k

o treddnenngle of tha 1

esys
29 Avenue de Versailles
78170 La Celie Saint Cioud, France

" DISTRIBUTION Srrron e \}
Approved for yolo o E
‘ Dustribution (ol i
e e i

JANUARY 1983

S v

83 06 23

LG Goverinment, Ada Joint Progoam Office
1

0

)

REFERENCE MANUAL FOR THE

Ada’

PROGRAMMING LANGUAGE

ANSI/MIL-STD-1815 A

United States Department of Defense

MPRIO3-77-C-033/

Honeywell

Systems and Research Center
2600 Ridgway Parkway
Minneapolis, MN 65413

and

ey

29 Avenue de Versailles
78170 La Celle Saint Cloud, France

JANUARY 1983

® Ada is a registered trademark of the U. S. Government, Ada Joint Program Office

. . * P r o EY e I A - R . H . :) .
.) Y - o - . PR EE P LA -~ . . - : .
. LT K . i Y 1 - - . R iy N e e . - o -
.t -3 R SR S AP ys PP N R e iedaalE iswasaady- & =, e > - i} =

' N
L ' R . .

Copyright © 1980, 1982, 1983 owned by the United States Gavernment as represented by the Under
Secretary of Defense, Research and Engincering. All rights reserved. Provided that notice of copyright is
included on the tirst page, this document may be copied in its entirety without afteration or us alterad by (1)
adding text that /s clearly marked as an insertion; (2) shading or highlighting existing text; (3) deleting
examples. Permission to publish other excerpts should be obtained from the Ada Joint Program Office,
OUSDRE(R&AT)], The Pentagon, Washington, D.C. 20301, U.S.A.

¥UUe T

K™

[This foreword is not part of the standard definition of the Ade programming language !

Foreword

Ada is the result of a collective effort to design a common language for programming large scale and real-
time systems.

The common high order language program began in 1974. The requirements of the United States Depart-
ment of Defense were formalized in a series of documents which were extensively reviewed by the Ser-
vices, industrial organizations, universities, and forelgn military departments. The Ada language was
designed in accordance with the final (1978) form of these requirements, embodied in the Steelman
specification,

The Ada design team was led by Jean D. Ichbiah and has included Bernd Krieg-Brueckner, Brian A.
Wichmann, Henry F. Ledgard, .Jean-Claude Heliard, Jean-Loup Gallly, Jean-Raymond Abrial, John G.P.
Barnes, Mike Woodger, Olivier Roubine, Paul N. Hilfinger, and Robert Firth.

At various stcges of the project, several people closely associated with the design tearmm made major con-
tributions. They include J.8. Goadenough, R.F. Brender, M.W. Davis, G. Ferran, K. Laster, L. MaclLaren, E.
Morel, I.R. Nassi, 1.C. Pyle, S.A, Schuman, and S.C. Vestal.

Two parallel efforts that were started in the sacond phase of this design had a desr influence on the
language. One was the development of a formal definition using denotational semantics, with the participa-
tion of V. Donzeau-Gouge, G. Kahn, and 8. Lang. The other was the design of a test trans/ator with the par-
ticipation of K, Ripken, P. Boullfer, P, Cadlou, J. Molden, J.F. Hueras, R.G. Lange, and D.T. Cornhill. The
entire effort benefitted from the dedicated assistance of Lyn Churchill and Marlon Myers, and the effective
technical support of B. Gravem, W.L. Helmerdinger, and P. Cleve. H.G. Schmitz served as program
manager.

Over the five years spent on this profect, several intense week-long design reviews were conducted, with
the participation of P. Be/mont, 8. Brosgol, P. Cohen, R. Dewar, A. Evans, G. Fisher, H. Harte, A.L. Hisgen,
P. Knueven, M, Kronental, N. Lomuto, E. Ploadersder, G. Seegmueller, V. Stenning, D, Taffs, and also F.
Belz, R. Converse, K. Correll, AN. Habermann, J. Sammet, S. Squires, J. Teller, P. Wegner, and P.R.
Wetherall,

Several persons had a constructive influence with their commaents, criticisms and suggestions, They include
P. Brinch Hansen, G. Goos, C.A.R. Hoare, Mark Rain, WA, Wulf, and also E, Boebert, P. Bonnard, H.
Clausen, M. Cox, G. Dismukes, R. Eachus, T. Froggatt, H. Ganzinger, C. Hewitt, S. Kamin, R. Kotler, O,
Lecarme, JAN. Lse, J.L. Mansion, F. Minel, T. Phinnay, J. Roehrich, V. Schneider, A. Singsr, D. Slosberyg,
1.C. Wand, the reviewaers of Ada-Europe, AdaTEC, Afcet, those of the LMSC raview team, and those of the
Ada Tokyo Study Group.

These reviews and commaents, the numerous avaluation reports rece/ved at the end of the first and second
phase, the nine hundred /anguage /ssue reports and test and evaluation reports recelved from fifteen dif-
ferent countries during the third phase of the profect, the thousands of comments raceived during the ANS/
Canvass, and the on-going work of the IFIP Working Group 2.4 on system implementation languages and
that of the Purdue Europe LTPL-E committee, all had a substantial influence on the final definition of Ada.

The Military Departments and Agencies have provided a broad base of support including funding, extensive
reviews, and countless Individual contributions by the members of the High Order Language Working Group
and other interested personnel. In particular, Willlam A, Whitaker provided leadership for the program dur-
ing the formative stages. David A. Fisher was responsible for the successful development and refinement of
the language requirement documents that led to the Stee/man specification.

This language definition was developed by Cii Honeywell Bull and later Alsys, and by Honeywell Systems
and Research Center, under contract to the United States Department of Dafense. Willlam E. Carlson, and
later Larry E. Druffel and Robert F. Mathis, served as the technical representatives of the United States
Government and effectively coordinated the efforts of all participants in the Ada program.

e AJ.L‘AAAA-L >

] e
@
®

«l R . -,

N , .9

N

“ ‘I"‘»1 L}

| TR Y

g o

‘ " .. .

¢ - @

| This reference manual was preparad with a formatter specialized for Ada texts. It was developed by Jon F.

: Hueras for Multics, using the Cil Honeyweall Bull photocomposition system.
. . r

Table of Contents

1. Introduction
1.1 Scope of the Standard 1-1
111 Extent of the Standard 1- 1
1.1.2 Conformity of an implementation with the Standard 1- 2 R)
1.2 Structure of the Standard 1- 3
1.3 Design Goals and Sources 1- 3 R
1.4 Language Summary 1- 4 -
1.5 Methed of Description and Syntax Notation 1- 7 s
1.6 Classification of Errors 1- 8
N)
2. Lexical Elements A
2.1 Character Set 2- 1 S
2.2 Lexical Elemsnts, Separators, and Delimiters 2- 2 L
2.3 Identifiers 2- 4
24 Numeric Literals 2- 4 e
2441 Decimal Literals 2- 4 -
242 Based Literals 2- 5 o
2.5 Charscter Literals 2- 8
2.6 String Literals 2- 6 o
2,7 Comments 2- 7
2.8 Pragmas 2- 7
2.9 Ressrved Words 2- 9 o
210 Allowable Replacements of Characters 2- 9 T |
3. Declaratioris and Types
KN Declarations 3-1
3.2 Objects and Named Numbers 3- 2
321 Object Declarations 3- 3 .
3.2.2 Number Declarations 3- 6 R
3.3 Types and Subtypes 3- 6 e
3.3.1 Type Dsclarations 3- 7 c
332 Subtype Declarations 3-8 "
3.3.3 Clasaification of Operations 3-9)
34 Derived Types 3.10
35 Scalar Types 3-12 “
3.6.1 Enumaration Types 3-13
3.62 Character Types 3-14
3.63 Boolean Typos 3-156
364 Integer Types 3-186 g ¥
365 Operations of Discrete Types 3-16 S >
366 Real Typss 3-19
3.5.7 Floating Point Typea 3-20 e
3568 Operations of Floating Point Types 3-22 :
369 Fixed Point Types 3-24
3.6.10 Operations of Fixed Point Types 3-26
3.8 Array Types 3-27
3.6.1 Index Constraints and Discrete Ranges 3-29 !
3.6.2 Operations of Array Types 3-31 X
383 The Type String 3-32 s
3.7 Record Types 3-33
3.71 Discriminants 3-34
3.7.2 Discriminant Constraints 3-36
3.7.3 Variant Parts 3-38
3.74 Operations of Record Types 3-39
3.8 Access Types 3-40 gt
3.81 Incomplete Type Declarations 3-41 -
382 Operationa of Access Types 3-42
3.9 Daclarative Parta 3-43

4.

. Subprograms

mes and Expressions

Names

Indexed Components

Slices

Selected Components

Attributes

Literals

Aggregates

Record Aggregates

Array Aggregates

Exprassions

Operators and Expression Evalustion
Logical Operators and Short-circuit Control Forms
Relationai Operators and Membership Tests
Binary Adding Qpaerators

Unary Adding Operators

Multiplying Operators

Highest Precadence Operators

Accuracy of Oporations with Roeal Operands
Type Convertions

Qualified Expressions

Allocators

Static Expressions and Static Subtypes

N AR XN

SPBNOORPCDRO TRV RN~

ARRADAAAARAARAARBARALLS
NONLWN -

0 Univarsal Expressions
Staterments
5.1 Simple and Compound Statements - Sequences of Statements
5.2 Assignment Statoment
521 Array Assignments
5.3 If Statements
5.4 Case Stataments

6.6 Loop Statements
5.8 Block Statements
5.7 Exit Statements
5.8 Return Statements
5.9 Goto Statements

8.1 Subprogram Declarations

6.2 Formal Parameter Modes

6.3 Subprogram Bodies

8.3.1 Conformance Rules

6.3.2 Inline Expanslon of Subprograms
6.4 Subprogram Calls

6.4.1 Paramater Associations

6.4.2 Default Parameters

6.5 Function Subprograms

6.8 Parameter end Result Typu Profile - Overloading of Subprograms
6.7 Overloading of Operators

. Packages

7. Package Structure

Package Specifications and Declarations

Package Badies

Private Type and Deferrad Constant Declarations
Private Types

Opearations of a Private Type

Defarrad Constants

Limited Typas

Fxample of a Table Management Packuge
Example of a Text Handling Package

~
N =

doprnrpnpL
PWN —

NN NSNNNNN

s s amih s Ao Ao 5 am < - 38 B, Arullw‘-uv&m-‘--uuAlamﬂ:-n“Mn-Hr» Aadial oM 4 el e Naletalls

H
)

4-

H
'

4-
4-
4-
4-
4-

= OONRRTWWN

&H
1

4-12
4-13
4-14
4-16
4-18
4-17
4-19
4-.0
4-21
4.24
4-24
4-28
4-27

RARAREOIRAOM
€ % 1 3 1 1

= OO ONOI L WA -

O'I(ll'lm
—t b A

RO
A I A A A A

= OO0 VONDONHLW—

G?G
— b o

~
i

7-

~
1
N= QOO RNWN -

~
1
—

t a4

4 8. Visibility Rules

) 8.1 Declarative Region 8- 1
. 8.2 Scope of Daclarations 8- 2
8.3 Viaibllity 8- 3
g 84 Use Clauses 8- 6
' 8.5 Renaming Declarations 8- 8
E 8.6 Tho Package Standard 8-10
oo 8.7 The Context of Overload Resolution 8-11
o 9. Tasks
o 9.1 Task Specifications and Task Bodies 9- 1
9.2 Task Types and Task Objscts 9- 3
9.3 Task Execution - Task Activation 8- b6
9.4 Task Dependence - Tarmination of Tasks 9- 6
. 9.6 Entrles, Entry Calls, and Accept Statements 9- 8 B
9.6 Dolay Statements, Duration, and Time 8-10
9.7 Select Statements 9-12
o 9.7.1 Selective Waita 9-12
e 9.7.2 Conditional Entry Calls 9-14
Lz 9.7.3 Timad Entry Cnlle 9-15
=4 9.8 Priorities 9-18 R
| 9.9 Task and Entry Attributes 8-17 L
Vo 9.10 Abort Statemonts 9-18 :
N 9.11 Shared Varlables 9-18
" 9.12 Example of Tasking 9-20

10. Program Struoture und Compllation lesues

. 10.1 Compllation Units - Library Units 10- 1
K 10.1.1 Context Clauses - With Clauses 10- 2
- 10.1.2 Examples of Compilation Units 10- 4

. 10.2 Subunits of Compilation Units 10- 6
- 10.2.1 Examples of Subunits 10- 7
10.3 Order of Compilation 10- 9
- 104 The Program Library 10-11
A 10.6 Elaboration of Library Units 10-11
- 10.8 Program Optimization 10-12
IJ'. L1
v, 11. Exceptions
o 1141 Exception Declarations 11- 1
. 11.2 Exception Handlers 1- 3
1.3 Raise Stataments 11- 4 .

, 1.4 Exception Handling 11- 4 -
- 11.4.1 Exceptions Ralsed Ouring the Execution of Steternants 11- 4 .
. 11.4.2 Exceptions Raised During the Elaboration of Declsrations 1-7
11.6 Exceptions Raised During Task Communication 11- 8 -
o 11.8 Exceptions and Optimization 11- 9 J
Q 1.7 Suppressing Checks 11-10 _‘.A

12. Generic Units

12.1 Generic Duyclarations 12- 1

1211 Generic Formal Objects 12- 3

12.1.2 Generic Formal Types 12- 4

1213 Generic Formal Subprograms 12- 8

12.2 Generic Bodies 12- 8

12.3 Generic Instantiation 12- 8 . 9

12.3.1 Matching Rules for Formal Objects 12-10 :

12.3.2 Matching Rulas for Formal Private Types 12-11

12.3.3 Matching Rules for Formal Scalar Types 12-11

12.34 Matching Rules for Formal Array Types 12-12 R

1235 Matching Rules for Formal Access Types 12-13 AP

12.3.6 Matching Rules for Farmal Subprograms 12-14 ~of

124 Example of a Generic Package 12-15 ;7
13. Representation Clauses and Implementation-Dependant Features -

13.1 Representation Clauses 13- 1 b st

13.2 Langth Clauses 13- 3 Q

13.3 Enumaeration Representstion Clauses 13- 6 -

134 Record Representation Clauses 13- B .

136 Addresa Clauses 13- 7

13.56.1 Interrupts 13- B -if

13.8 Change of Repressntation 13- 9 .

13.7 The Package System 13- 9 ' 4

13.71 System-Dependent Named Numbers 13-1 O

13.7.2 Representation Attributes 1312 -

13.7.3 Represontation Attributes of Real Types 15-13

13.8 Machine Code Insertions 13-14

13.9 Interface to Other Languages 13-15 N

13.10 Uncheckad Programming 13-18 e

13.10.1 Unchecked Storage Deallocation 13-18 R

13.10.2 Unchacked Type Conversions 13-17 R
14, Input-Output ST

141 External Flles and Flloe Objects 14- 1 e

14,2 Sequential and Direct Flles 14- 2 ' }

14.2.1 Flle Management 14- 3 ;

14.2.2 Sequential Input- Qutput 14- 5 S

14,23 Specification of the Package Sequential..|O 14- B sy

14,24 Direct Input- Output 14- S

14,26 Specification of the Package Direct_IQ 14- 8 '

14.3 Text Input- Output 14- 9 -®

14.3.1 Flle Management 1411 !

14,3.2 Deafault Input and OQutput Files 14-11

1433 Specification of Line and Page Lengths 14-12

143.4 Operations on Columng, Lines, and Puges 14-13

14.3.6 Get and Put Proceduraes 14-17

14,36 Input-Output of Charactera and Strings 14-19

14.3.7 Input-Output for Integer Types 14.-20

14,3.8 Input-Output for Real Types 14-22

1439 Input-Output for Enumeration Types 14-24

143,10 Spaecification of the Package Text_|O 14-26

14.4 Exceptions in Input-Output 14-30

14,6 S_ecification of the Package 1Q_Exceptions 14-32

14.8 Low Level Input-Output 14-32 X

14,7 Example of Input-Output 14-33 o

.". Annexes
A. Predefined Language Attributes
- B. Predefined Language Pragmas
X C. Predefined Language Environment
o Appendices
‘.‘:'
f;;'; D. Glossary
E. Syntax Summary
-'“j F. Implemantation-Dependent Characteristics
B Index
“ Postscript: Submission of Commaents
X
2
o
"
.::J
\N
{
'ﬁ v

i

LET]
tapy
\'N"I(H'n

.

— A o 45 Ayins S P TS b M

| Aocesuton For ,,
' N'L‘IS ur A E

l DTIC TAR
Uummomn nd

e
Diatrihm 1nn/ o
Avail hility (‘odn.s
S |Avt\1l nna/or
Dist Spoecial

A

.-,1.

< eaw

'ﬂ 1. Introduction

[
; Ada is a programming language designed in accordance with requirements defined by the United)

8 States Department of Defense: the so-called Stesiman requirements. Qverall, these requirements
call for a language with considerable expressive power covering a wide application domain. As a
result, the language includey facilities offered by classical languages such as Pascal as well as
facilities often found only in specialized languages. Thus the language is a modern algorithmic
language with the usual control atructures, and with the ability to define types and subprograms. It
also serves the need for modularity, whereby data, types, and subprograms can be packaged. It
treats modularity in the physical sense as well, with a facility to support separate compilation.

In addition to these aspects, the language covers real-time programming, with facilities to model ?
parallel tasks and to handle exceptions. It also covers systeams programming; this requires
precise control over the representation of data and access to system-dependent properties. Finally,

both application-level and machine-level input-output are defined

8)\ . ",‘
' 1.1 Scope of the Standard

This standard specifies the form and meaning of program units written in Ada. Its purpose Is to {
promote the portabllity of Ada programe to a variety of data processing systems.

1.1.1 Extent of the Standard

W)

- This standard specifies: \ -
(a) The form of a program unit written in Ada, 2

{b) The effact transiating and executing such a program unit, 1

- (c) The manner in which program units may be combined to form Ada programs. . .t
- (d) The predefined program units that a conforming implementation must supply. 5

¥ (e) The permissible varlations within the standard, and the manner In which they must be ®

’ specified.

(f) Those violations of the standard that a conforming Iimplementation Is required to detect, and 1
the effect of attempting to translate or execute a program unit containing such violations.

" (g) Those violations of the standard that a conforming implementation is not required to detect. 8

11 Extent of the Standard 1.1.1

L L S T L e e e T o

PP PR SN TURIL ST W O OO VT YT TUPETUA DU TSI oY AT ST O WP VUNUT WO, W SPRUS PVl PPUL I YY" ST I W P SIPEE WP, PSR e ey S BRI SRR S ECEE

ANSIIMIL-STD-187 5, Ada Reference Manual

This standard does rot specl'y: .
(h) The means wheraby a program unit written in Ada is transformed into ubject code executable .
by a processor, .

, - o
i)y The means whereby translation or execution of program units is invoked and the executing o
units are controlled. ha

i

(i) The size or speed of the object code, or the relative exacution speed of differerit language con- ::
structs.) , J

g o

{k)} The form or contents of any listings produced by irnplementations; in particular, the form or ;
contents of arror or warning messages. "

1

(Il The effect of executing a program unit that contains any violation that a conforming o
implementation I8 not required to detect. E j

(m) The size of a program or program unit that will exceed the capacity of a particular conforming
Implementation,

Where this standard specifies that a program unit written in Ada has a1 exact effect, this effect iy
the opaerational meaning of the program unit and must be produced by all conforming implementa-
tions, Where this standard specifies permissible variations In the effacts of constituents of a
program unit written In Ada, the operational meaning of the program unit as a whole is understood
to be the range of possible effects that result from all thesa variations, and & conforming

implementation is allowed to produce any of these possible effects. Examples of permissible varia-
tions are:

s . . -
e - 2 .1.___-44'.:.;:_;_.._

S-S I ML I,

e The raprasented valiies of tixed or floating numeric quantities, and the results of operations
upon them,

®.

e The order of axecution of statemaents in differant parallel tasks, in the absence of explicit syn-
chronization,

1.1.2 Conformity of an Implementation with the Standard

. 1 L
[P __!« e Tata. aTalr

A conforming Implemaentation ls one that:

Y c .
-..'..

(a) Correctly transiates and executes lagal program units written In Ada, provided that they are
not so large as to exceed the capacity of the implementation,

(b) Rejects all program units that are so large as to exceed the capacity of the implementation,

- a_-

“-a

{c) Rejects all program units that contain errors whose detection is required by the standard,
(d) Supplias all pradefined program units required by the standarcl.
(e) Contains no variations axcept where the standard permits,

(f) Spacifiea all such permitted varlations In the manner prescribed by the standard.

1.1.2 Conformity of an linplementation with the S tandard 1-2

® ... B ...

[P

+

TRV AW LI T

1.2 Structure of the Standard

This reference manual contains fourteen chapters, three annexes, three appendices, and an index.

Each chapter is divided into sections that have a common structure. Each section introduces its
subject, gives any naecessary syntax rules, and describes the semantics of the corresponding
language constructs. Examples and notes, and then references, may appear at the end of a sec-
tion.

Examples are meant to lllustrate the possible forms of the constructs described. Notes are meant
to emphasize consequences of the rules described in the section or elsewhere, References are
meant to attract the attention of readers to a terin or phrase having a technical meaning defined in
another section.

The standard definition of the Ada programming language consists of the fourteen chapters and
the three annexes, subject to the following restriction: the material in each of the items listed
below is informative, and not part of the standard definition of the Ada programming language:

« Section 1.3 Design goals and sources
® Section 1.4 Language summary
® The examples, notes, and references given at the end of each section

e FEach section whosa title starts with the word "Example” or "Examples”

1.3 Design Goals and Sources

Ada was designed with three overriding concerns: program reliability and maintenance, program-
ming as a human activity, and efficiency.

The nedd for languages that promote rellability and simplify maintenance is well established.
Hence emphasls was placed on program readability over ease of writing. Far example, the rules of
the language require that program variables be explicitly declared and that their type be specified.
Since the type of a variable Is invariant, compilers can ensure that operations on variables are com-
patible with the properties intended for objects of the type. Furthermare, srror-prone notations
have been avoided, and the syntax of the language avoids the use of encoded forms in favor of
more English-like constructs, Finally, the language offers support for separate compilation of
program units in a way that facilitates program development and maintenance, and which
provides the same degree of checking between units as within a unit.

