node B does the same.

RTT between A and B
is predicted by the distance
between their coordinates,

without direct measurement.



Vivaldi Overview

Vivaldi is a decentralized method for computing synthetic
coordinates

Piggyback on application traffic

Node updates its own coordinates in response to sample

Each node need only contact a small fraction of the other
nodes



Vivaldi Example

Follow node A through a sequence of communications.

A

B

C

app m
sg



Vivaldi Example

A obtains B’s coordinates, RTT.

A

B

C

rtt 20m
s

B at (110, 250)



Vivaldi Example

A computes distance to B in coordinate space.

A

B

C

rtt 20m
s

B at (110, 250)
10

20
30

40
50



Vivaldi Example

A adjusts coordinates so distance matches actual RTT.

A

B

C

10
20

30
40

50



Vivaldi Example

Follow node A through communication with C.

A

B

C

ap
p 

m
sg



Vivaldi Example

A obtains C’s coordinates, RTT.

A

B

C

rtt
 5

0m
s

C a
t (

85
,1

25
)



Vivaldi Example

A computes distance to C in coordinate space.

A

B

C

rtt
 5

0m
s

C a
t (

85
,1

25
)

10
20

30
40

50
60



Vivaldi Example

A adjusts coordinates so distance matches actual RTT.
(Now A is wrong distance from B.)

AB

C 10
20

30
40

50
60



Challenges of Decentralization

Without centralized control, must consider:

will the system converge to an accurate coordinate set?

how long will the system take to converge?

will the system be disturbed by new nodes joining the system?



Tuning Vivaldi: Convergence

Run Vivaldi on round trip times
derived from grid.

As described, algorithm never
converges.

To cause convergence, damp motion.

To speed convergence, vary damping
with estimate of prediction accuracy.



Tuning Vivaldi: Naive Newcomers

Run Vivaldi on round trip times
derived from grid.
Blue nodes start first, stabilize.
Red nodes join the system.

High-accuracy nodes are displaced by
new, low-accuracy nodes joining the
system

To avoid this, vary damping with ratio
of local node’s accuracy and sampled
node’s accuracy.



Vivaldi Algorithm

Given the coordinates, round trip time, and accuracy estimate of a
node:

Update local accuracy estimate.

Compute ‘ideal’ location.

Compute damping constant δ using local and remote
accuracy estimates.

Move δ of the way toward the “ideal” location.



Vivaldi Algorithm

Given the coordinates, round trip time, and accuracy estimate of a
node:

Update local accuracy estimate.

Compute ‘ideal’ location.

Compute damping constant δ using local and remote
accuracy estimates.

Move δ of the way toward the “ideal” location.

B A

app msg,
rtt, coords,
accuracy

δ * (rtt - dist)

rtt - dist

10 20 30 40 50 60 70

new
location

‘ideal’

location



Evaluating Synthetic Coordinates on the Internet

Cannot evaluate by comparing to “correct” coordinate set.

Evaluate predictions made using a coordinate set.

Predictions of Internet will never be perfect.
violations of triangle inequality, ...



Evaluating Vivaldi on the Internet

How accurate are Vivaldi’s predictions?

How quickly does Vivaldi converge to a coordinate set?

How quickly can Vivaldi adapt to network changes?

How does choice of coordinate space affect error?

How does Vivaldi work in real-world apps?



Evaluation Methodology

Use simulator seeded with real Internet measurements.

pairwise RTTs for 192 PlanetLab nodes

use RTT matrix as input to simulator

run various algorithms on simulator

Each Vivaldi node queries others as fast as it can

one message outstanding at a time

each node has a small fixed neighbor set



Vivaldi’s Absolute Prediction Error

Look at distribution of absolute prediction error, defined as
∣

∣

∣actual RTT − predicted RTT
∣

∣

∣ ,

over all node pairs in the system.

0 50 100 150 200

Absolute Error (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

Vivaldi



Vivaldi’s Absolute Prediction Error

Look at distribution of absolute prediction error, defined as
∣

∣

∣actual RTT − predicted RTT
∣

∣

∣ ,

over all node pairs in the system.

