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Problem: Predicting Round Trip Times on Internet

Example: server selection in a system where:

no centralized infrastructure

nodes act as servers and clients

many thousands of nodes

exchanges with server are short

server choice changes
for each exchange

Want to choose server with lowest
round trip time to client.

How?

S1

S2

S3

S4

S5

C Internet



Possible Solutions

Can avoid predictions, wasting time or bandwidth:
measure RTT on demand
measure RTT in advance
talk to multiple servers at once

Can predict using synthetic coordinates as in GNP
(Infocom 2002).



Synthetic Coordinates with GNP

GNP assigns Euclidean coordinates to nodes such that coordinate
distance predicts round trip time.
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Synthetic Coordinates with GNP

GNP assigns Euclidean coordinates to nodes such that coordinate
distance predicts round trip time.
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Node A pings landmarks to
compute its own position.

Node B does the same.

RTT between A and B
is predicted by the distance
between their coordinates,

without direct measurement.



Vivaldi Overview

Vivaldi is a decentralized method for computing synthetic
coordinates

Piggyback on application traffic

Node updates its own coordinates in response to sample

Each node need only contact a small fraction of the other
nodes



Vivaldi Example

Follow node A through a sequence of communications.
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Vivaldi Example

A obtains B’s coordinates, RTT.
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Vivaldi Example

A computes distance to B in coordinate space.
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Vivaldi Example

A adjusts coordinates so distance matches actual RTT.
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Vivaldi Example

Follow node A through communication with C.
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Vivaldi Example

A obtains C’s coordinates, RTT.
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Vivaldi Example

A computes distance to C in coordinate space.
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Vivaldi Example

A adjusts coordinates so distance matches actual RTT.
(Now A is wrong distance from B.)
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Challenges of Decentralization

Without centralized control, must consider:

will the system converge to an accurate coordinate set?

how long will the system take to converge?

will the system be disturbed by new nodes joining the system?



Tuning Vivaldi: Convergence

Run Vivaldi on round trip times
derived from grid.

As described, algorithm never
converges.

To cause convergence, damp motion.

To speed convergence, vary damping
with estimate of prediction accuracy.



Tuning Vivaldi: Naive Newcomers

Run Vivaldi on round trip times
derived from grid.
Blue nodes start first, stabilize.
Red nodes join the system.

High-accuracy nodes are displaced by
new, low-accuracy nodes joining the
system

To avoid this, vary damping with ratio
of local node’s accuracy and sampled
node’s accuracy.



Vivaldi Algorithm

Given the coordinates, round trip time, and accuracy estimate of a
node:

Update local accuracy estimate.

Compute ‘ideal’ location.

Compute damping constant δ using local and remote
accuracy estimates.

Move δ of the way toward the “ideal” location.



Vivaldi Algorithm

Given the coordinates, round trip time, and accuracy estimate of a
node:

Update local accuracy estimate.

Compute ‘ideal’ location.

Compute damping constant δ using local and remote
accuracy estimates.

Move δ of the way toward the “ideal” location.
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Evaluating Synthetic Coordinates on the Internet

Cannot evaluate by comparing to “correct” coordinate set.

Evaluate predictions made using a coordinate set.

Predictions of Internet will never be perfect.
violations of triangle inequality, ...



Evaluating Vivaldi on the Internet

How accurate are Vivaldi’s predictions?

How quickly does Vivaldi converge to a coordinate set?

How quickly can Vivaldi adapt to network changes?

How does choice of coordinate space affect error?

How does Vivaldi work in real-world apps?



Evaluation Methodology

Use simulator seeded with real Internet measurements.

pairwise RTTs for 192 PlanetLab nodes

use RTT matrix as input to simulator

run various algorithms on simulator

Each Vivaldi node queries others as fast as it can

one message outstanding at a time

each node has a small fixed neighbor set



Vivaldi’s Absolute Prediction Error

Look at distribution of absolute prediction error, defined as
∣

∣

∣actual RTT − predicted RTT
∣

∣

∣ ,

over all node pairs in the system.
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Vivaldi’s Relative Prediction Error

Look at relative error, defined as
∣

∣

∣actual RTT − predicted RTT
∣

∣
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min(actual RTT, predicted RTT)
,

over all node pairs in the system.
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Vivaldi Compared to GNP on Relative Error

Compare to GNP’s predictions.

GNP sensitive to landmark choice. Use best of 64 random
landmark sets.
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Vivaldi’s Convergence Time

Depends on choice of δ, the damping constant.
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Using adaptive δ, Vivaldi converges in under 20 seconds (60
measurements per node).



Vivaldi’s Time to Adapt to Network Changes

Vivaldi nodes are always adjusting their coordinates.

Test adapting speed with synthetic topology change: lengthen
one link by factor of ten.
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Vivaldi adapts in about twenty seconds.



Other Coordinate Spaces

A priori, it’s not clear why any coordinate system should fit the
Internet well.

GNP showed that Euclidean coordinates work well.

Why do they work?
Are there better coordinate systems?

Obvious other candidates: globe, 3D, 4D, ...



Vivaldi’s 2D Assignment for PlanetLab

Placement in 2D mirrors physical geography.
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Globe Coordinates vs. 2D Euclidean

Globe coordinates (latitude, longitude) place nodes on surface
of a sphere.

Great circle distance between two nodes on the sphere
depends on radius.
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Coordinate sets are using one part of the sphere
as a rough approximation to a 2D plane.



Higher Euclidean Dimensions

If two are good, more should be better.
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Higher Euclidean Dimensions Explained

In 2D, some nodes need to be farther away from all others.

In 3D, these “hard-to-place” nodes can move up or down from
the 2D plane to get away from everyone.

Each new dimension adds an independent direction.

Accomodates per-node overhead: server load, access links.

Problem: how can we accomodate “hard-to-place” nodes without
an arbitrary number of dimensions?



Height Vectors

Give “hard-to-place” nodes their own way to get away from
everyone.

Height vectors place nodes at some height above a 2D transit
plane.

Directly models per-node overhead.
(x,y,h)

(x’,y’,h’)

h
h’

(x,y)
(x’,y’)

Distance from (x , y , h) to (x′, y′, h′) is

h +
√

(x − x′)2
+ (y − y′)2

+ h′.



Height Vectors Work Well

Height Vectors outperform 2- and 3-D Euclidean.
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Works to view Internet as geographically-accurate core with
access links attached.



Real-World Application

Vivaldi is easy to deploy, because it:
requires no infrastructure
is simple to implement
piggybacks on application-level communication

We modified DHash to use Vivaldi.
block fetch time on PlanetLab reduced by 40% (NSDI 2004).

Vivaldi is also used by:
Bamboo Distributed Hash Table
SWORD Resource Discovery system



Related Work

Other location techniques (IDMaps, IP2Geo) use static data
(AS maps, guesses at physical location).

Centralized coordinate systems (GNP, Lighthouse) need
well-known landmark nodes.

Decentralized coordinate systems (PIC, NPS) have been
developed concurrently.

Tang and Crovella (IMC 2003) analyze best Euclidean models
to use; Shavitt and Tankel (Infocom 2004) suggest using
hyperbolic geometries.



Conclusions

Vivaldi:
accurately predicts round trip time
between node pairs not directly measured.
works without centralized infrastructure.
improves the performance of a real system.

Height vectors are a promising coordinate space for the
Internet.