Cancern for the human programmer was also strassed during the design. Above all, an attempt
was made to keep the language as small as possible, given the ambitious nature of the application
domain. We have attempted to cover this domain with a small number of underlying concepts
integrated in a consistent and systematic way. Nevertheless we have tried to avoid the pitfalls of
excessive involution, and In the constant search for simpler designs we have iried to provide
language constructs that correspond intuitively to what the users will normally expect.

Like many other human activities, the development of programs is becoming ever more
decentralized and distributed. Consequently, the ablility to assemble a program from independent-
ly produced softwara components has been a central idea in this design. The concepts of
packages, of private types, and of generic units are directly related to this idea, which has ramiifica-
tions in many other aspects of the language.

1-3 Design Goals and Sources 1.3

ANSI/MIL-STD-1815A Ada Referenca Manual

No language can avoid the problem of efficiency. Languages that require over-elahorate com-
pilers, or that lead to the inefficlent use of storage or execution time, force these inefficiencies on
all machines and on all programs. Every construct of the language was examiried in the light of
present implementation techniques. Any proposed construct whose implementation was unclear
or that required excessive machine resources was rejected.

None of the above design goals was considered as achievable after the fact. The design goals
drove the entire design process from the beginning.

A perpetual difficulty in language design is that one must both identify the capabilities required by
the application domain and design language features that provide these capabilities. The difficulty
existed in this design, although to & lesser degree than usual because of the Steelman require-
ments. These requirements oftan simplified the design process by allowing it to concentrate on
the design of a given system providing a well defined set of capabllities, rathar than on the defini-
tion of the capabilities themselves.

Ancther significant simplification of the design work resulted from earlier experience acquired by
several successful Pascal derivatives developed with similar goals. These are the languages
Euclid, Lis, Mesa, Modula, and Sue. Many of the key ideas arid syntactic forms developed in these
languages have counterparts in Ada. Several existing languages such as Algol 68 and Simula, and
also recent research languages such as Alphard and Clu, influenced this language in several
respects, although to a lesser degree than did the Pascal family.

Finally, the evaluation reports received on an earlier formulation {the Green language), and on
alternative proposals {the Red, Blue, and Yellow languages), the language reviews that took place
at different stages of this project, and the thousands of commaents received from fifteen different
countries during the preliminary stages of the Ada design and during the ANS| canvass, all had a
significant impact on the standard definition of the language.

1.4 Language Summary

An Ada program is composed of one or more precgram units, These program units can be compiled
separately. Program units may be subprograms (which define executable aigorithms), package
units (which define collections of entities), task units (which define parallel computations), or
generic units (which define parameterized forms of packages and subprograms). Each unit nor-
mally consists of two parts: a specification, containing the information that must be visible to
other units, and a body, containing the implementation details, which need not be visible to other
units.

This distinction of the specification and body, and the ability to complle units separately, allows a
program to be designed, written. and tested as & set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility, The
language provides means whereby Individual organizations can construct their own libraries. The
text of a separately complled program unit must name the library units it requires.

Program Units

A subprogram is the basic unit for expressing an algorithm, There are two kinds of subprograms:
procedures and functions. A procedure Is the means of invoking a series of actions. For example, it
may read data, update variables, or produce some output. |t may have parameters, to provide a
controlled means of passing information between the procedure and the point of call.

1.4 Language Summary 1-4

Introduction

A function is the means of invoking the computation of a value. It is similar to a procedure, but in
addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a
package can be used to define a common pool of data and types, a collection of related sub-
programs, or a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by tha package
specification.

A task unit is the basic unit for deflning a task whose sequence of actions may be sxecuted in
parallel with those of other tasks. Such tasks may be implemented on multicomputers, mul-
tiprocessors, or with interleaved execution on a single processor, A task unit may define either a
single executing task or a task type permitting the creation of any number of similar tasks.

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the
logical entities to be used In the program unit, and a sequence of statements, which defines the
execution of the program unit,

The declarative part assoclates names with declared entities. For example, 8 name may denote a
type, a constant, a variable, or an exception. A declarative part also introduces the names and
parameters of other nested subprograms, packages, task units, and genaric units to be used in the
program unit,

The sequence of statements describes a sequerice of actions that are to be performed. The state-
ments are executed in succesalon (unless an exit, return, or goto statement, or the raising ot an
exception, causes execution to continue from another place).

An assignment statement changes the value of a varlable. A procedur? call invokes exacution of a
procedure after assoclating any actual parameters provided at the call with the corresponding for-
mal parameters,

Case statemants and if staternents allow the selection of an enclosed sequence of statements
based on the value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop stateinent
specifies that a sequence of statements i3 to be executed repeatedly as directed by an Iteration
schemae, or until an sxit statement |s encountered.

A block statement comprises a sequence of statements preceded by the declaration of local
entities used by the statements.

Certain statements are only applicabla to tasks. A delay statement delays the execution of a task
for a specified duration. An entry call statement Is written as a procedure call statement; it
specifies that the taak [ssuing the call is ready for a rendezvous with another task that has this
entry. The called task is ready to accept the entry call when Its execution reaches a correspending
accept statoment, which spacifiea the actions then to be performed. After completion of the
rendezvous, both the calling task and the task having the entry may continue their execution in
parallel. One form of the select statement allows a selective wait for one of several alternative
rendezvous. Othar forms of the select statement allow conditional or timed entry calis.

1-6 Language Summary 1.4

]
Te

20

Fal

22

2

24

2

28

0

ANSI/MIL-STD-1815A Ada Reference Manual

Execution of a program unit may encounter error situations in which normal program execution
cannot continue. For example, an arithmetic computation may exceed the maximum allowed
value of a number, or an attempt may be made to access an array component by using an incorrect
index value. To deal with such arror situations, the statements of a program unit can be textually
followed by exception handlers that specify the actions to be taken when the error situation arises.
Exceptions can be raised explicitly by a raise statement,.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are scalar types (comprising enumeration and numeric
types), composite types, access types, and private types.

An enumeration type defines an ordered set of distinct enumeration literals, for exampie a list of
states or an alphabet of characters. The enumerationi types BOOLEAN and CHARACTER are
predefined.

Numeric types provide a means of performing exact or approximate numerical computations.
Exact computations use integer types, which denote sets of consecutive integers. Approximate
computations uge either fixed point types, with absolute bounds on the error, or floating point
types, with relative bounds on the error. The numeric types INTEGER, FLOAT, and DURATION are
predefined.

Composite types allow definitions of structured objects with related components. The composite
types in the language provide for arrays and records. An array is an object with indexed compo-
nents of the same type. A racord is an object with named components of possibly different types.
The array type STRING Is predefined.

A record may have speclal componants called discriminants. Alternative record structures that
depend on the values of discriminants can be defined within a record type.

Access types allow the construction of linked data structures created by the evaluation of
allocators. They allow several variables of an access type to designate the same object, and com-
ponents of one object to designate the same or other objects. Both the elements in such a linked
data structure and their relation to other alamants can be altered during program execution,

Privete types can be defined in a package that conceais structural details that are externally irrele-
vant. Only the logically necessary properties {Including any discriminants) are made visible to the
users of such types.

The concept of a type is refined by the concept of a subtype, whereby a user can constrain the set
of allowed values of a type. Subtypes can be used to define subranges of scalar types. arrays with
a limited set of index values, and records and private types with particuler discriminant values.

Other Facllities

Representation clauses can ba used to specify the mapping between types and features of an
underlying machine. For example, the user can specify that objects of a given type must be
represented with a given number of bits, or that the components of a record are to be represented
using a given storage layout. Other features allow the controlled use of low level, nonportable, or
implementation-dependent aspects, including the direct insertion nf machine code.

Input-output is defined in the language by means of predefined library packages. Facilities are
provided for input-output of values of user-defined as well as of predefined types. Standard means
of representing values in display form are also provided.

1.4 Language Summary 1-6

N Y S N
. J LA

Introduction

Finally, the language provides a powerful means of parameterization of program units, called
generic program units. The generic parameters can be types and subprograms (as well as objects)
and so allow general algorithms to be applied to all types of a given class,

1.6 Method of Description and Syntax Notation

The form of Ada program units is described by means of a context-free syntax together with
context-dependent raquirements expressed by narrative rules.

The meaning of Ada program units is described by means of narrative rules defining both the
effects of each construct and the composition rules for constructs. This narrative employs

technical terms whose precise definition is given in the text (references to the section containing
the definition of a technical term appear at the end of each section that uses the term),

All other terms are in the English language and bear their natural meaning, as defined in Wabster's
Third New International Dictionary of the English Language.

The contoxt-free syntax of the lar,yuage is described using a simple variant of Backus-Naur-Form.
In particular,

(a) Lower case words, some contalning embedded underlines, are used to denote syntactic
categories, for sxample:

adding..operator

Whenever the nams of a syntactic category is usec apart from the syntax rules themseives,
spaces take the place of the underlines (thus: adding operator).
(b) Boldface words are used to denote reserved words, for example:

array

(c) Square bracksts enciose optional items. Thus the two following rules are equivalent.

return_statement ::= return [expression];
return._statement = return; | return expression;

(d) Braces enclose a repeatad item. The itam may appear zero or more times; the repetitions
occur from left to right as with an equivalent left-rocursive rule. Thus the two following rules

are equlvalent.

factor |{multiplying..operator factor|
factor | term multiplying._operator factor

term
term ::

il

il

1.7 Method of Description and Syntax Notation 1.5

n

S

gr_ o+ .a2 £ =
EIFE - ¥ LPRREARN

g

ANSIIMIL-STD-1815A Ada Reference Manual

(e} A vertical bar separates alternative items unless it occurs immaediately after an npening brace,
in which case it siands for itself:

letter_or_digit i:= letter | digit
component_association := [cholce || cholce] =>] expression

() if the name of any syntactic category starts with an italicized part, it Is equivalent tc the
category name without the italicized part. The italicized part is intended to convey some

semantic information. For example type_.name and task_name are both equivalent to name
alone.

Note:

The syntax rules describing structured constructs are presented in a form that corresponds to the
recommanded paragraphing. For example, an if statement is defined as

if_statement =

it condition then
sequence..of _statements

| elsif condition then
saguence..of_statements)

| alse
sequence..of_statements]
end if;

Different lines are used for parts of a syntax rule if the corresponding parts of the construct
described by the rule are intended to be on different lines. Indentation in the rule is a recommenda-
tion for Indentation of the corresponding part of the construct. It is recommended that all indenta-
tions be by multiples of a basic step of indentation (the number of spaces for the basic step Is not
defined). The preferred places for other line breaks are after semicolons. On the other hand, if a
complete construct can fit on one line, this is also allowed in the recommended paragraphing.

1.6 Classification of Errors

The language definition classifies errors into severa! different categories:
(a) Errors that must be detected at compilation time by every Ada compiller.

These errors correspond to any violation of a rule given In this reference manual, other than
the violations that correaspond to (b) or (c) below. In particular, violation of any rule that uses
the tarms must, allowed, legal, or illegal belongs to this categury. Any program that contains
suci an error is not a legal Ada program; on the other hand, the fact that a program Is legal
doss not mean, per 3e, that the program is free from other forms of error.

(b} Errors that must be detected at run time by the execution of an Ada program.

The corresponding error situations are associated with the names ol the predefined excep-
tions, Evary Ada compiler Is required to generate code that raises the corresponding exception
it such an error situation arigses during program execution. If an exception I certain to be
raised in every execution of a program, then compilers are allowed (although not required) to
report this fact at compilation time.

1.6 Classification of Errors 1-8

Introduction

§. (c) Erronsous execution, 6

The language rules specify certain rules to be obeyed by Ada programs, although there is no 1
requirament on Ada compllers to provide either a compilation-time or a run-time detection of

the violation of such rules. The srrors of this category are indicated by the use of the word

A arroneous to qualify the execution of the corresponding constructs. The effect of erroneous
execution is unpredictable.

(d) Incorrect order dependences. 8

Whenever the reference manual specifias that different parts of a given construct are to be 9
_ executed /n some order that /s not defined by the language, this means that the implementa-
tion is allowed to execute these parts in any given order, following the rules that result from
that given order, but not in parallel. Furthermore, the construct is incorrect if execution of
these parts in a different order would have a different effect. Compilers are not required to
provide sither compllation-time or run-time detection of incorrect order dependences. The

foregoing Is expressed in terms of the process that is called execution; It applies equally to the _';_...'::

processes that are callad evaluation and elaboration.

If a compiler is able to recognize at compilation time that a construct is erroneous or contains an 10
incorrect order dependence, then the compiler is allowed to generate, in place of the code

L otherwise generated for the conatruct, code that raises the predefined excaption

- PROGRAM_ERROR. Similarly, compilers are allowed to generate code that checks at run time for
erronaous constructs, for incorrect order dependences, or for both. The predefined exception
PROGRAM_ERROR Is raised if such a check fails.

&

1-9 Classification of Errors 1.6

L 4

- L TeT L. s

LT F

2. Lexical Elements

The text of a program consists of the texts of one or more compllations. The text of a compilation
is A sequence of lexical slements, each composed of characters; the rules of composition are given
in this chapter. Pragmas, which provide certair information for the compliler, are also describad in
this chapter,

References. character 2.1, compllation 10,1, lexical olement 2.2, pragma 2.8

2.1 Charactor Set

The only characters al'owed In the text of & program are the graphic characters and format effac-
tors. Each graphic character corresponds t> a unique ccde of the /SO seven-bit coded character
set (/SO standard 646), and is representod (visually) by a graphical symbol. Some graphic
characters are represented by different graph'cal symbols in alternative national representations of
the /SO character set. The description of the language definition in thie standard refsrence manual
uses the ASC// graphical symbols, the ANS/ graphical representation of the /SO character set.

graphic_character ::= baslc_graphic.character
| lowar_caso_letter | other_special_character

basic_graphic.character .=
upper_case..letter | digit
| speciai_character | space_character

basic_character =
basic_graphic_character | format_effector

The basic character sat is sufficient for writing any program. The characters inciuded in each of the
categories of basic graphic characters ure defined as follows:

(a) upper case letters
ABCDEFGH'!JKLMNOPQAQRSTUVWXYZ

(b) digits
0123456789

{c) special characters
"H# & () e+, - =D]

(d) the space character

Format effectors are the /SO (and ASC//) characters called horizontal tabulation, vertical tabula-
tion, carriage return, line feed, and form feed.

2-1 Character Set 2.1

e qe

v

A
SE
LSS ST

o

ANSI/MIL-STD-1815A Ada Reference Manual

The characters included in each of the remaining categories of graphic characters are dafinad as
follows:

(e) lower case letters
abcdetfghilkimnopagrstuvwxyz

{f) other spacial characters
1$% 2@ [(\]"* |}~

Allowable replacemants for the special characters vertical bar {(|), sharp (%), and quotation (") ara
defined in section 2.10.

Notes.

The /SO character that «.ofra:nonds to the sharp graphical symbol in the ASC// representation
appears as a pound stetliny svinbol in the French, German, and United Kingdom standard national
representations. In any case, tha font design of graphical symbols (for example, whether they are in
italic or bold typeface) is not part of the /SO standard,

The meanings of the acronyms used in this section are as follows: ANS/ stands for American
National Standards Institute, ASC// stands for American Standard Code for Information
Interchange, and /SO stands for International QOrganization for Standardization.

The following names are used when referring to special characters and ¢ther special characters:

symbol name symbol name
" quotation > greater than
sharp - underline
& ampersand | vertical bar
) apostrophe ! exclamation tnark
{ left parenthesis $ dollar
) tight parenthesis % percent
" star, muitioly ? question mark
+ pius @ commercial at
, comma (left squore bracket
- hyphen, minus \ back-alash
. dot, point, perlod] right square brackst
/ slash, divide - circumfiex
: colon) grave acrent
: semicolon | latt brace
< less than } right brace
== aqual ~ tilde

2.2 Lexical Elements, Separators, and Delimiters

The text of a program consists of the texts of one or more compilations. The text of each complla-
tion Is a sequence of separate lexical elements, Each lexical element is either a delimiter, an iden-
tifier (which may be a reserved word), a numeric literal, a character literal, a string liteval, or a com-
ment. The effact of a program depends only on the particular sequences of lexical elementa that
form its compilations, excluding the comments, if any.

[

2.2 Lexical Elements, Separators, ard Dellmiters 2~

4

T s MR s 2 e -~ s r e BRI s s .

-~ .. s

E

‘Y Tl e o« e

il > L. - T

PRDENENDNIN EN—— S S0 M S S

Loxicat ciarmants

In some cases an explicit separato- is required to separate adjacent lexical elements (namely,
whan without separation, Interpraetation as a sirgle lexical element is possible). A separator is any
of a space character, a format effector, or the end nf a lina, A space character is a separator except
within a commaent, a string literal, or a space character literal. Format effectors other than horizon-
tal tabulation are always separators. Horizontal tabulation is a segarator except within a commaent.

The end of a line is always a separator. The language does not define what causes the end of a line.
However If, for a given implementation, the end of a line is signified by one or more characters,
then these characters must be format effectors other than horizontal tabulation. in any case, a
sequence of one ar more format effactors other than horizontal tabulation must cause at least one
end of line.

One or more separators are allowed betwesn any two adjacent lexical elements, before the first of
each compilation, or after the lust. At least one separator is required batween an Identifier or a
numeric literal and an adjacent Identifier or numeric literal.
A delimiter is either one of the followiny special characters (in the basic character set)
& () +, - /1 <=>]
or one of the following compound delimiters each rc:aposed of two adjacent special characters
=> . wk m [f= >= gm L& D> O
Each of the apecial characters listed for single character delimiters !s a single delimiter axcept if
this character Is used as a character of a compound delimiter, or a3 a character of a comment, str-
ing literal, character |iteral, or numeric literal,
The remaining forms of |exical elament are described in other sections of this chapter.
Notes:
Each loxical elernant must fit on ona line, since the end of a line is a separator. The quotation,
sharp, and underline characters, likewise two adjacent hyphens, are not delimiters, but may form
part of other lexical eloments.

The following names are used when referring to compound delimiters:

delimiter name
= arrow
double dot

o double star, exponentiote
tess assignment (pronounced: "bscomes”)

[inaquality (prunounced: “rict equai®)
bt greuter than or equal

(== less than or equal

<< left label bracket

>> right label bracket

<> box

References. character literal 2.5, commaent .7, compliation 10.1, iormat effector 2.1, identifiar 2.3, numeric litaral
2.4, jesurved word 2.9, upace character 2.1, special charactar 2.1, string literal 2.6

Lexical Elements, Separators, and Delimiters 2.2

oyt — - et
L3 b h il
L)

W TE . B

Y T e

ANSIIMIIL-STU-TJTOA Ada Reterance iianual

2.3 Identifiers
] Identifiers are used as names and also as roserved words.
2 identifiar .- .
letter underline] letter_or_digit| o
lettar_or_digit ::= letter | digit T
lettar -« upper_case_letter | lower_case..letter
"®
3 All characters of an identifler are significant, including any underline character inserted between a
letter or digit and an adjacent letter or digit. Identifiers differing only in the use of corresponding
upper and lower case |etters are considered as the same.