0 50 100 150 200

Absolute Error (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

Vivaldi



Vivaldi’s Absolute Prediction Error

Look at distribution of absolute prediction error, defined as
∣

∣

∣actual RTT − predicted RTT
∣

∣

∣ ,

over all node pairs in the system.

0 50 100 150 200

Absolute Error (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

Vivaldi



Vivaldi’s Relative Prediction Error

Look at relative error, defined as
∣

∣

∣actual RTT − predicted RTT
∣

∣

∣

min(actual RTT, predicted RTT)
,

over all node pairs in the system.

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

Vivaldi



Vivaldi’s Relative Prediction Error

Look at relative error, defined as
∣

∣

∣actual RTT − predicted RTT
∣

∣

∣

min(actual RTT, predicted RTT)
,

over all node pairs in the system.

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

Vivaldi



Vivaldi’s Relative Prediction Error

Look at relative error, defined as
∣

∣

∣actual RTT − predicted RTT
∣

∣

∣

min(actual RTT, predicted RTT)
,

over all node pairs in the system.

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

Vivaldi



Vivaldi Compared to GNP on Relative Error

Compare to GNP’s predictions.

GNP sensitive to landmark choice. Use best of 64 random
landmark sets.

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

GNP best
Vivaldi



Vivaldi’s Convergence Time

Depends on choice of δ, the damping constant.

0 20 40 60

time (s)

0

50

100

ab
so

lu
te

 e
rr

or
 (

m
s)

delta 0.01
delta 1.0
adaptive

Using adaptive δ, Vivaldi converges in under 20 seconds (60
measurements per node).



Vivaldi’s Time to Adapt to Network Changes

Vivaldi nodes are always adjusting their coordinates.

Test adapting speed with synthetic topology change: lengthen
one link by factor of ten.

100 200 300

time (sec)

0

10

20

30

M
ed

ia
n 

E
rr

or
 (

m
s)

change topology

revert

Vivaldi adapts in about twenty seconds.



Other Coordinate Spaces

A priori, it’s not clear why any coordinate system should fit the
Internet well.

GNP showed that Euclidean coordinates work well.

Why do they work?
Are there better coordinate systems?

Obvious other candidates: globe, 3D, 4D, ...



Vivaldi’s 2D Assignment for PlanetLab

Placement in 2D mirrors physical geography.

Europe

East Coast

Korea

West Coast

Australia

China



Globe Coordinates vs. 2D Euclidean

Globe coordinates (latitude, longitude) place nodes on surface
of a sphere.

Great circle distance between two nodes on the sphere
depends on radius.

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

2D
sphere r=240ms
sphere r=200ms
sphere r=160ms
sphere r=140ms
sphere r=120ms
sphere r=100ms
sphere r=80ms
sphere r=60ms
sphere r=40ms

Coordinate sets are using one part of the sphere
as a rough approximation to a 2D plane.



Higher Euclidean Dimensions

If two are good, more should be better.

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

9D
5D
4D
3D
2D

Why are they better?



Higher Euclidean Dimensions Explained

In 2D, some nodes need to be farther away from all others.

In 3D, these “hard-to-place” nodes can move up or down from
the 2D plane to get away from everyone.

Each new dimension adds an independent direction.

Accomodates per-node overhead: server load, access links.

Problem: how can we accomodate “hard-to-place” nodes without
an arbitrary number of dimensions?



Height Vectors

Give “hard-to-place” nodes their own way to get away from
everyone.

Height vectors place nodes at some height above a 2D transit
plane.

Directly models per-node overhead.
(x,y,h)

(x’,y’,h’)

h
h’

(x,y)
(x’,y’)

Distance from (x , y , h) to (x′, y′, h′) is

h +
√

(x − x′)2
+ (y − y′)2

+ h′.



Height Vectors Work Well

Height Vectors outperform 2- and 3-D Euclidean.

0 1 2 3

Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

P
r[

N
od

e 
P

ai
r 

E
rr

or
 <

=
 x

]

Height Vectors
9D
4D
3D
2D

Works to view Internet as geographically-accurate core with
access links attached.