‘ Examples: -—— .
COUNT X get_symibol Ethelyn Marion S
SNOBOL_4 X1 PageCcunt STORE_NEXT_ITEM S

Note: ‘
. No space is allowed within an identifier since a space is 8 separator. o Y
8 References: digit 2.1, lower case lettar 2.1, naine 4.1, reserved word 2.9, separator 2.2, space character 2.1, upper ::

case letter 2.1 :

2.4 Numeric Literals

i There are two classes of numaric literals: real literals and integer literals. A real literal [s a numaeric

literal that includes a point; an integer literal is a numeric literal without a point. Real literals are :
the literals of the type universal_real. Integer literals are the iiterals of the type universal_integer. Lt

2 numeric_literal == dacimal_literal | based_literal

1 References. litaral 4.2, univarsal_integer type 3.5.4, universal_real type 3.6.6 T

2.4.1 Decimal Literals
' A cacimal literal is a numaric literal expressed in the conventional decimal notation (that is, the 9
haca is Implicitly ten), o

? decimal_literal 1= Integer [Integer] |exponent]
intager = diglt {(underline] digiti
exponent = E [+] integer | E - integer Lo

2.4.1 Decimal Literals 2-4

U PP S P T s N

Lexical Elements

An underline character inserted between adjacent digits of a decimal literal does not affect the 3
value of this nurreric literal. The letter E of the exponent, if any, can be written either in lower case R
or in upper case, with the same meaning. PR
: An exponant indicatas the power of ten by which the value of the decimal literal without the expo- 4 ®
nent is to be multipltied to obtain the value of the decimal literal with the exponent. An exponent for g
an integer litaral must not have a minus sign, X
= Examples: b
. 12 0 1E6 123_4566 -~ Integer literals
12.0 0.0 0.466 3,14169.28 -~ real literals
1.34E-12 1.0E+8 -- real literals with exporient
{ Notes: 2 Q
Leading zaros are allowed. No space is allowed in a numeric literal, not even between constituents ¢ N
‘ of the exponent, since a space is a separator. A zero exponent is allowed for an integer literal, S
- References: d git 2.1, lower cass latter 2,1, numaric literal 2.4, separator 2.2, space charactor 2.1, upper cass letter ! S
» 2.1 -
2.4.2 Based Literals
e A based literal 13 a numeric literal expressed In a form that spocifies the base explicitly. The base -
-, must be at least two and at most sixtean.
based..literal = 2
" base # based_Integer [based_integer] # [exponent)
N base = integer L
ﬁ.j based_integer ::-: S
5 extended_digit {[underline] extended_digit| o
?:'; extended_diglt = digit | letter
- An underline character 'nserterd betwean adjacent digits of a based litera! does not affect the value 3 e
W of this numerlc literal, The base ard the exponent, If any, are in di.cimal notation. The only letters
allowed as extended digits are the letters A through F for the digits ten through fiftoen, A letter in a
based !!teral (either an extended diglt or the letter F of an exponent) can be written either in lower
case or in upper case, with the sarme meaning,
- The conventional meaning of based notation Is assumed; in particular the value of each extended ‘ oo ®
digit of a based literal must be less than the base. An exponent Indicates the power of the base by o
- which the value of the based literal without the exponent is to be multiplied to obtain the value of Lo
. the based literal with the exponent. T
4 i~

. 2.6 Based Literals 2.4.2

&

ANSI/MIL-STD-1815A Ada Reference Manua

®
Examples: .
271111 11113 16#FF# 016x0FF# -+ Intager llterals of value 265
16#EME 2#1110..0000# -~ Integer Hterals of value 224 »
16#F.FF#E+2 241, 11111111111 #E1 -- real literals of value 40950 ¢
References. digli 2.1, axponent 2.4,1, lstter 2,3, lowor cass Iatter 2.1, numaerlc literal 2.4, upper case latter 2,1
2.5 Character Literals ,_.'.
A character literal is formed by enclosing one of the 85 graphic characters {Including the space) .
between two apostrophe charactars, A character literal has a value that belongs to a character L
typea. N
charactar_literal ::= 'graphlic_charactar' L.
Examples:)
IAl)*v "t + '
Reforences: character type 3.6.2, graphlc character 2.1, litesal 4.2, space charactor 2.1 WA
2.6 String Literals ;
A string literal is formed by a sequence of graphic characters (possibly none) enclosed hetween "*f o n
two quotation characters used as string brackets, SRR -
string_literal = "{graphic_character]”)
A string literal has 8 value that is a sequence of character values corresponding to the graphic
characters of the string literal apart from the quotation character itself. If a quotation character "
value i8 to be representsd in the sequence of character values, then a pair of adjacent quotation
charactars must ba written at the corrasponding place within the string literal. (This means that a
string literal that Includes two adjacent quotation charactera is never intarpreted as two adjacent
string !iterals.)
The length of a string literal Is the number of character values in the sequence represented. (Each ot
doubled yuotation character s counted &8 a single character.) o
Examplas. :
“Meusage of the day:”
®
-- an empty string literal
"A" -- three string literals of length 1
“Charactars such as $, %, and | sre allowad In striny literals" .
)

2.6 String Litarals 2-6

Lexical Elemants

Note:

A string literal must fit on one line since it is a lexical element (see 2.2). Longer sequences of
graphic character values can ha obtained by cetenation of string literals. Similarly catenation of
constants declared in the package ASCIHl can be used to obtain sequences of character values that
include nongraphic chardcter values (the so-called control characters). Examplas of such uses of
catenation are given below:

"FIRST PART OF A SEQUENCE OF CHARACTERS " &
"THAT CONTINUES ON THE NEXT LINE'

“sequence that Includes the” & ASCIH.ACK & “control character”

Refarences: ascll predefinad package C. catenation operation 4.6.3, character value 3.5.2, constant 3.2.1,
declaration 3.1, end of u line 2.2, graphic character 2.1, lexical elament 2.2

2.7 Comments

A comment starts with two adjacent hyphens and extands up to the end of the line. A commaent
can appeat on any line of a program. The presence or nbsence of commaents has no influence on
whether a program Is legal or lilegal. Furthermore. commants do no influance the effact of a
program; thelr sole purpose is the enlightenment of the human reader.

Examples.
- the last sentence above echoes the Algol 68 report
end; - processing. of LINE |s complete

-~ & long comment may be split onto
-« two of mora consecutive lines

------------------- the first two hyphens start the comment

Note!

Horlzontal tabulation can be used in comments, after the doubla hyphen, and is equivalent to one
or more spaces (see 2,2),

Referencas: end of a line 2.2, lilegal 1.8, isgal 1.6, space character 2.1

2.8 Pragmas

A pragma is ugsed to convey Information to the compller. A pragma starts with the reserved word
pragma followed by an |dentifier that Is the name of the pragma.

pragma =
pragma identifler [(argument_association |, argument_assoclation))];

argumaont_.association =
largument_identitier =>] name ;
| largumont Identifier =>] expression
'

2-7 : Pragmas 2.8

ANSI/MIL-STD-1815A Ada Reference Manual

3 Pragmas are only allowed at the following places in a program: -
A"

a ® After a samicolon delimiter, but not within a formal part or discriminant part. .

5 @& At any place where the syntax rules allow a construct dsfined by a syntactic category whose N _
name ends with "declaration”, “statement”, “clause”, or "alternative”, or one of the syntactic _ oF
categories variant and exception handler; but not in place of such a construct. Also at any ‘ 3
place where a compilation unit would be allowed.

s Additional restiictions exist for the placement of specific pragmas. AR

7 Some pragmas have arguments. Argument associations can be either positional or named as for _ .

parametar asscciations of subprogran: calls (see 6.4). Named assoclations are, howaver, only pos-
sible If the argument identifiers are defined. A name given in an argurnent must be eith.er a name
visible at the ulace of the pragma or an ldentifier specific to the pragma.

8 The pragmas defined by the language are described in Annex B: they niust be supported by every -
Implementation. In addidon, an implementatica may provide implementation-defined pragmas, @,
which must then be described in Appendix F. An implementation Is not allowed to define pragmas S
whose pressnce Jr absence Influances the logality of the text outside such pragmas. Consequently, L
the legality of a program does nnt depend on the presence or absence of implementation-defined
pragmas.

3 A pragma that is not languagu-cefined has no effect if its identifler is not recognized by the (cur- .
rent) implementation. Furthermore, a pregma (whether language-defined or implementation- K
defined) has no effact if its placement or Its argumernts do not correspond to what is allowed for
the pragma. The region of text ovor which a pragma has an effsct depends on the pragma.

o Examples: o

$. pragma LISTIOFF); F
pregma OPTIMIZE(TIME); N
pragma INLINE(SETMASK}: NN
pragma SUPPRESS(RANGE.CHECK, ON => INDEX):

Note:
:{j: 0 It is recommended (but not required) that Implementations issue warnings for pragmes that are)
N not recognized and therefore ignhored. L
L 2 References. compilation unit 10.1, delimiter 2.2, discriminant part 3.7.1, exception handler 11.2, expression 4.4, SR
oy formal part 8.1, identifler 2.3, Iimplamentation-defined pragma F, language-defined pragma B, legal 1.8, name 4.1,

reservar word 2.9, statement B, static expression 4.9, varlant 3.7.3, visibility 8.3

3 Categories onding with "declaration™ comprise: basic declaratlon 3.1, component declaration 3.7, entry
declaration 9.5, generic paramater declaration 12,1

L@

14 Categories ending with "clause” comyrise: alignmaent clause 13.4, component clause 13.4, context clause 10.1.1, :
representation clause 13.1, use clause 8.4, with clause 10.1.1 . of
15 Categorieé ending with "alternativa™ comprise: accept alternative 9.7.1, case statement alternative 5.4, delay
giternativa 9.7.1, select alternative 9.7.1, selective wait alternative 8.7.1, terminate altarnative 9.7.1
!: l.

2.8 Pragmas 2-8

T Oy F I A S N S o W W Sy D P Gy S S Sy v gy ew Yy G S vy

SIRN

"
E~"w
\.
)

Lexical Elements

2.9 Reserved Words

The identifiers listed below are called reserved words and are reserved for special significance in
the language. For readablility of this nanual, the reserved words appear in lower case boldface,

abort declare

abs delay

accept delta

access digits

all do

and

array

at olse
olsif
end

begin entry

body axception
oxit

case for

constant function

generic
goio

limited
loop

mod
new

not
null

of

or
others
out

package
pragma
private
procedure

raise
range
record
rem
renames
return
revarse

selact
separate
subtype

task
terminate
then

type
use
when
while
with

xor

A reserved word must not be used as a declared identifier,

Notes.

Reserved words differing only In the use of corresponding upper and lower case letters are con-
sidered as the samo (see 2.3). | some attributes the Identifier that appears after the apostrophe is
identical to some rasarved word.

References: attribute 4.1.4, declaration 3.1, identifler 2.3, lower case letter 2.1, upper case letter 2.1

2.10 Aliowable Replacemants of Characters

The following replacements are allowsd for the vertical bar, sharp, and quotation basic characters:

o A vaertical bar character () can be replaced by an exclamation mark (1) where used as a

delimiter.

® The sharp characters (#) of a b.i.sed literal can be replaced by colons (i) provided that the
replacement Is done for both occurrences.

® The quotation characters () used as string brackets at both ends of a string iteral zan be
replaced by percent characters (%, provided that the enclosed sequence of characters con-
tains no quotation character, and provided that both string brackets are replaced. Any percent
character within the sequence of characters must then be doubled and each such doubled
percent character Is interpreted as a single percent character value.

2-9

Allowable Replacements of Characters 2.10

. Bt

Lol
h

Mar gy nanl
N

Tw

ANSI/MIL-STD-1815A Ada Reference Manual

These replacements do not change the meaning of the program.
Notes:

It is recommended that use of the replacements for the vertical bar, sharp, and quotation
characters be restricted to cases where the coiresponding graphical symbols are not avallable.
Note that the vertical bar appears as a broken bar on some equipment; replacement is not recom-
mended in this case.

The rules given for identifiers and numeric literals are such that lower case and upper case letters
can be used indifferently; these lexical elements can thus be written using only characters of the
basic character set. If a string literal of the predefined type STRING contains characters that are
not in the basic character set, the same sequence of character values can be obtained by
catenating string literals that contain only characters of the basic character set with suitable
character ccnstants declared in the predsfined package ASCII. Thus the string literal "AB$CD "
could be ruplaced by "AB " & ASCI|.DOLLAR & “CD". Similarly, the string literal “ABcd " with lower
case letters could be replaced by "AR " & ASCII.LC_C & ASCII.LC_D.

References: ascli predefined package C, based literal 2.4.2, basic character 2.1, catenation operation 4.5.3, character

value 3.5.2, delimiter 2.2, graphlc character 2.1, graphical symboi 2.1, identifier 2.3, lexical element 2.2, lowar case
letter 2.1, numaric literal 2.4, string bracket 2.8, string literel 2.8, upper case latter 2.1

2.10 Allowable Replacements of Charactars 2-10

o e R T N T e T T T NP T S T rs "

LT E

.

- -

IV I JNC

. AE—

z A N . eammm.Ef T T

Joms .. X

3. Declarations and Types

This chapter describas the types in the language and the rules for declaring constants, varlables.
and named numbers.

3.1 Daclarations

The language defines several kinds of entities that are declared, either explicitly or implicitly, by
declarations. Such an entity can be a numaeric literal, an object, a disctiminant, a record compo-
nent, a loop parameter, an exception, a type, a subtype, a subprogram, a package, a task unit, a
generic unit, a single entry, an entry family, a formal parameter (of a subprogram, entry, or generic
subprogram), a generic formal parameter, a named block or loop, a labeled statement, or an opera-
tion (in particular, an attribute or an enumeration literal; see 3.3.3).

There are several forms of declaration. A basic declaration is a form of declaration defined as fol-
lows,

basic_declaration ;=
object_declaration | number._declaration
| type_declaration | subtype_declaration
| subprogram_deciaration | package..declaration
| task_declaration | generic_declaration
} exception_declaration ‘ generic_instantiation

rgnaming_.declaration deferred_constant_declaration

Certain forms of declaration always occur (explicitly) as part of a basic declaration; these forms are
discriminant specifications, component declarations, entry declarations, parameter specifications,
generic parameter declarations, and enumeration literal specifications. A loop parameter specifica-
tion is a form of declaration that occurs only in certain forms of loop statemeant,

The ramaining forms ~¢ declaration are implicit: the name of a block, the name of a loop, and a
staternent label are implicitly declared. Certain operations are implicitly declared (see 3.3.3).

For each form of daclaration the language rules define a certain reglon of text callad the scope of
the declaration (see 8.2). Several forms of declaration associate an identifier with a declared entity.
Within its scope, and only there, there are places where it is possible to use the identifler to refer to
the associeted cdeclared antity; these places are defined by the visibility rules (see 8.3). At such

places the identifier Is said to be a name of the entity (its simple name); the name Is sald to denote
the associated entity.

Certain forms of anumeration literal specification associate a character literal with the cor-
rasponding declared entity. Certain forms of declaration assocliate an operator symbol or some
other notation with an explicitly or implicitly declared operation.

The process by which a declaration achleves its effect is called the e/aboration of the declaration;
this process happens during program execution.

3-1 Declarations 3.1

)
B
4
)

red

:.-’a -

ANSIIMIL-STD-1815A Ada Reference Manual

After its elaboration, a declarstion is sald to be a/aborated. Prior to the completion of its elabora-
tion (including before the alaboration), the declaration is not vet elaborated. The elaboration of any
declaration has always at least the effect of achieving this change of state (from not yet elaborated
to elaborated). The phrase “the e/aboration has no other sffact” is used in this manual whenever
this change of state is the only effect of slaboration for some form of declaration. An elaboration
proc?ss is also defined for daclarative parts, declarative items, and compilation units (see 3.9 and
10.5).

Object, numbaer, type, and subtype doclarations are described here. The remaining basic declara-
tions are described in later chapters,

Note:

The syntax rules use the term /dentifier far the first occurrence of an identifier in some form of
declaration; the term s/mple name is used for any occurrence of an identifier that already denotes
some declarad entity.

References: attribute 4.1.4, blook name 5.8, block statement 5.8, character litaral 2.6, component declaration 3.7,
declarative item 3.9, declarative part 3.8, deferred constant declaration 7.4, discriminant specification 3.7.1, elabora-
tion 3.9, entry declaration 9.5, enumaeration literal specification 3.6.1, sxception declaration 11.1, gensiic declaration
12.1, generic instantiation 12.3, generic parameter declaration 12.1, identifier 2.3, label 5.1, loop name 6.5, loop
parametar specification 5.5, loop statement 5.5, name 4,1, number declaration 3.2.2, numeric litaral 2.4, object
declaration 3.2.1, oporation 3.3, operator symbol 6.1, package declaration 7.1, parameter spacification 6.1, record
component 3.7, renaming declaration 8.5, representation clause 13.1, scope 8.2, simple name 4.1, subprogram body
6.3, subprogram declaration 8.1, subtype declaration 3.3.2, task declaration 9.1, type declaration 3.3.1, visibllity 8.3

3.2 Objects and Named Numbers

An obfect is an entity that contains (has) o value of a given type. An object is one of the following:

® an object declared by an object declaration or by a single task daclaration,

a formal paramaeter of a subprogram, entry, or generic subprogram,

a generic formal abject,

a loop parametar,

an object designated by a value of an access type,
® a component or a slice of another object.

A number declaration is a special form of object declaration that associates an identifier with a
value of type universal_integer or universal_real,

object_declaration =
identifler_list : [constant] subtype_indication [:= expression);
| identifier_list : [constant] conatrained_array_definition [:= expression]:

number_declaration =
identifier_list : constant = universal_stat/c_expression;

Identifier_list = Identifier |, Identifier|

3.2 Obfects and Named Numbers 3-2

Declarations and Types o i

. « - <.
4 o
~ An object declaration Is called a s/ng/e object declaration if its identifier list has a single identifier; it 10 ;3
X is called a multiple object declaration if the identifler list has two or more identifiers. A multiple :

object declaration is equivalent to a soquence of the corresponding number of single object
e declarations. For each identifier of the list, the equivalent sequence has a single object declaration
i formed by this identifiar, followed by a colon and by whatever appears at the right of the colon in T
3 the multiple object declaration; the equivalent sequence is in the same order as the identifier list. '

A similar equivalance applies also for the identifier lists of number declarations, component "
declarations, discriminant specifications, parameter specifications, generic parameter declarations, o
iR exception declarations, and deferred constant declarations. o

.,

In the remainder of this reference manual, explanations are given for declarations with a single 12
identifier; the corresponding expianations for declarations with several identifiers follow from the
equivalence stated above,

Example: 13

-- the multiple object deciaration

E
SR) DRSS

r:: JOHN, PAUL : PERSON_NAME := new PERSON(SEX => M): -- gee 3.8.1
" -- is equivalent to the two single object declarations in the order given

JOHN : PERSON_NAME := new PERSON(SEX => M)
PAUL : PERSON_NAME := new PERSON(SEX => M);

e ; ?‘; - -
S
S PR

Referances: access type 3.8, constrained array definition 3.8, component 3.3, declaration 3.1, deferred constant "

daclaration 7.4, designate 3.8, discriminant specification 3.7.1, entry 8.5, axception declaration 11,1, expression 4.4,

o formal paramster 8,1, generic formal object 12.1,1, generic parameter declaration 12.1, generic unit 12, generic sub-

l program 12.1, Identifier 2.3, loop parameter 6.5, numeric type 3.5, parameter specification 8.1, scope 8.2, simple .
name 4.1, single task decluration 9.1, slice 4.1.2, atatic expression 4.2, subprogram 8, subtype indication 3.3.2, type L .

3.3, universal_integer type 3.5.4, universal_real type 3.5.0)

g 3.2.1 Object Declarations

RS _JENSNNrR

.
£

An object declaration declares an object whoss type is given either by a subtype Indication or by a '
. constrained array definition. If the object dsclaration includes the assignment compound delimiter
g followed by an sxpression, the expression spacifies an initial value for the declared object; the type
) of the expression must be that of the objact.

[The declared object is a constant if the reserved word constant appears in the object declaration; 2 R
R the declaration must then Iinclude an explicit initialization. The value of a constant cannot be '
modified after initializatlon. Formal parameters of mode in of subprograms and entries, and generic
formal parameters of mode In, are also constants; a loop parameter is a constant within the cor- s
responding loop; a subcomponent or slice of a constant is & constant, - :

E3

I AR

! An object that is not a constant is called a variable (In particular, the object declared by an object a , 01
' declaration that does not include the reservad word constant is a variable). The only ways to '
o change the value of a varlable are sither directly by an asalgynment, or indirectly when the variable

< is updated (see 6.2) by a procadura or entry call statament (this action can be performed elther on

. the variable itself, on a subcomponent of the variable, or on another variable that has the given

) variable as subcomponent).

»)

.
'
A
K
CEEE |
A
: {
o
¥ no

% 3.3 Object Daclarations 3.2.1

PR

ANSI/MIL-STD-1815A Ada Reference Manual

The elaboration of an object declaration proceeds as follows:

{a) The subtype indication or the constrained array definition is first elaborated. This establishes
the subtype of the object,

(b) If the object declaration includes an explicit initialization, the initial vaiue Is obtained by
evaluating the corresponding expression. Otherwise any implicit initial values for the object or
for its subcomponents are evaluatad.

{c) The object Is created.

(d) Any initial value (whether explicit or implicit) is assigned to the object or to the corresponding
stuibcomponent,

Implicit initial valuas are defined for objects declared by object declarations, and for componeits of
such objects, in the following cases:

e |f the type of an object is an access type, the implicit initial value I8 the rull value of the access
type.

o if the type of ar object is a task type, the implicit initial {and only) value designates a cor-
responding task.

® |f the type of an object Is a type with discriminants and the subtype of the object is con-
strained, the implicit iritial (and only) value of each discriminant is defined by the subtype of
the object.

e |f the type of an object is a8 composite type, the implicit init-al value of each companent that
has a default expression Is obtained by evaluation of this espression, unless the component is
o discriminant of a constrained object (the previousa vase),

In the case of a component that I8 itself 8 composite object and whose value is defined neither by
an explicit initialization nor by a default sxpression, any implicit initial values for components of the
composite object are defineii by the same rules as for a declared object.

The steps (a) to (d) are performed in the order indicated. For step (b), If the default expression for a
discriminant is evaluated, then this evaluation is performed before that of default expressions for
subcomponents that depend on discriminants, and also before that of default expressions that
include the name of the discriminant. Apart from the previous rule, the evaluation of default
axpressions is performed in some order that is not defined by the language.

The initialization of an object (the declared object or one of its subcomponents) checks that the
initial value belongs to the subtype of the objact; for an array objact declared by an object declara-
tion, an implicit subtype conversion is first applled as for an assignment statement, unless the
object is a constant whose subtype is an unconstrained array type. The exception
CONSTRAINT_ERROR l4 ralsed if this chack falls.

The value of a scalar variable is undefined after elaboration of the corresponding object declaration
unless an initial value is assigned to the variable by an initialization (explicitly or implicitly).

If the operand of a type convarsion or qualified expression is a variable that has scalar subcompo-
nents with undefined values, then the values of the corresponding subcomponents of the result are
undefined. The axecution of a program Is erroneous If it attempts to evaluate a scalar variable with
an undefined value. Similarly, the execution of a program Is arroneous if it attempts to apply &
predafined operator to a variable that has & scalar subcomponent with an undefined value.

3.2.1 Object Declarations 3-4

Daclarations and Types

Examples of varfable declarations:

COUNT, SUM : INTEGER;

SIZE : INTEGER range O .. 10.000 := O;
SORTED : BOOLEAN := FALSE;

COLOR_TABLE : array(1 . N) of COLOR;

OPTION i BIT_VECTOR(1 .. 10) := (others => TRUE);

Examples of constant declarations:

LIMIT : constant INTEGER 10_000;
LOW_LIMIT : gonstant INTEGER := LIMIT/10;
TOLERANCE : constant REAL := DISPERSION(1.15);

Note:

The exprassion initializing a constant object need not be a static expression (see 4.9). In the above
examples, LIMIT and LOW_LIMIT ars Initialized with static exprassions, but TOLERANCE Is not if
DISPERSION is & user-defined functicn,

References: access type 3.8, assignment 5.2, sssignment compound delimiter 5.2, component 3.3, composite type
3.3, constrainad array definition 3.8, constrained subtype 3.3, constraint_error exception 11.1, conversion 4.6,
declaration 3.1, default expression for & discriminant 3.7, default initiai velue for an access type 3.8, depend on a dis-
criminant 3.7.1, designate 3.8, discriminant 3.3, elaboration 3.9, entry 8.5, evaluation 4.5, expression 4.4, formal
paramaeter 6.1, generic formal parameter 12,1 12,3, generic unit 12, In some order 1.6, limited type 7.4.4, mode in
6.1, package 7, predefined operator 4.5, primary 4.4, private type 7.4, qualified expression 4.7, ressrved word 2.9,
scalar type 3.5, slice 4 1.2, subcomponent 3.3, subprogram 6, subtyps 3.3, subtype indication 3.3.2, task 9, task type
9.2, typa 3.3, visible part 7.2

3.2.2 Number Declarations

A number declaration is a special form of constant declaration. The type of the static expression
piven for the initialization of a number declaration must be sither the types universal_intager or the
type universal real. The constant declared by a number declaration is called a named number and
has the type of the static expression.

Note:

The rules concerning exprassions of a universal type are explained in section 4,10. It is a conse-
quence of these rules that if every primary contained in the expression is of the type univer-
sal_integer, then tha named number is also of this type, Similarly, if every primary is of the type
universal_real, the: the named number is also of this type.

Examples of number daclarations:

P . constant 3.14189_265368; -- a real number

TWO..PI : gonetant = 2.0«Pl; -- 8 real number

MAX : conetant = 600; -- an integer number
POWER_18 . constant = 2x«16; -- the integer 85_636

ONE, UN, EINS : constant := 1; -- three different namos for 1

Refsrences: identifler 2.3, primary 4.4, static expression 4.9, type 3.3, univaraal_integer type 3.5.4, universel_real
type 3.5.6, universal type 410

3-5 Number Declarations 3.2.2

20

Hl

2

b=l SRS

ANSI/MIL-STD-1815A Adua Referance Manual

3.3 Types and Subtypes

A type Is characterized by a set of values and a set of operations.

Thare exist several c/asses of types. Scalar types are integer types, real typss, and types definad
by enumaeration of their values; values of these types have no components, Array and record
types are composite; a value of a composite type consists of component values. An gccess type is
a type whose values provide access to objects. Private types &re types for which the set of possi-
ble values Is well defined, but not directly available to the users of such types. Finally, theie are
task typaes. (Private types are described In chapter 7, task types are described in chapter 9, the
other classes of types are described In this chapter,)

Certain racord and privata types have special components called discriminants whose values dis-
tinguish alternative forms of values of one of these types. |f a private type has discriminants, they
ara known to users of the typa. Hence a private type is only known by Its name, its discriminants if
any, and by the corresponding set of operations.

The set of possible values for an objert of a given type can be subjected to a condition that is cal-
led a constraint (the case where the constraint imposes no restriction I also included); a value is
said to sat/sfy a constraint if it satisfles the corresponding condition. A subtype is a type together
with a constraint; a value Is said to be/ong to a subtype of a given typa if it belongs to the type and
satisfies the constraint; the given type is called the base type of the subtype. A type is a subtype
of itself; such a subtype is said to be unconstra/ned: it corresponds to a condition that imposes no
restriction. The base type of a type is the type itself.

The set of operations defined for a subtype of a glvan type includes the operations that are dofined
for the type; howaver the assignment operation to a variable having a given subtype only assigns
values that belong to the subtype. Additional operations, such as qualification (in a qualified
expression), are implicitly defined by a subtype declaration.

Certain types have default Init/al values defined for objects of the type; certain other types have
default expressions defined for some or all of thelr components. Certain operations of types and
subtypes are called actr/butes; these operations are denoted by the form of name described in sec-
tion 4.1.4.

The term subcomponent is used in this manual in place of the term component to indicate either a
component, or a component of another component or subcomponent. Where other subcompo-
nents are excluded, the term component is uged instead.

A given type must not have a subcomponent whose type Is the given type itself,

The name of a class of types is used in this manual as a qualifier for objects and values that have a
type of the class congldered. For example, the term "array object” is used for an object whose type
is an array type; similarly, the term “access value” is used for a value of an access type.
Note:

The set of values of a subtyp. is a subset of the values of the base type. This subset need not be a
proper subset; it can be an empty subset.

Reforences. access type 3.8, array type 3.6, ssaignment 6.2, attribute 4.1.4, component of an array 3,8, component
of a record 3.7, discriminant constraint 3.7.2, enumaeration type 3.5.1, integer type 3.5.4, object 3.2.1, private type
7.4, qualified expression 4.7, real type 3.8.6, record type 3.7, subtype declaration 3.3.2, task type 9.1, type declaration
331

3-6

.......

L

— T e T =T - a

Ceclarations and Types
3.3.1 Type Daeclarations

A type declaration declares a typs.

type_declaration ;== full_type_declaration
| Incomplete_type._ceclaration | private .type..declaration

full_type_declaration :=
type Identifier {discriminant_part] is type_definition;

type_definition =
enumaeration_type_de'inition | Intagar_type_dsfinition
| real_type_definition | array._type..definition
| record_type_definition | access_type_definition
| derived.type.-definition

The ulaboration of a full type declaration consists of the elaboration of the discrimirant part, if any
(except in the case of the full type declaration for an incomplete or private type deciaration), and of
the elaboration of the type definition.

The types created by the elaboration of distinct type definitions are distinct types, Moreover, the
elaboration of the type definition for a numeric or derived type creates both a base type and a sub-
type of the base type; the same holds for a constrained array definition (one of tha two forms of
array type definition).

The simple name declared by a full type declaration denotes the declared type, unless the type
declaration declares both a base type and a subtype of the base type, in which case the simple
name denotes the subtype, and the base type I8 anonymous. A type is seid to be anonymous If it
has no simple name, For explanatory purposes, this reference manual sometimes refers to an
anonymous type by a pseudo-name, written in italics, and uses such pseudo-names at piaces
where the syntax normally requires an identifier.

Examples of type definitions:
(WHITE, RED, YELLOW, GREEN, BLUE, BRO.VN, BLACK)
range 1 .. 72
array(1 .. 10) of INTEGER

Examples of type dJeclarations:

type COI.OR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type COLUMN s range 1 .. 72;
type TABLE is array(1 .. 10} of INTEGER;

Notes:

Two type definitions always define two distinct types, even If they are textually identical. Thus, the
array type definitions given in the declarations of A and B below define distinct types.

A armay(1 .. 10) of BOOLEAN;
B : array(! .. 10) of BOOLEAN;

If A and B are declared by a multiple object declaration as below, thel: types ars nevertheless dif-

farent, gsince the multiple object declaration is equivalent to the above two single object declara-
tions,

A, B : array(t .. 10} of BOOLEAN;

3-7 Type Declarations 3.3.1

PR

PRI

ANSIMIL-STD-1815A Ada Reference Manual

Incomplete type. declarations are used for the definition of recursive and mutually dependent types
{see 3.8.1). Private type declarations are used in package specifications and in generic paramater
declarations (see 7.4 and 12.1),

References: access type definition 3.8, array type definition 3.8, basu typa 3.3, constrainad array definition 3.8,
constrained subtype 3.3, desclaration 3.1, derived typs 3.4, derived type definition 3.4, discriminant part 3.7.1,
elaboration 3.8, anumeration type deflnition 3.5.1, identifier 2.3, iIncomplete type declaration 3.8.1, integer type
definitior: 3.6.4, multiple object declaration 3.2, numeric type 3.5, private type declaration 7.4, real type definition
3.56.6, rmserved word 2.9, type 3.3

3.3.2 Subtype Daeclarations

A subtype declaration declares a subtype.

subtype._declaration .=
subtype Identifier i3 aubtype_indication;

subtype_indication = tvpe_mark [constraint]
type_mark 1= type_nume | subtype_name

constraint s
range_constraint | floating._point_constraint | fixed_point..constraint
| index.conatraint | discriminant_constraint

A type mark denotes a type or & subtype. If a type mark is the name of a type, the type matk
denotes this type and also tha corrasponding unconstrained subtype. The base tyne of a type mark
is, by definition, the base type of the type or subtype denoted by the type mark.

A subtype indication defines a subtype of the bace type of the type mark,

If an index constraint appears after a type mark in a subtype indication, the type maik must not
already impose an index constraint, Llkewlse for a discriminani constraint, tha type mark must not
already impose a discriminant constraint.

The elaboration of a subtype declaration consists of the elaboration of the subtype Indication. The
elaboration of a subtype Indication creates a subtype. If the subtype indication does not include a
constraint, the subtype is the same as that denoted by the type mark. The slaboration of a subtype
indication that Includes a constraint proceeds as follows:

{a) The constraint is first elaborated.

{b) A check is then made that the constraint is compatible with the type or subtype denoted by
the type mark.

The cond!tion imposed by a constraint is the condition obtained after elaboration of the constraint.
(The rulas of constraint elaboration arae such that the expressions and ranges of constraints are
evaluated by the elaboration of these constraints.) The rules defining compatibility are given for
each form of constraint in the appropriate section. These rules are such that it a constraint Is com-
patible with a subtype, then the condition imposed by the constraint cannot contradict any condi-
tion already imposed by the subtype on its values. The exception CONSTRAINT_ERROR Is raised if
any check of compatibliity fails,

3.3.2 Subtype Declarations 3-8

Loa sl

N

Declarations and Types

Examples of subtype declarations: 10

subtype RAINBOW Is COLOR range RED .. BLUE; -- see 3.3

. subtype RED_BLUE Is RAINBOW; .
subtype INT is INTEGER; " .
subtype SMALL_INT is INTEGER range -10 .. 10;

., subtype UP_TO_K is COLUMN range 1 .. X; -- see
» subtype SQUARE is MATRIX(1 .. 10, 1 .. 10); -~ see
L subtype MALE is PERSON(SEX => M) - 8ee

L ww
@x oW

;4 Note:
A subtype declaration does not define a new type. "

"o References; buse type 3.3, compatibllity of discriminant constraints 3.7.2, compatibility of fixed point constraints 12

3.6.9, compatibility of f'oating point constraints 3.6.7, compatibility of index conatrainta 3.6.1, compatibility of range .

R constraints 3.6, constraint_error exception 11,1, declaration 3.1, discriminant 3.3, discriminant constraint 3.7.2, ——
elaboration 3.9, evaluation 4.5, sxpression 4.4, floating point constraint 3.5.7, fixed point conatraint 3.6.9, index con- .
straint 3.6.1, range constraint 3.6, raservad word 2.9, subtype 3.3, type 3.3, type name 3.3.1, unconstrained subtype B
3.3

3.3.3 Classification of Opsrations

:li The set of aperations of a type includes the explicitly declared subprograms that have a parameter 1 . j'.l
. or rasult of the type; such subprograms are necessarily declared after the type declaration, Tl

The remaining operations are each implicitly declared for a given type declaration, immaediately 2 N
after the typa definition, These Implicitly declared operations comprise the bas/c operations, the Yo
predefined operators (see 4.6), and enumaration litarals. In the case of a derived type declaration, LA
the implicitly declared opurations Include any derlved subprograms. The operations implicitly RO
declared for a given type declaration occur after the type declaration and before the next explicit DR
declaration, if any, The Implicit declarations of darived subprograms occur last,

A basic oparation Is an operation that is inherent in one of the following: 3

X ¢ An assignment (in assignment statements and initializations), an allocator, 8 membership test, 4
or a short-clrcult control form.

X ® A solacted component, an indexed component, or a slice. 5

N ® A gualification (in qualified expressions), an explicit type conversion, or an implicit type con- b ‘

varsion of a value of type univarsal_integer or universal_real to the cotresponding value of R
another numaric type, - K

- ® A numaric liceral (for a universal type), the literal null (tor an access type), a string literal, an ;
q aggregate, or an attrlbute. N

For every type or subtype T, the following attribute ts defined: 8

:;5 T'BASE The bate type of T. This attribute Is gllowsd only as the prefix of the name of o
' another attrlbute: for example, T'BASE FIRST.

'\ 3-9 Classification of Operations 3.3.3

ANSI/MIL-STD-1815A Ada Refarence Manual

Note:

Each literal is an operation whose evaluation yields the corresponding value (see 4.2). Likewise, an
aggregate is an operation whose evaluation yields a value of a composite type {see 4.3). Soma
operations of a type operate on values of the type, for example, predefined operators and cartain
subprograms and attributes. The evaluation of some operations of a type returns a value of the
type, for example, literals and certain functions, attributes, and predefined operators. Assignment
is an operation that operates on an object and & value. Tha evaluation of the operation cor-
responding to a selectad componant. an indexed component, or a slice, ylelds the object or value
denoted by this form of name.

References: aggregate 4.3, allocator 4.8, assignmaent 6.2, attribute 4.1.4, character llteral 2.6, composite type 3.3,
conversion 4.8, derived subprogram 3.4, snumeration literal 3.5.1, torma! parameter 8.1, function 6.5, indexed com-
ponant 4.1.1, Initial value 3.2.1, literal 4.2, mambarship test 4.6 4.5.2, null liveral 3.8, numerlc literal 2.4, numaric type
3.6, objact 3.2.1, 8.1, predefined opaerator 4.5, qualifisdd expression 4.7, selected componant 4.1,3, short-circult con
trol form 4.5 4,6.1, slice 4,1.2, string literal 2.6, subprogram 6, subtypn 3.3, typa 3.3, type daclarution 3.3.1, unlver-
sal_integer type 3.6,4, universal_real type 3,5.8, univarsal type 4.10

3.4 Derived Types

A derived type definition defines a new (base) type whose characteristics are derived from those of
o parent type: the new type is called a derived type. A derived type definition further defines a
derived subtype, which is a subtype of the derived type.

derived..type_dafinition = new subtype_indication

The subtype Indication that occurs after the reserved word new defines the parent subtype. The
paren; type Is the base type of the parent subtype. If a constraint exists for the parent subtype, a
similar constraint exists for the derlved subtype: the only difference Is that for 8 range constraint,
and likewise for a floating or fixed point constraint that includes a range constraint, the value of
each bound |s replaced by the corresponding value of the derived type. The characteristics of the
derived typa are defined as follows:

® The derived type belongs to the same class of typaes as tha parant type. The set of possibla
values for the derived type is a copy of the set of possible values for the parent type, if the
parant typa is compoasite, then the same components exist for the derived type, and the sul,-
type of cotresponding componenta is the same.

® For each basic oparation of the parent type, there Is a corresponding basic operation of the
derived typa. Explicit type converslon of a value of the parent type into the corresponding
value of the derived type is allowed and vice verss as explained in section 4.6,

e For aach enumaeration literal or pradefined operator of the parent type there is a corresponding
operation for the derived type.

e |f the parent typa I8 a task type, then for each antry of the parent type thare is a corresponding
antry for the derived typs,

e |f a default expresaion exists for a component of an object having the parent type, then the

same default expression is used for the corrasponding nomponent of an object having the
derlved typs.

3.4 Derivad Types 3-10

T o PR Iy SOy Sy Ty ¥

Declarations and Types ‘

. ® |f the parent type is an access type, then the parent and the derived type share the same col- 9
' lectlon; there is a null access valus for the derived type and it is the defauilt initial value of that
type.
e If an explicit representation clause exists ror the parent type and if this clause appears before 10 ,
the derived type definitlon, then there is a corresponding representation ciause {an implicit [

one) for the derived type.

e Certain subprograms that are operations of the parent type are said to be der/vable. For each "

derivable subprogram of the parent type, there Is a corresponding derived subprogram for the

darlved type. Two kinds nf derivable subprograms exist. First, If the parent type is declared o
immediately within the visible part of a package, then a subprogram that is itself explicitly X
declared immaediately within the visible part becomes derivable after the end of the visible
part, if it is an operation of the parent type. (The explicit declaration is by a subprogram
declaration, a renaming declaration, or a generic instantiation.) Second, if the parent type Is
itself a derived type, then any subprogram that has been derived by this parent type is further
derivable, unless the parent type is declared in the visible part of a package and the derived »
subprogram Ia hidden by a derlvable subprogram of the first kind. ; @

Each operation of the derived type Is implicitly declared at the place of the derived type declara- 1
tion. The implicit declarations of any derived subprograms occur last,

The specification of a derived subprogram Is obtained implicitly by systematic replacement of the 13
parent type by the derived type in the specification of the derivable subprogram. Any subtype of

the parent type I8 likewlse replaced by a subtype of the derived type with a similar constraint (as

for the transformation of a conatraint of the parent subtype into the corresponding constraint of

the derived subtype). Finallv, any expression of the parent type is made to be the operand of a type
conversion that yialds a result of the derived type.

Calling a derived subprogram is squivalent to calling the corresponding subprogram of the parent 1
type, in which each actual parameter that |s of the derlved type is replaced by a type conversion of
this actual parameter to the parent type (this rneans that a conversion to the parent typs happens
before the call for the modes in and in out; a reverse conversion to the derived type happens after
the call for the modes in out and out, ses 6.4.1). In addition, if the result of a called function Is of
the parent type, this result is converted to the derived type, .
If a derived or private type is declarad Immediately within the visible part of a package, then, within M bl
this visible part, this type must not be used as the parent type of a derived type definition. (For
private types, see also saection 7,4.1.)
For the elaboration of a derived type definition, the subtype Indication Is first elaborated, the 1
derived type is then created, and finally, the derlved subtype is created. ‘
Mgosrened
Exarnples: " Lo
type LOCAI_COORDINATE ls new COORDINATE; - two different types
type MIDWEEK s new DAY range TUE . THU: -- see 3.6.1 <o
type COUNTER is new POSITIVE; -- same range as POSITIVE -
[
type SPECIAL_KEY is new KEY_MANAGER.KEY; -- @ee 7.42)
~ the derlved subprograms have the following specifications: :
-- procedure GET_KEY(K : out SPECIAL_KEY):
- functivn "<"{X)Y : SPECIAL_KEY) return 300LEAN:
@

3-11 Derlved Types 3.4

N e U . U . .
Nhs.‘u:\u'uuh..\. [T O P OF VP . TR VPO bR A S SO S SO SR

ANSIIMIL-STD-1815A Ada Reference Manual T

Notes:

b 18 The rules of derivation of basic operations and enumeration literals imply that the notation for any
2 literal or aggregate of the derived type is the same as for the parent type; such literals and
: aggreqgates are said to be over/foaded. Similarly, it follows that the notation for denoting a compo-
- nent, a discriminant, an entry, a slice, or an attribute is the same for the derived type as for the
parent type.

19 Hiding of a derived subprogram is allowed even within the same declarative region (see 8.3). A
- derived subprogram hides a predefined operator that has the same parameter and result type
profile (see 6.6).

- 20 A generic subprogram deciaration is not derivable since it declares a generic unit rather than a sub-
. program. On the other hand, an instantiation of a generic subprogram is a (nongeneric) sub-
program, which is derivable if it satisfies the requirements for derivability of subprograms.

2 If the parent type is a boolean type, the predefined relational operators of the derived type deliver a S
result of the predefined type BOOLEAN (see 4.5.2), Loy

22 If a representation clause is given for the parent type but appears after the derived type declara-
tion, then no corresponding representation clause applies to the derived type; hence an explicit
representation clause for such a derived type s allowed.

- 23 For a derived subprogram, if a parameter belongs to the derived type, the subtype of this B
parameter need not have any value in common with the derived subtype. C

el

24 References. access value 3.8, sctual parameter 6.4.1, aggregate 4.3, attribute 4.1.4, base type 3.3, basic operation

3.3.3, boolean type 3.5.3, bound of a rangs 3.5, class of type 3.3, collection 3.8, corponent 3.3, composite type 3.3,

N constraint 3.3, conversion 4.8, declaration 3.1, declarative region B.1, default expression 3.2.1, detault initlal value for _
an access type 3.8, discriminant 3.3, elaboration 3.9, entry 9.5, enumeration literal 3.5.1, floating point constraint LA. '
3.6.7, fixed paint constraint 3.5.9, formal parameter 6.1, function call 8.4, generic declaration 12.1, immediately et
ks within 8.1, Implicit declaration 3.1, literal 4.2, mode 6.1, overloading 8.8 8.7, package 7, package spacificotion 7.1,
parameter assoclation 6.4, predefined operator 4.5, private type 7.4, procedure €, procedurs call statement 8.4, renge T
constraint 3.5, representation clause 13.1, reserved word 2.9, slice 4.1.2, subprogram 8, subprogram spacification S .
6.1, subtype indication 3.3.2, subtype 3.3, type 3.3, type definition 3.3.1, visible part 7.2 ERRR |

.
PRESS S

ag,

G 3.5 Scalar Types

v ' Scalar types comprise enumeration types. integer types, and real types. Enumeration types and
‘ integer types are called discrete types; each value of a discrete type has a position number which
is an integer valua., Integer types and real types are cailed nume: ¢ types. All scalar types ara) :
ordered, that is, all relational operutors are predefined for their values.

3 2 range_constraint - range range NI

range -= range_attribute e
| simple_axnression ., simple_expression -.

3.5 Scalar Types 3-12

SN . - e L o N WA .
X B 0 .
T U S VY. SO SRS, M)

o

UV Vi S I SO VNV M S

Declarations and Types

A range specifies a subset of values of a scalar type. The range L .. R specifies the values from L to a
R inclusive if the relation L <= R is true. The values L and R are called the lower bound and upper
bound of the range, respectively. A vailue V Is said to satisfy a range constraint if it belongs to the
: range; the value V is sald to belong to the range If the relations L <=V and V <= R are beth TRUE .
- ‘ A null range Is a range for which the relation R < L is TRUE, no value belongs to a null range. The
operators <= and < Iin the above definitions are the predefined operators of the scalar type.

If a range constraint is used in a subtype indication, either divactly or as part of a floating or fixed 4
point constraint, the type of the simple expressions {likew!ss, of the bounds of a range attribute)

must be the samy as the base type of the type mark of ihe subtyp:. indication. A range constraint is
compatible with a subtype if each bound of the ranya helongs to the subtype, or if the range con-
straint defines a null range; otherwigse the rang e constraint is not compatible with the subtype.

. The elaboration of a range constraint consists of tha evaluation of the ranga. The evaluation of a
- range defines its lower bound and its uppe! bound. If simple expressions are given to specify the
bounds, the evaluation of the range evaluaias these simple axpresslons in some order that is not
defined hy the language.