Evaluating Vivaldi on Chord

Chord performance is O(log n) but sluggish.

Can Vivaldi help?



Watching Traffic

Lookups move randomly in the network.

Node IDs, block keys are assigned (pseudo-)randomly.

-100 -50 0 50 100
longitude

0

20

40

60

la
ti

tu
de

0x123: Looking for 0xabcd.



Watching Traffic

Lookups move randomly in the network.

Node IDs, block keys are assigned (pseudo-)randomly.

-100 -50 0 50 100
longitude

0

20

40

60

la
ti

tu
de

0xa000: 0x123 is looking for 0xabcd



Watching Traffic

Lookups move randomly in the network.

Node IDs, block keys are assigned (pseudo-)randomly.

-100 -50 0 50 100
longitude

0

20

40

60

la
ti

tu
de

0xab00: 0x123 is looking for 0xabcd



Watching Traffic

Lookups move randomly in the network.

Node IDs, block keys are assigned (pseudo-)randomly.

-100 -50 0 50 100
longitude

0

20

40

60

la
ti

tu
de

0xabc0: 0x123, successors of 0xabcd are...



Chord: Shortening Lookup Hops Using Vivaldi

N1

1/2

N1

K200

Relax definition of finger from immediate successor to any
node in range.

Given more choices, can choose nearer neighbors.



Chord: Lookup Using Neighbor Selection

N1

K200

Each hop now has a range of choices.



Chord: Lookup Using Neighbor Selection

K200

N1

Each hop now has a range of choices.



Chord: Lookup Using Neighbor Selection

K200

N1

Each hop now has a range of choices.



Chord: Lookup Using Neighbor Selection

K200

N1

Each hop now has a range of choices.



Vivaldi Improves Chord and DHash

Baseline Download Routing Avoid Last Hop
Latency optimization techniques (cumulative)

0

200

400

600

M
ed

ia
n 

la
te

nc
y 

(m
s)

lookup time

fetch time



Vivaldi Improves Chord and DHash

Baseline Download Routing Avoid Last Hop
Latency optimization techniques (cumulative)

0

200

400

600

M
ed

ia
n 

la
te

nc
y 

(m
s)

lookup time

fetch time



Vivaldi Improves Chord and DHash

Baseline Download Routing Avoid Last Hop
Latency optimization techniques (cumulative)

0

200

400

600

M
ed

ia
n 

la
te

nc
y 

(m
s)

lookup time

fetch time



Vivaldi Improves Chord and DHash

Baseline Download Routing Avoid Last Hop
Latency optimization techniques (cumulative)

0

200

400

600

M
ed

ia
n 

la
te

nc
y 

(m
s)

lookup time

fetch time



Vivaldi Improves Chord and DHash

Vivaldi improved the performance of Chord and DHash:

Chord lookups can use nearby neighbors instead of hopping
all over the globe.

DHash replicates blocks on r successors of block key.

DHash can download block from nearest replica.

Net effect: Vivaldi reduced block fetch time by close to 50% on
PlanetLab.

Vivaldi is also used by other systems:

Bamboo Distributed Hash Table

SWORD Resource Discovery system

others in development



Related Work

Other location techniques (IDMaps, IP2Geo) use static data
(AS maps, guesses at physical location).

Centralized coordinate systems (GNP, Lighthouse) need
well-known landmark nodes.

Decentralized coordinate systems (PIC, NPS) have been
developed concurrently.

Tang and Crovella (IMC 2003) analyze best Euclidean models
to use; Shavitt and Tankel (Infocom 2004) suggest using
hyperbolic geometries.



Conclusions

Chord is a scalable peer-to-peer system.

Vivaldi:

accurately predicts round trip time
between node pairs not directly measured.

works without centralized infrastructure.

improves the performance of a Chord and DHash

Height vectors are a promising coordinate space for the Internet.



Links

Chord home page

http://pdos.lcs.mit.edu/chord

Project IRIS (Peer-to-peer research)

http://project-iris.net

Email

rsc@mit.edu