[l

2 Attributes . 8
Foi any scalar type T or for any subtype T of a scalar type, the following attributes are defined: 1
T'FIRST Yields the lower bound of T, The value of this attribute has the same type as T. ¢
T'LAST Yields the upper bound of T. The value of this attribute has the same type as T. 9

Note:
A Indexing and iteration rules uge values of discrete types. 10

References: attribute 4.1.4, constraint 3.3, anumeration type 3.5.1, erronaous 1.8, evaluation 4.5, fixed point n
g constraint 3.6.9, floating point constraint 3.6.7, index 3.6, Integer type 3.6.4, toop statement 6.5, renge attribute
- 3.8.2, real type 3.5.6, relational operator 4.6 4.5.2, satisfy a constraint 3.3, simple exnrussion 4.4, subtype indication
" 3.3.2, type mark 3.3.2

3.5.1 Enumeration Types

An anumeration type definition defines an enumeration type. !

enumeration_type_definition = 2
(enumeration_litaral_spacification |, enumeration_literal_specification|)

enumeration_literal_specification = enumeration_literal

i enumeration_literal := Idaentifier | character_literal

|

The identifiers and character literals listed by an enumeration type definition must be distinct. Each 3

enumeration literal specification is the declaration of the corresponding enumeration litaral: this
declaration is equivalent to the declaration of a parameterless function, the designator being the
enumeration literal, and the result type being the enumeration type. The elaboration ¢f an
enumeration type definition creates an enumeration type; this elaboration Includes that of every
enumeration literal specification.

3-13 Enumeration Types 3.5.1

1N

ANSI/MIL-STD-1815A Ada Reference Manual

Each enumeration literal yields a different enumeration value. The predefined order relations
betwean enumeration values follow the order of corresponding position numbers. The position
number of the value of the first listed enumeration literal is zero; the position number for each
other enumeration literal is one more than for its predecessor in the list.

If the same identifier or character literal is specified in more than one enumeration type definition,
the corresponding literals are sald to be over/oaded. At any place where an overloaded enumera-
tion literal occurs in the text of a program, the type of the enumeration literal must be determinable
from tha context {see 8.7).

Examples:
type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN):
type SUIT is (CLUBS, DIAMONDS, HEARTS, SPADES);
type GENDER ia (M, F);
type LEVEL is (LOW, MEDIUM, URGENT);
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK); PR
type LIGHT is (RED, AMBER, GREEN); -- RED and GREEN are overloaded .
type HEXA is ('A’, 'B', 'C’, 'D', 'E', 'F');
type MIXED is {'A’, 'B’, 's’, B, NONE, '?', ‘%) .
subtype WEEKDAY Is DAY range MON .. FRI; S
subtyps MAJOR is SUIT range HEARTS .. SPADES;
subtype RAINBOW is COLOR range RED .. BLUE; -- the color RED, not the light @
Note: o
.A. : 6
If an enumeration literal occurs in a context that does not otherwise suffice to deterrnine the type '_;'.4"" .
of the literal, then qualification by the name of the enumeration type Is one way to resolve the S
ambiguity (see 8.7). 1@
References: character literal 2.5, declaration 3.1, dasignator 6.1, elaboratlon 3.9, 6.1, function 8.5, identifier 2.3,
name 4.1, overloading € 8 8.7, position number 3.5, qualified expression 4.7, relational operator 4.6 4.5.2, type 3.3,
type definition 3.3.1
3.6.2 Character Types "_:‘jl
An enumeration type s sald to be a character typs If at least ong of its enumeration literals is a . ‘
character literal. The predefined type CHARACTER is @ character type whose values are the 128 e
characters ot the ASC// character set. Each of the 95 graphic characters of this character set Is
denated by the corresponding character literal,
Example!]
type ROMAN_DIGIT s (', 'V, 'X’, 'L’, 'C, ‘D", 'M"); 0
Notes: ‘ ;
The predefined package ASCIl includes the declaration of constants denoting control characters
and of constants denoting graphic characters that are not In the basic character set. - .

3.86.2 Character Types 3-14

Declarations and Types

A conventional character set such as EBCDIC can be declared as a character type; the internal
codes of the characters can be specified by an enumeration representation clause as explained in
section 13.3,

References. ascil predefined package C, basic character 2,1, character litera! 2.5, constant 3.2.1, declaration 3.1,
snumeration type 3.6.1, graphic character 2.1, identifier 2.3, Hiteral 4.2, predefined type C, type 3.3

3.56.2 Boolean Types

There Is a predefinad enumeration type named BOOLEAN . It contains the two literals FALSE and
TRUE ordered with the relation FALSE < TRUE. A boolean type is either the type BOOLEAN or a
type that is derived, directly or indirectly, from a boolean type.

References: detived type 3.4, enumeration literal 3.5.1, enumeration type 3.6.1, relstional operator 4.5 4.6.2, type
3.3

3.6.4 Integer Types

An integer type definition defines an integer type whose set of values includes at least those of the
specified range.

integer_type._definition :i= range._constraint

If a range constraint Is used as an Integer type definition, each bound of the range must be defined
by a static exprassion of some integer type, but the two bounds need not have the same intager
type. (Negative bounds are allowed.)

A type declaration of the form:
type T is range L .. R;

Is, by definition, equivalent to the following declarations:

type Integer_type Is new predefined_integer_type;
subtype T Is /nteger_type range Integer_typa(L) .. integer_type(R);

where integer_type I8 an anonymous type, and where the predefined intager type Is implicitly
selacted by the implementation, so as to contain the values L to R Inclusive. The integer type
declaration Is illegal If none of the predefined integer types satisfies this requirement, excepting
universal_intager. The elaboration of the declaration of an integer type conslists of the elaboration
of the equivalent type and subtype declarations.

The predefined Integer types Include tha type INTEGER. An implementation may also have
predefined types such as SHORT_INTEGER and LONG_INTEGER , which have (substantially) shorter
and longer ranges, respectively, than INTEGER. The range of each of these types must be
symmetric about zero, excepting an extra negative vriue which may exist in some implementa-
tions. The base type of each of these types is the type Itself.

3-16 Integer Types 3.5.4

)

L E

4

ANSI/MIL-STD-1815A Ada Referance Manual

Integer literals are the literals of an anonymous predefined integer type that is called univer-
sal_integer in this reference manual. Other integer types have no literals. However, for each
integer type thare exists an implicit conversion that converts a universal_integer value into the cor-
responding value (if any) of the integer type. The circumstances under which these implicit conver-
slons are invoked are described in section 4.8,

The position number of an integer value is the corresponding value of the type universal_integer.

The same arithmaetic operators are predefined for all integer types (see 4.5). The exception
NUMERIC_ERROR is raised by the execution of an operation (in particular an implicit conversion)
that cannot deliver the correct result (that is, If the value corresponding to the mathematical result
is not a value of the integer typs). However, an implementation is not required to raise the excep-
tion NUMERIC_ERROR If the operation is part of a larger expression whose rasult can be computed
correctly, as described in section 11.8,

Examples.

type PAGE_NUM s range 1 .. 2.000;
type LINE SIZE Is range 1 .. MAX_LINE_SIZE;

subtype SMALL_INT Is INTEGER range -10 .. 10;
subtyps COLI/MN_PTR is LINE_SIZE range 1 .. 10;
subtype BUFFER_SIZE Is INTEGER range O . MAX:

Notes:

The name declared by an integer type ceclaration is a subtype name. On the other hand, the
predefined operators of an Integer type deliver resuits whose range is defined by the parent
predefined type; such a result need not belong to the declared subtype, in which caso an attempt
to assign the result to a varlable of the integer subtype raises the excepticih CONSTRAINT..ERRQOR.

The smallest (most negative) valus supported by the predefined integer types of an Implementa-
tion is the named number SYSTEM.MIN.INT and the largest (most positive) value is
SYSTEM.MAX_INT (sse 13.7).

References: anonymous type 3.3.1, balonp to a subtype 3.3, bound of a range 3.5, conatraint_error sxception 11.1,
conversion 4.8, identifier 2,3, integer literal 2.4, |iteral 4.2, numerlo..error exception 11,1, paren type 3.4, predefined
opurator 4.5, runge conatralnt 3.5, static expression 4.0, subtype d¢ claration 3.3.2, system predefined package 13.7,
type 3.3, type declaration 3.3.1, type definition 3.3.1, universal type 4.10

3.6.5 Operations of Discrete Types

The basic operations of u discrete type Include the operations involved In assignment, the
membaership tests, and qualification; for a boolean type they include the short-circuit control forms;
for an integer type they Include the explicit conversion of values of other numeric types to the
Integer type, and the impliclt conversion of values of the type universal_integer to the type.

Finally, for every discrete type or subtype T, the basic uperations include the attributes listed

below. In this presentation, T Is referred to as being a subtype (the subtype T) for any property that
depends on constraints imposed by T; other properties are stated iri tarms of the base type of T.

3.8.5 Operations of Discrete Types 3-16

jl"j Declarations and Types

The first group of attributes yleld characteristics of the subtype T. This group inciudes the attribute 3 T e
BASE (sea 3.3.2), the attributes FIRST and LAST (see 3.5), the representation attribute SIZE (see E
13.7.2), and the attribute WIDTH defined as follows:

5' T'WIDTH Yields the maximum image length over all values of the subtype T (the /mage Is the 4 o “
| saquence of characters returned by the attribute IMAGE, see below). Yields zero @
for a null range. The value of this attribute is of the type universal_integer. -

All attributes of the second group are functions with a single parameter. The corresponding actual 5 o
parameter is indicated below by X

4 - P A
. P A

T'POS This attribute is a function. The parameter X must be a value of the base type of T. 0 h q
The result type Iis the type universa/_integer. The result is the position number of =
the value of the parameter,

T'VAL This attribute is a speclal function with a single parameter which can be of any 7
integer type. The result type is the base type of T. The rasult is the value whose)
position number Is the un/versal_integer value correspanding to X. The exception S)

IR =g A
»"‘-...,_..

CONSTRAINT_ERROR Is raised if the universal_/nteger value corresponding to X is L
not in the range T'POS(T'BASE'FIRST) .. TPOS(T'BASE'LAST). e

- R

v - |
.

T'SUCC This attribute is a function. The parametar X must be a value of the base type of T. 8
The result type is the base type of T, The result is the value whose position number -
is one greater than that of X, The exception CONSTRAINT_ERROR is raised If X VT e
equals T'BASE'LAST. o ..1

BT

v 8 x4

- -
A S

£y

T'PRED This attribute is a function. The parameter X must be a value of the base type of T, v LA
The reault type is the base type of T. The result is the value whose position number R
is one less than that of X, The exception CONSTRAINT_ERROR Is raised If X equals j
T'BASE'FIRST. r

1‘

1

",

“ T IMAGE This attribute |s a function. The parameter X must be a value of the base type of T, 0 3
The result type is the predefined type STRING . The result is the /mage of the value :
of X, that is, a sequence of characters representing the value in display form, The |
= image of an Integer value is the corresponding decimal literal; without underlines, o
. leading zeros, exponent, or trailing spaces; but with a single leading character that - ‘...*
is either a minus sign or a space. The lower bound of the image is one. S

i

\

)

\

» The image of an anumeration value is either the corresponding Identifier In upper "

case or the corresponding character literal (Including the two apostrophes);

» neither laading nor trailing spaces are included. The image of a character C,other L

Y than a graphic character, is implementation-defined; the only requirement is that o
- the Image muet be such that C equals CHARACTER'VALUE (CHARACTER'IMAGE (C)). B

T'VALUE This attribute is a function. The parameter X must be a value of the predefined type 1
STRING. The result type is the base type of T. Any leading and any trailing spaces
of the sequence of characters that correspondn to the parameter are ignored.

;‘1 For an enurreration type, if the sequence of characters has the syntax of an. u -

enumeration literai and If this literal axists for the base type of T, the result is the '

corresponding enumeration value. For an integer type, If the sequence of

% characters has the syntax of an integer literal, with an optional single leading

character that Is a plus or minus sign, and if there is a corresponding value in the : :

Y base type of T, the result is this value. In any other case, the exception '
! CONSTRAINT_ERROR I8 ralsed. Lo @

i 3-17 Operations of Discrete Types 3.6.6

ANSI/MIL-STD-1815A Ada Referance Manual

in addition, the attributes A'SIZE and A'ADDRESS are defined for an object A of a discrete type
{see 13.7.2).

Besides the basic operations, the operations of a discrete type include the predefined relational
operators. For enumeration types, operstions include enumeration literals. For boolean types,
operations include the predefined unary logical negation operator not, and the predefined logical
operators. For intager types, operations include tha predefined ar/ithmetic operators: these are the
binary and unary adding operators - and +, all multiplying operators, the unary operator abs, and
the exponentiating operator.

The operations of a subtype are the corresponding operations of its base type except for the fol-
lowing: assignment, membership tests, qualification, explicit type conversions, and the attributes
of the first group; the offact of each of these operations depends on the subtype {assignmants,
membership tests, qualifications, and conversions involve a subtype check; attributes of the first
group vield a characteristic of the subtype).

Notes:

For a subtype of a discrete type, the results delivered by the attributes SUCC, PRED, VAL, and
VALUE need not belong to the subtype: similarly, the actual parameters of the attributes POS,
SUCC, PRED, and IMAGE need not belong to the subtype. The following relations are satisfied {in
the absence of an exception) by these attributes:

T'POS(T'SUCC(X)) T'POS(X) + 1
T'POS(T'PRED(X)) = T'POS(X) - 1

T'VALT'POS(X)) = X
T'POS(T'VALIN)) N

I

Examples:
-- For the types and subtypes declared in saction 3.5.1 we have:

-~ COLOR'FIRST = WHITE, COLOR'LAST = BLACK
-- RAINBOW'FIRST = RED, AAINBOW'LAST = BLUE

-- COLORA'SUCC(BLUE) = RAINBOW'SUCC(BLUE) = BROWN
-- COLOR'POS(BLUE) = RAINBOW'POS(BLUE) = 4
-- COLOR'VAL(0) = RAINBOW'VALIO) = WHITE

Heferences. abu operator 4.5 4.5.8, assignment 5.2, attribute 4.1.4, base type 3.3, basic operation 3.3.3, binary
aiding operator 4.6 4,5.3, boolean type 3.8.3, bound of a range 3.5, character ‘teral 2.5, constraint 3.3, con-
straint._error exception 11.1, converasion 4.6, discrete type 3.5, snumaration literal 3.56.1, exponentiating operator 4.8
4.5.6. function 8.5, graphlc character 2.1, identifler 2.3, Integer type 3.8.4. loyical operator 4.5 4.5.1, membership
test 4.5 4.5.2, multiplying operator 4.5 4.8.8, not operator 4.5 4.5.6, numaeric lits~al 2.4, numeric type 3.5, object 3.2,
operation 3.3, position number 3.5, predefined operator 4.5, predefined type C, qualified expression 4.7, relational
operatnr 4.5 4.6.2, short-citcult control form 4.6 4.8.1, string type 3.6.3, subtype 3.3, type 3.3, unary adding oparator
4.6 4.5.4, universal_integer typs 3.8.4, universal type 4.10

3.6.6 Operations of Discrete Types 3-18

®
)
R
'
@
:._....- -
. L
S
.-‘.~.:n',
-
o ‘ 'l. *
R N
..vl
al
‘e
rr'_‘ .'.".
-
ey
‘v
. -
- n
o

> -

Declarations and Types
3.5.6 Real Typos

Real types provide approximations to the real numbers, with relative bounds on errors for floating
puint types, and with absolute bounds for fixed point types.

real_type_definition :: =
floating_polint_constraint | fixed_point_rnonstraint

A set of numbers called mode/ numbers is associated with each real type. Error bounds on the
predefined operations are given in tarms of the mode! numbers. An implementation of the type
must include at least these model numbers and represent them exactly.

An implementation-dependent set of numbers, called the safe rnumbers, is also associatec with
each real type. Tha ast of safe numbears of a real type must include at least the set of model
numbers of the typa. The range of safe numbers is allowed to be larger than the range of model
numbaers, but arror bounds on the predefined operations for safe nhumbers are given by the same
rules as for model numbers. Sufe numbers therefore provide guaranteed error bounds for opera-
tions on an implemaentation-dependent range of numbers; in contrast, the range of model numbers
depends only on the (eal type definition and is therefore independent of tha implementation.

Real literals are the literals of an anonymouas prodefined real type that is called universal_real in
this reference manual. Other rcal types have no literals. However, for each real type, there exists an
implicit conversion that converts a univarsa/_rea/ value Into a value of the real type. The condl-
tions under which these Implicit conversions are Invoked are described in section 4.6, If the
universal_real value is a safa number, the implicit conversion delivers the corresponding value; if it
belongs to the range of safs numbers but is not a safe number, then the converted value can be
any value within the range defined by the safa numbers next above and below the un/varsal_real
value,

The execution of an operation that yislds a value of a real type may raise the exception
NUMERIC_ERROR, as explained in section 4.6.7, If it cannot deliver a correct result (that Is, if the
value corresponding to one of the possible mathematical results does not belong to the range of
safe numbers); in particuler, this exception can be raised by an implicit conversion. However, an
implemaentation is not required to raise the exception NUMERIC_ERROR if the operation |s part of a
larger expression whose result can be computed correctly {see 11.8),

The elaboration of a real type definition includes the elaboration of the floating or fixed point con-
straint and creates a real type.

Note:

An algorithm written to rely only unon the minimum numerical properties guaranteed by the type
definition tor model numbers will be portable without further precautions.

References: conversion 4.8, elaboration 3.9, fixed point constraint 3.5.9, fioating point constraint 3.8.7, literal 4.2,
numaric_error exception 11,1, predefired uperation 3.3.3, resl literal 2.4, type 3.3, type definition 3.3.1, universal
type 4.10

3-19 Real Types 3.6.6

: S o
i i i .
e AA!A.._._.;.L._:! PN

O
K
"
-9
'i

ey

ANSI/MIL-STD-1815A Ads Refereance Manusl
3.6.7 Floating Point Types

f For floating point types, the error bound is specifiad as a relative precision by giving the required
minimum number of significant decimal digits.

? floating_point_constraint ::=
floating_accuracy_definition (range_constraint]

floating_accuracy_drfinition = digits stat/c_simple_expression

I 2 The minimum number of significant decimal digits is specified by the value of the static simple

expression of the floating accuracy definition. This value must belong to somae integer type and
must be positive (nonzeroj; It is denoted by D in the remaindar of this section. If the floating point
- constraint is used as a real type definition and includes a range constraint, then each bound ¢f the
range must be defined by a static expression of somae real type, but the two hounds need not have
the same roeal type.

. For a given radix, the following canonical form is defineu for any floating point model number other
than zero!

sign « mantissa » {radix w» exponent)

s In this form: s/gn is either +1 or -1; nmantissa is expressed in a number base given by rad'x; and
exponent is an integer number (possibly negative) such that the integer part of mantissa Is zero
and the first digit of its fractional part is not a zero.

s The specified number D is the minimum number of decimal digits required after the point in the
decimal mantissa (that is, if radix is ten). The value of D In turn determines a corresponding
number B that is the minimum number of binary digits required after the point in the binary man-
tissa (that is, if radix is two), The number B associated with D is the smallest vaiue such that the
relative precision of the binary form is no less than that spacifiad for the decimal form. (The
number B is the Integer next above (Dxlog(10)/log(2)) + 1.)

ATAIRIGENIS L D

1 The mode! numbers definad by a floating accuracy definition comprise zero and all numbers whose
" binary canonicai form has exactly B digits after the point in the mantissa and an exponent in the
' range -4-8 ., +4xB. The guarantesd minimum accuracy of opeiations of a floating point type |s
defined in terms of the model numbers of the floating point constraint that forms the cor-
responding real type definition (see 4.5.7).

o

- 0 The predefined floating point types include the type FLOAT. An implementation may also have
¥ predefinad tvpes such as SHORT_FLOAT and LONG._FLOAT, which have (substantially) less and
] more accuracy, respactiveiy, than FLOAT. The buse type of sach predefined floating point type |s
the type itself. Tha model numbers of each predefined floating point type are definad in terms of
X the number D of decimal digits returned by the attribute DIGITS (see 3.5.8),

v For each predefined floating point type (consequently also for each type derived therefrom), a set
K of safe numbers Is defined as follows. The safe numbers have the same number B of mantissa
» digits as the model numbers of the type and have an exponent in the range -E .. +E where E |s
implementation-defined and at least equal to the 4+B of model numbers. (Consequently, the safe
numbers Include the model numbers.) The rules defining the accuracy of operations with modael
and safe numbers ara glven In section 4.5.7. The safe numbers of a subtype ara those of its base

type.

3.5.7 Floating Point Typas 3-20

.

- 3 ’ .
b - Asduc T I P N T N T S L -

R ~

Deaclarations and Types

A floating point type declaration of one of the two forms (that is, with or without the optional range
constraint indicated by the square brackets):

type T is digits D [range L .. R];
is, by definition, equivalent to the following declarations:

type floating._point_type s new predefined_flosting_point_typs;
subtype T is floating_point_type digits D
[range fioating_point_type(l) .. floating_point_type(R)];

where floating_polnt_type 13 an anonymous type, and where the predefined floating point type is
implicitly selacted by the implemantation so that its model numbers include the model numbars
defined by D; furthermore, ir a range L .. R Is supplied, then both L and R must belong to the range
of safe numbers. The floating point declaration is illegal if none of the predefined floating point
types satisfles these requiremnents, excepting universal.real. The maximum number of digits that
can be specified In a floating accuracy definition Is given by the system-dependent named number
SYSTEM.MAX_DIGITS (see 13.7.1).

The elaboration of a floating point type declaration consists of the elaboration of the equivalent
type and subtype declarations. .

if a floating point constraint follows a type mark in a subtype indication, the type mark must
denote a floating point type or subtype. The floating point constraint is compatible with the type
mark only if the number D specifiad in the floating accuracy definiilon is not greater than the cor-
responding number D for the type or subtype denoted by the type mark. Furthermore, if the
floating point constraint includes a range constraint, the floating point constraint is compatible
with the type mark only if the range constraint Is, itself, compatible with the type mark.

The elaboration of such a subtype indication Iincludes the elaboration of the range constraint, if
there is one; it creates a floating point subtyps whose model numbers are defined by the cor-
responding floaiing accuracy definition, A value of a floating point type balongs to a floating point
subtype if and only !¢ it belongs to the range defined by the aubtype.

The sarne arithmetic operators are predefined for all floating point types (see 4.5).
Notes:

A range constraint is allowed In a floatii:g p.'nt subtype indication, either directly after the type
mark, or as part of a floating point constraint. |n either case the bounds of the range must belong
to the buse type of the type mark (ses 3.5). The iImposition of a floating puint constraint on a typs
mark in a subtype indication cannot reduce the allowed range of values unless it includes a range
constraint (the range of modsl numbaers that correspond to the specified number of digits can be
smalter than the range of numbers of tho type mark). A value that belongs to a floating point sub-
type need not be a model number of the subtype.

Examples:
type COEFFICIENT la digits 10 runge -1.0 .. 1.0,

type REAL s digits 8;
type MASS is digite 7 renge 0.0 ., 1.0E35;

subtype SHORT_COEFF la CCEFFICIENT digits 6; -~ 8 subtype with les, accuracy
subtype PROBABILITY s REAL range 0.0 .. 1.0; - & subtype with a smaller range
3.21 Floating Point Types 3.5.7

w

-
TP

AIYIVIIL ~Q T -T T T OA Ala Ralarence ivianual

Notes on the examples:

n The implemented accuracy for COEFFICIENT is that of a predefined type having at least 10 digits of
precision. Consequently the spacification of & digits of precision for the subtype SHORT_COEFF Is
allowed. The largest model number for the type MASS is approximately 1.27E30 and hence less N
than the specified upper bound {1.0E35). Consequently the declaration of this type is legal only If -
this upper bound is in the range of the safe numbers of a predefined floating point type having at o
least 7 digits of precision, : S,

20 References: anonymous type 3.3.1, arithmetic operator 3.6.5 4.5, basad literal 2.4.2, belong to a subtype 3.3, bound
of a range 3.5, compatible 3.3.2, darlved type 3.4, digit 2.1, elaboration 3.1 3.9, error bound 3.5.6, exponent 2.4, 1
intagar type 3.5.4, model number 3.6.6, operation 3.3, predefined operator 4.5, pradefined type C, range constraint s
3.5, real type 3.6.6, raal type definition 3.5.8, safe number 3.5.8, simple expression 4.4, static axprassion 4.9, subtype ' ‘:'.
declaration 3.3.2. subtype indication 3.3.2, subtype 3.3, type 3.3, type declaration 3.3.1, type mark 3.3.2

3.5.8 Oporations of Floating Point Types

) The basic operations of a floating poin. type include the operations involved in assignment, .
membership tests, qualification, the explicit conversion of values of other numeric types to tho S
floating point type, and the Implicit converalon of values of the type un/versal.real to the type.

? In addition, for every floating point type or subtype T, the basic operations include the attrlbutes
listed below. In this presentation, T is referred to as being a subtype (the subtype T) for any o
property that depends on constraints imposed by T, other proparties are stated in terms of the e i 3
base type of T, G
[N :'5'
3 The first group of attributes yisid characteristics of the subtype T. The attributes of this group are
the attribute BASE (see 3.3.2), the attributes FIRST and LAST (ses 3.6), the representation C
attribute SIZE (see 13.7.2), and the following attributes: v
. Moe
4 TDIGITS Yields the number of decimal digits in the decimal mantissa of model numbers
of the subtype T. (This attribute yields the number D of section 3.6.7.) The
value of this attribute is of the type universal.integer.
5 T'MANTISSA ‘fields the number of binary digits in the binary mantissa of model numbers ot .
the subtype T. (This attribute yields the number B of section 3.56.7.) The value A
of this attrlbute is of the type unfiversal_intsger. L
0 T'EPSILON Yields the absolute value of the difference between the model number 1.0 and
the next model number above, for the subtype T. The value of this attribute is
of the type universai.real.
J T'EMAX Ylelds the largest exponent value in the binary canonical form of model - »
numbers of the subtype T. (Thlis attribute ylelds the product 4«B of section SR
3.6.7.) The value of this attribute is of the type universal.integer. N
e
» T'SMALL Yields the smalleat positlve (nonzero) model number of the subtype T. The
value of this attribute is of the type universal_real. -
v T'LARGE Yielas the largest positive model number of the subtype T. The value of this

attribute Is of the type universal_real.

3.6.8 Qperatlons of Floating Point Types 3-22

.....

ORI I - T P O D S U P S VP U S SIS S e]i.pﬁ_u_m..-..w_t_.ﬁuw.,_uwwuk..v-

Dectlarations and lypes

The attributes of the second group include the following attributes which yield characteristics of
the safe numbers:

T'SAFE_EMAX VYiolds the largest exponent value in the binary canonical form of safe numbers of
the base type of T. (This attribute yields the number E of saction 3.5.7.) The
value of this attribute Is of the type wniversai_integer.

T'SAFE_SMALL Ylelds the smallest positive (nonzero) safe numbar of the base type of T. The
valua of this attribute Is of the type universal_real.

T'SAFE_LARGE Yields the largest positive safe number of the base type of T. The value of this
attribute is of the type universal_real,

In addition, the attributes A'SIZE and A'/ADDRESS are defined for an object A of a floating point
type (see 13.7.2), Finully, for each floating point type there are machine-dependent attributas that
are not relatad to model numbers and safe numtiars. They correspond to the attribute designators
MACHINE_RADIX, MACHINE_MANTISSA , MACHINE_EMAX , MACHINE_EMIN , MACHINE_ROUNDS,
and MACHINE_.OVERFLOWS (see 13.7.3).

Besidas the basic operations, the operstions of a floating point type Include the relational
operators, and the following predefined arithmstic operators: the binary and unary adding
operators - and +, the multiplying operators » and /, the unary operator abs, and the exponen-
tlating operator.

The operations of a subtype ara the corresponding operations of the type except for the following:
assignment, membarahip tasts, qualification, explicit conversion, and the attributes of the first
group; the effecta of thess cperations pre redefined in terms of the subtype.

Nates:

The attributes EMAX, SMALL, LARGE, and EPSILON are provided for convenience., Thay are all
related to MANTISSA by the foliowing formulas:

T'EMAX = 4xT'MANTISSA

TEPSILON = 2.0a#(1 - TMANT!SSA)

TSMALL = 2.0as(-T'EMAX - 1)

T'LARGE = 2.0uxT'EMAX » (1.0 - 2,04«(-T'MANTISSA})

The attribute MANTISSA, giving the number of binary digits In the mantlssa, Is itself re!ated to
DIGITS. The following relatiors hold between the charactaristics of the model numbars and thosa
of the safe numbaers:

T'BASE'EMAX <= T'SAFE.EMAX
T'BASE'SMALL >= T'SAFE_SMALL
T'BASE'LARGE <= T'SAFE_LARGE

The attributes T'FIRST and T'LAST need not yleld model or safe numbers. If a certaln number of
digits is spacified in the declaration of a type or subtype T, the attribute T'DIGITS yields this
number,

References: aba operator 4,6 4.5.8, arithmaetio operator 3.6.6 4.6, asalgnment 5.2, attribute 4.1.4, base type 3.3,
buslc operation 1.3.3, binary adding opsrator 4,6 4.5.3, bound of a range 3.5, constraint 3.3, converslon 4.8, digit 2.1,
expunentiating upaerator 4.6 4,6.6, floating point type 3.B.7, membership test 4.5 4.5.2, model number 3.8.68, mul-
tiplying operator 4.6 4.6,8, numaric type 3.5, object 3.2, operation 3.3, prudefined operator 4.6, cualified expression
4.7, relational oparator 4.6 4.5.2, safe numbar 3.8.8, subtype 3.3, type 3.3, unary adding operator 4.6 4.8.4, universal
type 4.10, universal_integar type 3.8.4, unlversai_real typs 3.5.6

3-23 Operations of Floating Point Types 3.6.8

20

| £ LV

LI

«
Ty -

S tam

ANSI/MIL-STD-18154 Ada Refarence Manual

¢
3.6.9 Fixed Point Types

For fixed point types, the arror bound is specified as an absolute value, caliad the de/ta of the fixed
point type.

fixed_.point_constraint ;=
fixed_accuracy..definition [range_constraint]

fixad. accuracy..definition = delta stat/c_simple_sxpression

The dalta Is specified by the value of the static simpla expressiun of the fixed accuracy definition.
This value must belong to some real type and must be positive (nonzero). If the fixed paint con-
straint is used as a real type definition, then it must Inciude a range constraint; each bound of the
specified range must be defined by a static expression of some real type but the two bounds need
not have the same real type. If the fixed point canstraint is used in a subtype indication, the range
constraint |5 aptlonal,

A canonical form Is defined for any fixed point model number other than zero. In this form: sign is
aeither +1 or-1: mantissa is a positive {(nonzero) intager: and any model number is a multiple of a
certain positive real number called smal//, as follows:

sign + mantissa » small

For the modul numbars defined by u fixed point constraint, the number sma/l is chosen as the
largest powar of two that is not greater than the deita of the fixed accuracy definitiort Alternative-
ly, It is possible to specify the value of sma/l by a length clause (see 13.2), in which case model
numbers are multipies of the specified value, The guaranteed minimum accuracy of operations of a
fixed point type is dafined in tarms of the model numbers of the fixad point constraint that forms
the corresponding real type definition (see 4.5.7).

For a fixad point constraint that includaes a range constraint, the model numbars comprise zero and
all multiples of s/mall whose mant/ssa can be expressad using exactly B binary digits, where the
value of B Ig chosen as the smallest integer number for which sach bound ~f (iie specified range is
either a model numbar or lles at most sma// distant from a moclel number, For a fixed point con-
straint that doas not include a range constraint {this is only allowed after a type mark. in a subtype
indication), the model numbers aie defined by the delta of the fixed accuracy definition and by the
rango of thy subtype denoted by the type mark.

An Implamantation muat have at least one anonymous pradufined fixed point type. The base type
of each such fixed point type Is the type itsalf. T'he modul numbers of vach predefined fixed point
type comprise zaro and all numbars for which mant/ssa (I the canonical form) has the number of
binary digits returned by the attribute MANTISSA, and for which the number sma// has the value
returned by the attribute SMALL, .

A tixed point type daclaration of the form:
typo T |9 delta D rangs L .. R;

is, by rlafinition, equivalant to the following declarations:
type fived_point_type Is new predafined.fixed_point_type!

subtypa T s fixed_point_type
range fixed_point_type(l) .. fixad_point_typalR):

3.5.8 Fixed Point Types 3-24

oy

.....

it
P
9.7 .%«

&

B 4

T arra
- P

>

Declarations and Types

In these declarations, fixed.point_type Is an anonymous type, and the predefinad fixed point type
is implicitly selacted by tiie implemaentation so that its model numbers include the model numbers
defined by the fixed point conetraint (that is, by D, L, and R, and possibly by a length clause
spscifying small),

The fixed point declaration is illegal If no predefinad type satisfies these requirements. 'he safe
numbaers of a fixed point type are the model numbers of its base typs.

The eiaboration of a fixad point type declaration consists of the elaboration of the equivalent type
and subtype daclarations.

If the fixed point constraint follows a type mark in a subtype indication. the type mark must denote
@ fized point type or subtype. The fixed point constraint is compatible with the type mark only If the
delta specifiad by the fixed accuracy definition is not amaller than the delta for the type cr subtype
denoted by the type mark, Furthermors, if the fixed point constraint Includes a range constraint,
the fixed point constraint is compatible with the type mark only if the range constraint Is, itself,
compatible with the type matk,

The elaboration of such a subtype indication Includos the ulaboration of the range conatralnt, if
there s one; It creates a fixed point subtype whose modsl numbers are defined by the cor-
responding fixed point constraint and also by the jangth clause specifyling small, If there Is oneo, A
value of a fixed point type belongs to a fixed point subtype If and only If it belongs to the runge
defined by the subtype.

The same arithmetic opaerators are praedefined for all fixed point types (see 4.6}, Multiplication and
division of fixed point values deliver results of an anonymous predefined fixed point type that is cai-
led universal_fixed in this reference manual; the accuracy of this type is arbitrarily fine, The vaiuos
of this type must be converted wxplicitly to some numerle type.

Notes:

if S Is a subtypa of a fixed point type or subtypa T, then the set of model numbers of S Is a subset
of those of T. If a length clause has heen given for T, then both S and T have the same value for
small. Otherwise, since sma// ls a powet of two, the sma// of S is equal to the sma// of T multiplied
by a nonnegative power of two.

A range constraint |s allowed in a flxed point subtype indication, aither directly after the type mark,
or as part of a fixed point constraint. In either case the bounds of the range must belong to the
base typo of the type mark (see 3.5).

Examples:

typa VOLT is delta 0.128 range 0.0 .. 2B8.0
subtyps ROUGH. VOLTAGE is VOLT delta 1.0; -- same runge as VOLT

-- A pure fraction which raquiraa gll the availuble space In a word
on o two's complemoent machina can bo duclared su the type FRACTION:

DEL ! constant = 1,0/2xx(WORD_LENGYH - 1}
type FRACTION s delta DEL rango -1.0 .. 1.0 - DEL:

References: anonymous type 3.3.1, arithmatic oporator 3.6.5 4.5, base type 3.3, balong to & subtypa 3.3, bound of o
rarge 3.5, compatible 3.3.2, convarsion 4.6, elaboration 3.9, error bound 3.6.8, iength clause 13.2, model number
3.6.8, numaric typo 3.5, oparation 3.3, predefined operator 4.5, ranga constralnt 3.8, real type 3.5.6, roal type defini-
tion 3.5.6, safe numbar 3.6.6, simple expression 4.4, static expression 4.4, subtypa 3.3, subtype declaration 3.3.2,
subtype Indleation 3.3.2 type 3.3, type declaration 3.3.1, type mark 3.3.2

3-25 Fixed Point Types 3.6.9

Ll

0

S e .

“¥L

ANSIMIL-STD-1875A Ada Reference Manual

3.5.10 Operations of Fixed Pcint Types

The basic operations of a fixed point type include the operations involved in at ignment,
membership tests, qualification, the explicit coriversion of values of other numeric tvpes to the fix-
ed point type, ana the implicit conversion of values of the type universal_real to the type.

In addition, for every fixed point type or subtype T the basic operations include the attributes listed
below. In this presentation T is referred to as Lieing a subtype /the subtype T) for any property that
depends on constraints imposed by T; other propertics are stated in terms of the base type of T,

The first group of attributes yield characteristics of the subtype T. The attributes of this group are
the attributes BASE (see 3.3.2), the att:ibutes FIRST and LAST (see 3.5), the representation
attribute SIZE (see 13.7.2) and the following attributes:

T'DELTA Yields the valus of the delta specified in the fixed accuracy definition for the sub-
typo T. The value of this attribute is of the type universal/_real.

T'MANTIESA Yields the number of binary digits in the mantissa of model nurnbers of the sub-
type T. (This attribute yields the number B of section 3.56.9.) The value of this
attribute is of the type universal_integer.

T'SMALL Yields the smallest positive (nonzero) model number of the subtype T. The value
of this attribute is of the type universal_real.

T'LARGE Yields th: largest positive model number cf the subtype T. The value of this
attribute is of the type universal_real.

T'FORE Yislds the minimum number of characters needed for the integer part of the
decimal representation of any value of the subtype T, assuming that the
representation does not include an exponent, but includes a one-character prefix
that is either a minus sign or & space. (This minimum number does not include

superfluous zeros or underlines, and Is at least two.) The value of this attribute Is
of the type universal_integer.

T'AFT Yields the number of decimal digits needed after the point to accommodate the
precision of the subtype T, unless the delta of the subtype T is greater than 0.1, in
which case the attribute yields the value one. (T'AFT is the smallest positive -

integer N for which (10+«N)*T'DELTA is greater than or equal to one.) The value
of this attribute Is of the type universal_integer.

The attributes of the second group include the following attributes which yield characteristics of
the safe numbers:

T'SAFE_SMALL Yields the smallast positive (nonzero) safe number of the base type of T. The
valug of this attribute is of the type universal..zal.

T'SAFE_LARGE Yields the largest positive safe number of the base type of T. The valus of this
attribute is of the type universal_real.

In addition, the attributes A’SIZE and A'ADDRESS are defined for an object A of a fixed point type
(see 13.7.2). Finally, for each fixed point type or subtype T, there are the machine-dependent
attributes T'MACHINE_ROUNDS and T"MACHINE_OVERFLOWS (see 13.7.3).

3.5.10 Operations of Fixed Point Types 3-26

- WENERI A A - | F - WSS

“. e &

Declarations and Types

Besides the basic operations, the operations of a fixed point type include the relational operators,
and the following predefined arithmetic operators: the binary and unary adding operators - and +,
the multiplying operators x and /, and the operator abs.

The operations of a subtype are the corresponding operations of the type except for tha foliowing:
assigniment, membership tests, qualification, explicit conversion, and the attributes of the first
group; the effacts of these operations are redefined in terms of the subtype.

Notes:

The vatue of the attribute T'FORE depends only on the range of the subtype T. The value of the
attribute T'AFT depends only on the value of T'DELTA. The foliowing relations exist between
attributes of a fixed point type:

T'LARGE = (2%+xT'MANTISSA - 1) » T'SMALL
T'SAFE_LARGE = T'BASE'LARGE
T'SAFE_SMALL = T'BASE'SMALL

References: abs operator 4.5 4.5.6, arithmetic uperator 3.6.5 4.5, assignment 5.2, base type 3.3, basic operation
3.3.3, binary adding operator 4.6 4.5.3, bound of a range 3.5, vonversion 4.6, deita 3.5.9, fixed point type 3.5.9,
membership test 4.6 4.5.2, model number 3.5.8, multiplying operator 4.5 4.5.5, nurneric type 3.5, object 3.2, opera-
tion 3.3, qualified expression 4.7, relational operator 4.6 4.5.2, safe number 3.5.6, subtype 3.3, unary adding operator
4.6 4.6.4, universal.integer type 3.6.4, universal_rsal type 3.6.8

3.6 Array Types

An array object Is a composite object consisting of components that have the same subtype. The
name for a component of an array uses one or more index values belonging to spacified discrete
types. The value of an array object is a composite value consisting of the values of its components.

array_type_dafinitinn =
unconstrained_array_definition | construined_array_defirition

unconsti dined_array_definition =
array(index_subtype_definition {, index_subtype_definition}) of
component._subtype_indication

constralned_.array._definition =
array index_constraint of component_subtype_indication

index_subtype_.definition = type_mark range <>
index_constraint ::= (discrete_range |, dlscrets_range})
discrete_range :i= discrete._subtype_indication | range

An array object is characterized by the number of indices (the dimensionality of the array), the type
and position of each index, the lower and upper bounds for vach index, and the type and possible
constraint of the components. The order of the indices Is significant.

3-27 Array Types 3.6

17

ANSI/MIL-STD-1815A Ada Reference Manual

A one-dimensional array has a distinct component for each possible index value. A muitidimen-
sional array has a distinct component for each possible sequence of index values that can be
formed by selacting one value for each index position (in the given order). The possib'e values for
a given index are all the values between the lower and upper bounds, inclusive; this range of values
is called the Index range.

An unconstralned array definition defiries an array type. For each object that has the array type, the
number of indices, the type and position of each index, and the subtype of the components are as
in the type definition; the values of the lower and upper bounds for each index belong to the cot-
responding index subtype, except for null arrays as explained in section 3.6.1. The index subtype
for a given index pasition Is, by definition, the subtype denoted by the type mark of the cor-
respending index subtype definition, The compound delimiter <> (called a box) of an index sub-
type definition stands for an undefined range (different objects of the type need not have the same
bounds). The elaboration of an unconstrained array definition creates an array type; this elabora-
tion inclucles that of the component subtype Indication,

A constrained array definition defines both an array type and a subtype of this type!:

® The array type Is an implicitly declared anonymous type; this type is defined by an (implicit)
unconstrained array definition, in which the component subtype indication is that of the con-
strained array definition, and in which the type mark of each Index subtype definition denotes
the subtype defined by the corresponding discrete range.

e The array subtype s the subtype obtained by imposition of the index constraint on the array
type.

If a constrained array definition is given for a type declaration, the simple name declared by this
declaration denotes the array subtype.

The elaboration of a ~onstrained array definition creates the corresponding array type and array
subtype. For this eluboration, the index constraint and the component subtype indication are
elaborated. The evaluation of each discrete range of the index constraint and the elaboration of
the component subtype indication are performed in some order that is not defined by the
language.

Examples of type declarations with unconstrained array definitions:

type VECTOR is wrray(INTEGER renge <>) of REAL;

type MATRIX is array(INTEGER range <>, INTEGER range <>) of REAL;
type BIT_VECTOR Is array(INTEGER range <>) of BOOLEAN;

type ROMAN Is array(POSITIVE range <>) of ROMAN_DIGIT;

Examples of type daclarations with constrained array definitions.

type TABLE is array(1 .. 10) of INTEGER;
type SCHEDULE is array(DAY) of BOOLEAN;
type LINE is arrey(1 .. MAX_LINE..SIZE) of CHARACTER;

Examplas of obfect declarations with constrained array definitions:

GRID . armay(1 .. 80, 1 .. 100) of BOOLEAN;
MIX : array(COLOR range RED .. GREEN) of BOOLEAN;
PAGE : array{1 .. 60) of LINE; -- an array of arruys

3.6 Array Types 3-28

ORISR SRR PRy S SR e 2 BE

S et aLtd

R S v

Declarations and Types

Nate:

For a one-dimensional array, the rule given means that a type declaration with a constrained array
definition such as

type T is array(POSITIVE range MIN .. MAX) of COMPONENT;
is equivalent (in the absence of an incorrect order dependence) tc the succession of declarations

subtype /ndex_subtype is POSITIVE range MIN ., MAX;
type array.type s arvayl/ndex_subtype range <>) of COMPONENT;
subtype T iw array_typelindex_subtype);

where index__subtype and array_type are both anonymous. Consequently, T is the name of a sub-
type and all objects declared with this type mark are arrays that have the san.e bounds. Similar
transformations apply to multidimensional arrays.

A similar transformation applies to an object whose declaration includes a constrained array defini-
tion. A consequence of this s that no two such objaects have the same type.

References: anonymous type 3.3.1, bound of a range 3.5, component 3.3, constraint 3.3, discrete type 3.5,
elaboration 3.1 3.9, In some order 1.6, name 4.1, object 3.2, range 3.5, subtype 3.3, subtype indication 3.3.2, type
3.3, type declaration 3.3.1, type definition 3.3.1, type mark 3.3.2

3.6.1 Index Constraints and Discrete Ranges

An index constraint detarmines the range of possible values for every index of an array type, and
thereby the corresponding array bounds,

For a discrete range used in a constrained array definition and defined by a range, an implicit con-
vereion to the predefined type INTEGER Is assumed If each bound is aither & numeric literal, a
named number, or an attribute, and the type of both bounds (prior to the implicit conversion) is the
type unlversal integer. Otherwise, both bounds must be of the same discrete type, other than
universal_integer; this type must be determinable independently of the context, but using the fact
that the type must be discrete and that both hounds must have the same type. These rules apply
also to a discrete range used in an 'teration rule (see 5.5) or in the declaration of a family of entries
(see 9.5).

I# an indax constraint follows a tyne mavk in a subtype indication, then the type or subtype denoted
by the type mark must not already ir1pose an index constraint. The type mark must derota either
an unconstreined array type or an access type whose designated type Is such an array type. In
either case, the index constraint must provide a discrete range for each index of the array type and
the typa of each discrete range must be the same as that of the corresponding index.

An index constraint s compatible with the type danoted by the type mark If and only if the con-
straint defined by each discrate range is compatible with the corresponding Index subtype. If any of
the discrete runges defines a null range, any array thus constrained is a nu// array, having no com-
ponents. An array value satisfies an index constraint :f at each index position the array value and
the index constraint have the same index bounds. (Note, however, that assignment and certain
other aparations on arrays involve an implicit subtype conversion.)

3-29 Index Constraints and Discrete Ranges 3.6.1

14

15

ot .t -

A
L

o o *

A v,

v “ S u s
]

@

ANSI/MIL-STD-1815A Ada Reference Manual

The bounds of each arrv -, - - 8 ~:iarmined as follows:
e For a varlable daclarec: . . ' ;9¢: duriuration, the subtype Indication of the corresponding
object declaration musi ~ - . < ‘onstiz.ned array subtype (and, thereby, the bounds). The

same requirement existe for the ‘ui vps indication of a component declaration. if the type of
the racord component iy an array \wyoe: and i.s the component subtype indication of an array
type definition, if the tyrie of the array compuients is itself an array type.

® For a constant declared by an oblect deciiation, tha bounds of the constant are defined by
the Initial value If the subtype of the constani Is unconstrained; they are otherwise defined by
this subtype (in the latter case, the Initial value ; - the result of an implicit subtype conversion).
The same rule applies to a generic formal pardmester of mude in.

e For an array object designated by an access value, the bounds must be defined by the
allocator that creates the array object. {The ailocated object is constrained with the cor-
responding values of the bounds.)

e For a formal parameter of a subprogram or antry, tire bounds are obtained from the cor-
responding actual parameter. (The formal parutatar is constrained with the corresponding
values of the bounds.)

e For a renaming declaration and for a generic formal parameter of mode in out, the bounds are
those of the renamed oblect or of the corresponding generic actual parameter.

For the elaboration of an index constraint, the discrete rangos are evaluated in some ordar that is
not defined by the language.

Examples of arrey declarations incluu/ng an index constraint:

BOARD H MATR'X(‘ " 8; 1 " 8); "= stée 3.6

RECTANGLE : MATRIX{(1 .. 20, 1 .. 30);

INVERSE : MATRIX(1 .. N, 1 .. N} - N nead not be static
FILTER 1 BIT_VECTOR(O .. 31);

Example of array. declaration with a constrained array subtype:
MY_SCHEDULE : SCHEDULE; -- all arrays of type SCHEDULE have the sam: bounds
Example of record type with & componant that Is an array:
type VAR_LINE(LENGTH : INTEGER) s
record

IMAGE : STRING(1 .. LENGTH);
end record;

NULL_LINE : VAR_LINE(O); -~ NULL.LINE.IMAGE is a null array

Notes.

The elaboration of a subtype indication consisting of a type rmark followed by an index constraint
checks the compatibility of the index constraint with the type mark (see 3.3.2).

All components of an array have the same subtype. in particular, for an array of components that

are one-dimensional arrays, this means that all components have the same bounds and hence the
same length,

3.6.1 Index Constraints and Discrate Ranges 3-30

.......

B
1

>

™~ Gt

5 adltaacH

LRGN

AR

3
g

Declarations and Types

References: access type 3.8, access type definition 3.8, access value 3.8, actual parameter 8.4.1, allocator 4.8, array
bound 3.8, array component 3.8, array type 3.6, array type definition 3.8, bound of a range 3.5, compatible 3.3.2,
component declaration 3.7, constant 3.2, 1, conatrained array definition 3.6, constraineJ array subtype 3.8, conversion
4.6, designate 3.8, designated type 3.8, discrete range 3.0, entry 9.5, entry family declaration 9.5, expression 4.4, for-
mal parameter 6.1, function 6.5, generic actual parameter 12.3, generic formal parameter 12.1 12.3, generic
parameter 12.1, index 3.8, iIndex constraint 3.6.1, index subtype 3.6, initial value 3.2.1, integer literal 2.4, integer type
3.6.4, iteration rule 5.5, mode 12.1.1, nume 4.1, null range 3.6, object 3.2, object declaration 3.2.1, predefined type
C. range 3.5, record component 3.7, renaming declaration 8.5, result subtype 6.1, satisfy 3.3, subprogram 6, subtype
conversion 4.6, subtype indication 3.3.2, type mark 3.3.2, unconstrained array type 3.6, unconstrained subtype 3 3,
universal type 4.10, univarsal_integer type 3.5.4, variable 3.2.1

3.6.2 Operations of Array Types

The basic operations of an array type include the operations involved in assignment and
aggregates (unless the array type is limited), membership tests, indexed components, qualification,
and explicit conversion; for one-dimensional arrays the basic operations also include the opera-
tions involved In slices, and also string literals if the component type is a character type.

If A is an array object, an array value, or a constrained array subtype, the basic operations also
include the attributes listed below. These attributes are not allowed for an unconstrained array
type. The argument N used in the attribute designators for the N-th dimension of an array must be
a static axpression of type universal_/nteger. The value of N must be positive (nonzero) and no
greater than the dimensionality of the array.

A'FIRST Yields the lower bound of the first index range. The value of this attribute
has the same type as this lower bound.

A'FIRST(N) Yields the lower bound of the N-th index range. The value of this attribute
has the sams type as this lower bound.

A'LAST Yields the upper bound of the first index range. The value of this attribute
has the same typs as this upper bound.

A'LAST(N) Yields the upper bound of the N-th index range. The value of this attribute
has the same type as this upper bound.

A'RANGE Ylelds the first index range, that is, xhe range A'FIRST .. A'LAST.

A'RANGE(N) Yields the N-th index range, that is, the range A'FIRST (N) .. A’'LAST (N),

A'LENGTH Ylelds the number of values of the first index range (2ero for a null range).

The value of this attribute is of the type universal_integer.

A'LENGTH(N) Ylelds the number of values of the N-th index range (zero for a null
range). The value of tiiis attribute is of the type universal_integer.

in addition, the attribute T'BASE Is defined for an array type or subtype T (see 3.3.3); the attribute
T'8I1ZE Is defined for an array type or subtype T, and the attributes A'SIZE and A'ADDRESS are
defined for an array object A (see 13.7.2),

3-31 Operations of Array Types 3.6.2

"e e Al e A T @ A

1
QP

! ;

A ranada st

]
»

-y . LA
& * M . . « = @
’ N . . + - g .-
+.7 - oL L IR I
- - . ea . e R PR
P . L oL e e
. . = Lo s, B .
e N .. b e . e
let ST . y TSI AN T
A2 et ealaala e a e a4 e AW g - -

-~

s
La e fav'a acm=

. xs - .

st L3 DR L,

- R

R - T A P
T PR - :
e e el . T

AP I S L e e an

. . ‘
b arrmean

. .

. '

- ANSI/MIL-STD-1815A Ada Reference Manual

,.4
RS T Besides the hasic operations, the operations of an array type include the predefined comparison for
. equality and inequality, unlesa the array type is limited. For one-dimensional arrays, the operations
include catenation, unless the array type Is limited; if the compaonent type is a discrete type, the
operations also include all predefined relational operators; if the component type is a boolean o
L type, then the operations also include the unary logical negation operator not, and the logical ®
S operators, :
‘,‘; W Examples (using arrays declared In the examples of section 3.6.): t'i"r?
- FILTER'FIRST = 0 FILTER'LAST ~ 31 FILTERLENGTH = 32 B
-- RECTANGLE'LAST(1) = 20 RECTANGLE'LAST(2) = 30 “e
Notes:)
" The attributes A'FIRST and A'FIRST{1) yield the same value. A similar relation exists for the o
i attributes A'LAST, A'RANGE, and A'LENGTH. The following ralations are satiafiad (except for a null S
{ array) by the above attributes if the Index type Is an integer type: R
S ALENGTH = ALAST - AFIRST + 1
. A'LENGTHIN) = A'LAST(N) - A'FIRST(N} + 1
é""::_ s An array type is limited If its component type is limited (see 7.4.4),
N " Referances: aggregate 4.3, array type 3.8, assignment 8.2, attribute 4.1.4, basic operation 3.3.3, bound of s range .
3 3.5, catenation opsrator 4.5 4.5.3, character type 3.5.2, constrained array subtype 3.8, conversion 4.8, designator
f:| 6.1, dimension 3.8, Index 3.8, indexsd component 4.1.1, limited type 7.4.4, loglcal operator 4.5 4.6.1, membership
e test 4.5 4,5.2, not operator 4.5 4,5.6, null range 3.5, objact 3.2, operation 3.3, predefined opserator 4.5, qualified
':::Z} exprassion 4.7, relational operator 4.5 4.5.2, slice 4.1.2, static expression 4.9, string literal 2,8, subcomponsnt 3.3,
b type 3.3, unconstrained array type 3.8, univeras! type 4.10, universal..integer type 3.£.4
|
3.6.3 The Type String
-\‘:E
! The values of the predefined type STRING are one-dimensional arrays of the predefined type
y; CHARACTER, indexad by values of the predefined subtype POSITIVE :
.{ subtype POSITIVE ls INTEGER range 1 .. INTEGER'LAST;
. type STRING is array(POSITIVE range <>) of CHARACTER;
-‘ ' 2 Examples;
'- STARS : STRINGI1 .. 120) = {1 . 120 => '+’); Lo
QUESTION : constant STRING := "HOW MANY CHARACTERS?";
-- QUESTION'FIRST = 1, QUESTION'LAST = 20 (the number of characters)
ASK _TWICE : constant STRING := QUESTION & QUESTION;
e NINETY_SIX : ounstant ROMAN := "XCVI"; -- see 3.6 ,
Notes:

3 String literals (see 2.6 and 4.2) are basic operations applicable to the type STRING and to any
other one-dimensional array type whose component type is a character typa. The catenation
operator is a predefined operator for tha type STRING and for one-dimensional array types; It s .
) represented as &. The relational operators <, <=, >, and >= are defined for values of these types, e
and correspond to lexicographic order (see 4.56.2). R

3.6.3 The Type String 3-32

— T O S Sy A VO TR T S S B A N S A P

Declarations and Types

o

Refarences: sggregate 4.3, array 3.8, catenation operator 4.5 4.5.3, character type 3.5.2, component type (of an N
array) 3.6, dimension 3.8, index 3.6, |lexicographic order 4.56.2, positional aggregate 4.3, predefined operator 4.5,
predsfined type C, relational operator 4.5 4.5.2, string literal 2.6, subtype 3.3, type 3.3

3.7 Record Types

A record object Is a composite object consisting of named components. The value of a record 1

i object is a composite value consisting of the values of its components, -
record_type_definition ::= 2

R record

. component_list

- wnd record

l component_list :i= .
. component_declaration {cornponent_deciaration)

: | |component_decleration] variant_pert

';_. null;

:j component.declaration iim

.'l-‘ identifier_list : component..subtype_definition [:= expression]: ,

2 component_subtype_definition := subtype..indication

N Each component declaration declares a8 component of the recorc type. Besides components 3

. declared by component declarations, the components of a record type include any componesnts

y declared by discriminant specifications of the record type declaration, The idontifiers of all comno- R
l nents of a record type must be distinct. The use of a name that denotes a record component other Lo

' than a discriminant Is not allowed within the racord type definition that declares the component.

N A component deciaration with several identifiers is equivalent to a sequence of singls component 4
\ declarations, as explained in section 3.2, Each single component declaration declares a record
component whose subtype is specified by the component subtype definition,

If a component declaration includes the assignment compound delimiter followed by an expres- s Ce
sion, the exprossion is the default expression of the record componont; the default expression T
must ba of the type of tha componant. Default expressions are not allowed for componants that R
are of a limited type.

P

[If a racord type does not have a discriminant part, the 3ame components are present in all values) * .0
of the type. If the component list of a record type is defined by the rescrved word null and there |s
no discriminant part, then the record type has no components and all records of the type are nu//

records.

. The elaboration of a record type definition creates a record type; it consists of the elaboration of 1 .

j any corresponding (single) component declarations, in the order in which thay appear, including Y
B any component declaration in a varlant part. The elaboration of 8 component declaration consists o
" of the alaboration of the component subtype definition. B

i For the elaboration of a component subtype definition, if the constraint does not depend on a dis- ' S
- criminant (see 3.7.1), then the subtype indication is elaboreted. If, on the other hand, the con- T
.“ straint depends on a discriminant, then the elaboration consists of the evaluation ol any Included L .@
- expression that is not a discriminant, :

3-33 Record Types 3.7

J
i

A TS RN RAPRRSE AT B RPAREE S

ANSI/MIL-8STD-1815A Ada Reference Manual

Examples of record type daclarations:

type DATE is
record
DAY : INTEGER range 1 .. 31:
MONTH : MONTH_NAME;
YEAR : INTEGER range O .. 4000;
end record;

type COMPLEX s
record
RE : REAL := 0.0;
IM : REAL := 0.0;
end record;

Examples of record variables.

TOMORROW, YESTERDAY : DATE;
A, B, C : COMPLEX:

-- both components of A, B, and C are implicitly Initislized to zero
Notes:

The default expression of a record component is Implicitly evaluated by the elaboration of the
declaration of a record object, in the absence of an explicit initialization (see 3.2.1). If a component
declaration has several identifiers, the expression is evaluated once for each such component of
the objact (since the declaration is equivalent to a sequence of single component declarations).

Unlike the components of an array, the components of a record need not be of the sama type.

Refersnces: assignment compound delimiter 2.2, component 3.3, composite value 3.3, constraint 3.3, declaration
3.1, dopend on a discriminant 3,7.1, disoriminant 3.3, discriminent part 3.7 3.7.1, slaboration 3.9, expression 4.4,
identifier 2.3, identifler list 3.2, limited type 7.4.4, name 4.1, object 3.2, subtype 3.3, type 3.3, type mark 3.3.2,
varlant part 3.7.3

3.7.1 Discriminants

A discriminant part specifies the discriminants of a type. A discriminant of a record Is 8 component
of the record. The type of a discriminant must be discrete.

discriminant_part =
(discriminant_specification |; discriminant_specification})

diacriminant_specificotion :im
identifler_list : type_mark [i= expression)

A discriminant part is only allowed In the type declaration for a record type, in a private type
declaration or an incomplete type declaration (the corresponding full daclaraiion must then declare
a record type), and in the generic parameter declaration for a formal pr'vate type.

3.7.1 Discriminants 3-34

Declarations and Types

A discriminant specification with several identifiers is equivalant to a sequence of single discrimi-
nant spaecifications, as explained in section 3.2. Each singla discriminant specification declarss a
discriminant. If a discriminant specification includes the assignment compound delimiter followed
by an expression, the exproasion Is the default expression of the discriminant; the default expres-
sion must ba of the type of the discriminant, Default axpressions must be provided either for all or
for none of the digcriminants of a discriminant part.

The use of the name of a discriminant is not allowed in defavlt axpressions of a discriminant part If
the specification of the discriminant is itself given in the discriminant part.

Within a record type definition the only allowed uses of the name of a discriminant of the record
type are: in the default expressiona for record components; in a variant part as the discriminant
name; and in a component subtype definition, either as a bound in an index constraint, or to
specify a discriminant value in a discriminant constraint. A discriminant name used in these com-
ponent subtype definitions must appear by itself, not as part of a larger expression. Such compo-
nent subtype definitions and such constraints are sald to depend on a discriminant.

A component is sald to depend on & discriminant If it is a record component declared in a varlant
part, or a racord component whoass component subtype definition depends on a discriminant, or
finally, one of the subcomponents of a component that itself depends on a discriminant,

Each record value includes & value for each discriminant specified for the record type; it also
includes a value for sach record component that does not depend on a discriminant. The values of
the discriminants determine which other component values are in the record value.

Direct asgignment to a discriminant of an object is not allowead; furthermore a discriminant is not
allowed as an actual parameter of mode in out or out, or as a generic actual parameter of mode in
out. The only allowed way to change the value of a discriminant of a varlable is to assign a
(complete) value to the variable Itself. Similarly, an assignment to the varlable Itself is the only
allowed way to change the constraint of one of its components, If the component subtype defini-
tion depends on a discriminant of the varlable,

The ulaboration of a discriminant part hes no other effect.

Examples:
type BUFFER(SIZE : BUFFER_SIZE := 10C0) ia -- sea 164
record
POS ¢ BUFFER_SIZE = 0,
VALUE : STRING{1 .. SIZE);
ond record;
type SQUARE(SIDE : INTEGER) Is
record
MAT : MATRIX(1 .. SIDE, 1 .. SIDE); -~ spe 3.8
end record;

type DOUBLE_SQUARE(NUMBER : INTEGER) |s
record
LEFT : SQUARE (NUMBER);
RIGHT : SQUARE (NUMBER);
end revord;

3-3b6 Diseriminants 3.7.1

B v .
t"-'u‘l
Attt
[id h.t.
Ba el

. (&
-

ANSI/MIL-STD-1815A Ada Reference Manual

type ITEM(NUMBER : POSITIVE) is
record
CONTENT : INTEGER;
-~ no componsnt depends on the discriminant
end record;

References' assignment 5.2, assignment compound delimiter 2.2, bound of a range 3.6, component 3.3, component
declaration 3.7, component of a record 3.7, declaration 3.1, discrete type 3.5, discriminant 3.3, discriminant con-
straint 3.7.2, slaboration 3.9, exprassion 4.4, generic formal type 12.1, generic parameter declaration 12.1, idantiflar
2.3, Identifior list 3,2, incomplete type daclaration 3.8.1, Index constraint 3.6.1, name 4.1, object 3.2, private type 7.4,
prive o type declaration 7.4, record type 3.7, scops 8.2, simple name 4.1, subcomponent 3.3, subtype indication
3.3.2, type declaration 3.3.1, type mark 3.3.2, variant part 3.7.3

a.7.2 Discriminant Constraints

A discriminan’ constraint ia only allowed In a subtype Indication, after a type mark. This type mark
must denote either a type with discriminants, or an access type whose designated type is a type
with discriminants. A discriminant constraint specifies the values of these discriminants.

discriminant_constraint ;=
(discriminant_association {, discriminant_association|)

discriminant_association ii=
(aiseriminant_simpls_name || discriminant_simple_.name| =>] expression

Each discriminant association associates an expression with one or more discriminants, A discrimi-
nant association Is said to be named If the discriminants are specified explicitly by their names; it
is otherwise said to be pos/tional. For a positional association, the (single) discriminant is implicitly
specified by position, in textual order. Named 1ssociations can be given in any order, but if both
positional and named assoclations are used in the same discriminant constraint, then positional
assoclations must occur first, at their normal position. Hence once a named association is used,
the rest of the discriminant constraint must use only named associations,

For a named discriminant assoclation, the discriminant names must denote discriminants of the
type for which the discriminant constraint is given, A discriminant association with more than one
discriminant name |s only allowed if the named discriminants are all of the same type. Further-
more, for each discriminant assoclation (whether named or positional), the expression and the
assocluted discriminants must have the same type. A discriminant constraint must provide exactly
one value for each discriminant of the type.

A discriminant constraint is compatible with the typs denoted by a type mark, if and only if each
discriminant value belongs to the subtype of the corresponding discriminant. In addition, for each
subcomponeant whose component subtype specification depends on a discriminant, the disorimi-
nant value is substituted for the discriminant in this component subtypo specification and the com-
patibility of tha resuiting subtype irdlcation is checked.

A composite value gatisfies a discriminant constraint if and only if each discriminant of the com-
posite value has the value Imposed by the discriminant constraint.

3.7.2 Discriminant Constraints 3-38

Declarations and Types

j The initial values of the discririnants of an object of a type with discriminants are determined as ?
follows:
® For a varlable declared by an object declaration, the subtype indication of the corresponding b
objact declaration must impose a discriminant constraint unless default expressions exist for
the discriminants; the discriminant values are defined either by the constraint or, in its . ®

absence, by the default expressions. The same requirement exists for the subtype indication of
a component daclaration, if the type of the record component has discriminants; and for the
cemponent subtype indication of an array type, if the type of the array componants is a type
with discriminants.

e For a constant declared by an object declaration, the values of the discriminants are those of v Lo
the initial value If the subtype of the conatant is unconstrained; they are otherwise defined by v
this subtype (In the latter case, an exception s raised if the Initial value does not belnng to this S
subtype)., The same rule applies to a generic parameter of mode in. SRR

‘V e For an object designated by an access valus, the discriminant values must be defined by the 0 _
' allocator that creates the object. (The allocated object is constrained with the curresponding I
. discriminant values.) NN

® For a formal parameter of a subprogram or entty, the digcriminants of the formal parameter "
: are initialized with those of the corresponding actual parameter. (The formal parameter Is
! constrained If the corresponding actual parameter is constrained, and in any case if the mode
! Is In or if the subtype of the forimal parameter is constrained.)

b
e For a renaming declaration and for a generic foririal parameter of mode in out, the discrimi- 1 0
nants are those of the renamed object or of the corresponding generic actual parameter, X

For the elaboration of a discriminant constraint, the axprassions given in the discriminant assocla- n RS
tions are evaluated in some order that is not defined by the language; the expression of a named
assoclation is evaluated once for each named discriminant.

; Examples (using types declarsd In the previous section) " '.-'~'| _-',1'5
| LARGE ! BUFFER(200); -~ uoonstrained, slways 200 characters (explicit disoriminant value) '.':'I‘:f':.
MESSAGE : BUFFER; -~ unconstrained, Initially 100 characters (default discriminant value) _—
BASIS : SQUARE(S); -~ oconstrained, always & by §
ILLEGAL : SQUARE; - |Hegal, @ SQUARE must be constrained
Note:
The above rules and the rules detining the alaboration of an objact declaration (see 3.2) ensure ® oy

that discriminants always have a value, In particular, If a discriminant constraint s Iimposed on an o
objact declaration, each discriminant is initialized with the value specifiad by ths constraint, '

- Similarly, If the subtype of a component has a discriminant constraint, the discriminants of the

' component are correspondingly Initializad.

Refe ences. sccoss type 3.8, access type definition 3.8, access valur 3.8, actusl purameter 6.4,1, allocator 4.8, array % .
type dofinitic 1+ 3.8, bound of a range 3.5, compatible 3.3.2, component 3.3, component declaration 3.7, cumponaent
subtype indication 3.7, compoalte value 3.3, constant 3.2.1, constrained subtype 3.3, constraint 3.3, dsclaration 7.1,
dofau't exprossion for a dinoriminant 3.7, depund on a disuriminunt 3.7. 1, designate 3.8, designated type 3.8, discrimi-
nant 3.3, elaboration 3.9, entry 5.5, evaluation 4.8, axpreesion 4.4, formal parametaer 6.1, ganarlc actual parameter
: 12.3, ganeric formal paramater 12,1 12.3, mode In 6.1, mode in out 8.1, name 4,1 object 3.2, object declarstion
3.2.1, ronaming declaration 8.5, ressrved word 2.9, vatisty 3.3, simpie nume 4.1, subcomponent 3.3, subprogram @, R
subtype 3.3, subtype Indloation 3.3.2, typa 3.3, type mark 3.3.2, variable 3.2.1 ‘

3-37 Discriminant Constraints 3.7.2

! ANSI/MIL-STD-18156A Ada Referance Manual
3.7.3 Variant Parta

. 1 A record type with a variant part apecifies alternative lists of components. Each variant defines the
A components for the corresponding value or values of the discriminant.

[, 2 variant_part i

casn discriminant._simple..name s
variany
{ variant)

Y and case;

variant s
when cholca {| cholce} =>
componant_list

cholce = simple_expression
(| discrete_range | others | component_simple_name

Each variant starts with & list of choloss which must be of the sama type as the discriminant of the
varlant part, 'The tvne of the discrirninant of a varlant part must not be a generic formal typae. If the
subtype of the discriminant is static, then each value of this subtype muet ba represented nnce and
N only once in the aat of choices of the varlant part, and no other value Ia allowed. Otharwise, each
~ value of the (basa) type of the d:scriminant must be repregented once and only once In tha set of
, choices.

.
a3

X ’ The simple expressions and discrete ranges given as cholces in a variant part must be static. A
: choice defined by a discrete range stands for al! values In the correspnnding range (none if a null

" ranga), The cholce athars is only allowed for the last variant and as its only cholce; It stands for all
values (possibly none) not given In the cholces of pravious variants. A componaent simple name lo
not allowed as a cholice of a variant (although It is part of the syntax of choice).

1 A record value contains the valuss of the components of a given variant if and only If the discrimi-

nant value I equal to one of the values spocified by the cholsen of the varlant, This rule applies in
. turn to any further varlunt that Ia, iteelf, included In the component list of the glven varlant, If the
. comp.onent list of a variant ia specified by null, the varlant has no components,

) Example of record type with a varlant part.

C o type DEVICE is (PRINTER, DISK, DRUM);
type STATE s (OPEN, CLOSED);

type PERIPHERAL(UNIT : DEVICE = DISK) ls

record
. STATUS : STATE:
X case UNIT s

when PRINTER =>
LINE..COUNT : INTEGER range 1 .. PAGT_BIZE;
when others =>
CYLINDER 1 CYLINDERLINDEX:
TRACK ! TRACK_LNUMBER;
end coaes;
and record;

3.7.3 Variant Parts 3-38

I
e
P
. “
"®
1 W 1
. te
B
\
.
it
. »
' "
[.
N e
B, . A
, .
M .
)
L
M .
‘Hi
[\
A.I
.
, .
. -
. [
) .
" .y
.
.
R
R
0 .t
[

Declarations and Types

Examples of record subtypes.

subtype DRUM_UNIT is PERIPHERAL{DRUM);
subtyps DISK_UNIT o PERIPHERAL(DISK):

Exarplas of constrained racord variables:

WRITER : PERIPHERAL(UNIT => PPRINTER),
ARCHIVE : DISK_UNIT;

Note:

Cholces with discrate values are also used in case statementc and in array aggregates. Choices
with component simple namuos are used in record anggregates.

Refsrences: array aggregate 4.32, Lsse type 3.3, componert 3.3, component list 3.7, dlacrate range 3.6,
discriminant 3.3, generic formal typs 12.1.2, null range 3.5, record aggregate 4.3.1, range 3.5, record type 3.7, simple
expression 4.4, simple nama 4.1, statie discrste range 4.9, atatic expression 4.9, static subtypa 4.9 subtype 3.3

3.7.4 Operations of Record Types

The baslc operations of a record type inciude the operations involved in assignment and

aggregates (unless the type is [imited), mambership tests, selaction of tecord componants,
qualification, and type convergion (for derived types),

For any vbjoct A of a type with discriminants, the basic operations also include the following
attribute:

A'CONSTRAINED Yields the valus TRUE Iif a discriminant constraint applies to the object A,
or if the object is a constant (including a formal parameter or generic for-
mal parameter of mode In); ylelds the value FALSE otherwise, It Als a
generic formal parameter of mode In out, or if A Is a formal paramater of
mode in out or out and the type mark given in the corresponding
paramsier specification denotes un unconstrained type with discrimi-
nants, then the value of this attribute is obtainad from that of tha cor-
rasponding actual parameter, The value of this attribute Is of the
pradefined type BOOLEAN .

In addition. the attributes T'BASE and T'SIZE are defined for a record type or subtype T (ses 3.3.3);
the attrlbutes A'SIZE and A'ADDRESS are defined for a record objact A (sse 13.7.2),

Benides the basio operations, the operatiuns of a record type include the predefined comparison
for equality and Inequailty, uniese the type Is limited.

Note:

A racord type Is limited If the type of any of its components is limited (sea 7.4.4),

References. actual parcmeter 8.4.1, aggregate 4.3, ansignment 6.2, atiribute 4.1.4, basle opoeration 3.3.3, hoolesn
type 3.5.3, conutant 3.2.1, convarsion 4.8, derived typo 3.4, discriminant 3.3. dlacriminant constraind 3.7.2, formal
paramotor 8.1, genarlo actual paramever 12.3, ganeria formal parametar 12,1 12,3, limited type 7.4.4, mamberahip
tost 4.6 4.£.2, mode 6.1, abject 3.2.1, operation 3.3, predefined operator 4.6, pradefinad type C, qualifind expression

4.7, racord type 3.7, ralational operator 4.5 45,2, seluctad component 4.1.3, subuomponent 3.3, subtype 3.3, type
33

3.38 Operations of Record Types 3.7.4

‘o
"

e 4

e

ANSI/MIL-STD-1815A Adas Refersnce Manual

3.8 Access Types

Ar object declared by an objec. declaration is created hy the elaboration of the object declaration
and is denoted by a simple name or by some other form of name., In contrast, there are objects
that are created by the evaluation of aliocators (see 4.8) and that have no simple name. Access to
such an object is achieved by an access value returned by an allocator; the access value Is said to
designate the object,

access._type._definition := access subtype_lndication

For each access type, there is & literal null which has a null access value designating no object at
all. The null value of an access type is the default initial value of the type. Other values of an
access type are obtained by evaluation of a special operation of the type, called an allocator. Each
such access value designates an object of the subtype defined by the subtype indication of the
access type definition; this subtyps Is called the designated subtype; the base type of this subtype
is called the designated type. The objects designated by the values of an access type form a co/lec-
tion implicitly associated with the type.

The elaboration of an access type definition consists of the viaboration of the subtype Indication
and creates an access type.

If an access object Is constant, the contained access value cannot be changed and always
designates tha same object. On the other hand, the vaiue of the designated object need not
remain the same (assignment to the designated object Is allowed unless the designated type is
limited).

The only forms of constraint that are allowed after the name of an access type in a subtype indica-
tion are index constraints and discriminant conscraints. {See sections 3.6.1 ard 3.7.2 for the rules
applicable to these subtype indications.) An access value belongs to a corresponding subtype of
an access type elther if the access value is the null value or if the value of tho designated object
satisties the constraint.

Examples:
type FRAME Is access MATRIX; -- see 3.6
typn BUFFER_NAME Is accees BUFFER; -- see 3.7.1
Notes:

An access value delive:'ed by en aliocator can be assigned to several access objects. Hence it is
possible for an object sreated by an allocator to be designated by more than one variable or cons-
tant of the access type. An access value can only designate an object created by an allocator; in
particular, it cannot designate an object declared by an object declaration.

If the type of the objects designated by the access values is en array type or a type with discrimi-
nants, these objects are constrained with either the array bounds or the discriminant values sup-
plied implicitly or explicitly for the corresponding allocators {see 4.8).

Access values are called po/nters or references In some other languages.

References. allocator 4.8, array type 3.8, assignment 5.2, belong to a subtype 3.3, constant 3.2.1, constraint 3.3,
discriminant constraint 3.7.2, slaboration 3.9, Index constraint 3.6.1, index specification 3.6, limited type 7.4.4, literal
4.2, name 4.1, cblect 3.2.1, object declaration 3.2.1, reserved word 2.9, satisfy 3.3, simple name 4.1, subcomponent
3.3. subtype 3.3, subtype indication 3.3.2, type 3.3, variable 3.2.1

3.8 Access Types 3-40

EEEES andidE

Declarations and Types

3.8.1 Incornplete Type Doclarations

There are no particular limitations on the designated typa of an access typs. In particular, the typa
of a component of the designated type can be another access type, or even the same accuss type.
This permits mutually dependent and recursive access types. Their declarations require a prior
incomplete (or private) type declaration for one or more types.

incomplete_type_declaration :i= type identifier [discriminant_part];

For each incomplete type declaration, there must be a corresponding declaration of a type with the
same identifier. The corresponding declaration must be either a full type declaration or the
declaration of a task type. !n the rest of this section, explanations are given in terms of full type
declarations; the same rules apply also to declarations of task types. If the incompiete type
declaration occurs immediately within either a declarative part or the visible part of a package
specification, then the full type declaration must occur later and immediately within this
declarative part or visible part. If the incomplete type declaration occurs immediately within the
private part of a package, then the full type declaration must occur later and immediately within
either the private part itself, or the declarative part of the corresponding package body.

A discriminant part must be given in the full type declaration if and only If one is given in the
Incomplete type declaration; if discriminant parts are given, then they must conform (see 8.3.1 for
the conformance rules). Prior to the end of the full type declaration, the only allowed use of a name
that denotes a type declared by an incomplete type declaration is as the type mark in the subtype
Indication of an access type definition: the only form of constraint allowed in this subtype indica-
tion is a discriminant constraint,

The elaboration of an incomplete type declaration creates a type. If the incomplete type declara-
tion has a discriminant part, this elaboration includes that of the discriminant part: in such a case,
the discriminant part of the full type declaration is not elaborated.

Example of a recursive type:

type CELL; -- ircomplete type declaration
typo LINK is access CELL;
type CELL is
racord
VALUE : INTEGER;
SUCC : LINK;
PRED : LINK;
end racord;
HEAL : LINK := new CELL'(0, null, null);
NEXT : LINK :== HEAD.SUCC:

Examples of mutually dependent access types.

type PERSON(SEX : GENDER); -- incomplete type declaration
type CAR; -= incomplete type declaration
type PERSON_NAME s access PERSON;
type CAR_NAME is access CAR;
type CAR is

record

NUMBER : INTEGER;
OWNER : PERSON_NAME;
end record;

3-41 Incomplete Type Declarations 3.8,1

ANSI/MIL-STD-1815A Ada Reference Manual

typse PERSONI(SEX : GENDER) Is

racord
NAME : STRING{1 .. 20);
BIRTH : DATE;
AGE : INTEGER range O .. 130;

VEHICLE : CAR_NAME:
case SEX is

when M => WIFE ! PERSON_NAME(SEX => F);
when F => HUSBAND : PERSON_NAME(SEX => M)
end case;
end record;
MY_CAR, YOUR_CAR, NEXT_CAR : CAR_NAME; -- implicitly initialized with null value

References. access type 3.8, access tyuu definition 3.8, component 3.3, conform 6.3.1, vonstraint 3.3, daclaration
3.1, declarative item 3.9, designate 3.8, discriminant constraint 3,7.2, discriminant part 3.7.1, elaburation 3.9, iden-
tifier 2.3, name 4.1, subtype indication 3.3.2, type 3.3, type mark 3.3.2

3.8.2 Onverations of Acness Types

The basic operations of an access type include the operations involved in assignment, allocators
for the access type, membaership tests, qualification, expliclt conversion, and the literal null. If the
designated type is a type with digcriminants, the basic operations include the selaction of the cor-
responding discriminants; If the designated type Is & record type, they include the selection of the
corresponding componants; [f the designated type is an array type, they include the formation of
indexed components and slices; if the designated type ig a task type, they include selection of
entries and entry families, Furthermore, the basic operations include the formation of a selected
componeant with the reserved word all (see 4.1.3),

If the designated type is an array type, the hasic operations include the attributes that have the
attribute designators FIRSY, LAST, RANGE, and LENGTH (likewise, the attribute designators of the
N-th dimension). The prefix of each of these attributes must be a value of the access type. These
attributes yield the corresponding characteristics of the designated object (sea 3.6.2).

If the designatad type is a task type, the basic operations include the attributes that have the
attribute designators TERMINATED and CALLABLE (see 9.9). The prefix of each of these attributes
must be a value of the acceds typs. These attributes yield the corresponding characteristics of the
designated task objects.

In addition, the attribute T'BASE isee 3.3.3) and the representation attributes T'SIZE and
T'STORAGE_SIZE (see 13.7.2) are defined for an access type or subtype T; the attributes A'SIZE
and A'ADDRESS are defined for an dccess object A (see 13.7.2).

Besides the basic operations, the operations of an access type include the predefined comparison
far equaiity and inequality.

References. acceas type 3.8, allocator 4.8, array type 3.0, assignmant 5.2, attribute 4.1.4, ettribute designator 4.1.4,
base type 3.3, buslc operation 3.3.3, collection 3.8, constrained array subtype 3.8, conversion 4.8, designeta 3.8,
designated subtype 3.8, designated type 3.8 discriminant 3.3, indexed componunt 4.1.1, litaral 4.2, membership test
4.5 4.6.2, objact 3.2.1, operation 3.3, private type 7.4, qualified expression 4.7, racord type 3.7, selected compunant
4,13, slice 4.1.2, subtype 3.3, task type 9.1, type 3.3

3.8.2 Operatlons of Access Types 3-42

N
e
S .
-
M .
. v
. -
N W
. ~
Ve -
o
. LA
e
.
v s
e e ™
. <, .
vau!
] .
N "
IR
“ .
fe T
”
Ve
" .
!
Eou
e
‘e o
\
.
* .y
. K
ot
s
M Ce
. .
- 1.,\‘.L
. .
b “
“
A
n
.
o
»
. -
LSRRy
T

Declarations and Types

3.9 Declarative Parts

A declarative part contains declarative items (possibly none).)

! doclarative_part = 2
|basic_declarative_item} |later_deciarative_item]

a

hasic_declarativa_item ::= basic_declaration
| representation_clause | use_clause

e ¥r s i-3 ¥ 1
e et

later_declarative_item := body
| subprogram_declaration | package..declaration
| task_declaration | generic_declaration
| use_clausa | generic_instantiation

P R
DR R)
Py

body := proper_body | body_stub

3
’
y

proper_body ::= subprogram_body | package.body | task_body

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, In 2
the order in which they are given in the declarative part. After its elaboration, a declarative item Is

said to be e/aborated. Prior to the completion of Its elaboration (including before the elaboration),

the declarative item Is not yet elaborated.

m For several forms of declarative item, tha language rules (in particular scope and visibility rules) are 4

. such that it Is either impoasible or illegal to use an entity before the elaboration of the declarative

- item that declares this entity. For example, it is not possible to use the name of a type for an object

» declaration If the corresponding type declaration Is not yet elaborated. In the case of bodies, the

oy following checks are performed:

' o For a subprogram call, a check is mads that the body of the subprogram is already elaborated. 5

f’{'.\ e For the activation of a task, a check is made that the body of the corresponding task unit is o

- already elaborated.

0 e For the instantiation of a generic unit that has a body, a check s made that this body is ?

! already elaborated.

:“:‘ The exception PROGRAM_ERROR s raisad if any of these checks falls. 8

;‘.:j If a subprogram declaration, a package declaration, a task declaration, or a generic declaration is a 9

declarative item of a given declarative part, then the body (if there Is one) of the program unit

1] declared by the declarative item must itself be a declarative item of this declarative part (and must

.. appear later). If the body Is a body stub, then a separately compiled subunit containing the cor-

N responding proper body is r~quired for the program unit (see 10.2).

I“‘

References: activation 9.3, instantiation 12.3, program_.error axception 11.1, scope 8.2, subprogram call 8.4, type 10

- 3.3, visibinty 8.3

3
: Elaboration of declarations: 3.1, component declaration 3.7, deferred constant declaration 7.4,3, discriminant 1 .
. specification 3.7.1, entry declaration 9.5, enumeration litaral specificatlon 3.5.1, generic declaration 12.1, generlc N

- instantiation 12,3, Incomplete type declaration 3.8.1, loop arameter specification 6.5, number declaration 3.2.2, s

3 object declaration 3.2,1, package declaration 7.2, parametsr specification 8.1, private type declaration 7.4.1, renam- ‘

: ing declaration 8.5, subprogram declaration 8.1, subtyps declaration 3.3.2, tank declaration 9.1, type daclaration 3.3. 1 Lo

’..-'; 3-43 Declarative Parts 3.9 :

adinms iennnpea R O T P VA S TR SRS

ANSI/MIL-STD-1815A Ada Reference Manual

2 Elaboration of type definitions: 3.3.1, access type definition 3.8, array type definition 3.8, derived type definition
3.4, enumaeration type definition 3.6.1, integer type definition 3.5.4, real type definition 3.5.8, record type definition
37

?a 13 Elaboration of other constructs: context clause 10,1, body stub 10.2, compllation unit 10.1, discriminant part
_ 3.7.1, generic body 12,2, genaric formal parameter 12.1 12.3, library unit 10.6, package body 7.1, represantation
s clause 13.1, subprogram body 6.3, subunit 10.2, task body 9.1, task object 9.2, task spacification 9.1, use clause 8.4,
R with cluuse 10,1.1

3.9 Declarative Parts 3-44

BSENOSNEDS 38 At
2

4. Names and Expressions g‘ , .

&
e

The rules applicable to the different forms of name and expression, and to their evaluation, are }
given in this chapter.

4.1 Names

Namaus can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can ! r ’ ™
alsn denote nbjects designated by access values; subcomponents and slices of objects and values; U
single entries, entry families, and entries in families of entries. Finally, names can denote attributes
of any of the foregoing.

name = simple_name 2 ~f'[-.j,:
| character.diteral | operator_symbol s ed
| indexed_component | slice k. A0

| selected..component | attribute
simple_name :i= Identifler
profix 1= nama | function_ocall

A simple name for an entity is either the identifier associated with the entity by its declaration, or 2
another identifier agsoclated with the entity by a renaming declaration.

Certain forms of name (indexed and selacted components, slices, and attributes) include a prefix 4
that is either a name or a function call. If the type of a prefix is an access type, then the prefix must o
not be a name that denotes a formal parameter of mode out or a subcomponent thereof.)) __"

If the prefix of a name is a function call, then the name denotes a component, a slice, an attribute, 5
an entry, or an entry family, either of the result of the function call, or (if the result is ar access
value) of the object designated by the rasult.

TyYrryYrT:3

ATy T Y R TN TR Y

p

A prefix is said to bae appropriate for a type in either of the following cases: 8 " ‘.
e The type of the prefix is the type considered. ?
o The type of the prefix is an access type whose designated type is the type considered. 8

The evaluation of a name determines the entity denoted hy the name. This evaluation has no other o
effect for a namae that Is a simple name, a character literal, or an operator symbol.

The evaluation of a name that has a prefix includes the evaluation of the prefix, that is, of the cor- 10

rasponding name or function call. If the type of the prefix is an access type, the evaluation of the

prefix includes the determination of the object designated by the corresponding access value; the

axception CONSTRAINT_ERROR Is raised if the value of the prefix is a null access value, except in \
the casa of the prefix of a representation attribute (see 13.7.2). U

rr.mwe
&

7
7

¢ 4-1 Names 4.1

ANSI/MIL-STD-1815A Ada Reference Manual

Examples of simple names:

Pl -- the simple name of a number (see 3.2.2)
LIMIT -- the simple nume of a constant (see 3.2.1)
COUNT -- the simple name of a scalar variable (see 3.2.1)
BOARD -- the simple name of an array viiriable (see 3.8.1)
MATRIX -~ the simpie name of a type (see 3.8)

RANDOM - the simple name of a functlon (see 6.1)

ERROR -- the simple name of an exceptin (see 11.1)

References: access type 3.8, access valua 3.8, attribute 4.1.4, belong to a type 3.3, character titeral 2.5, component
3.3, constralnt_error axception 11.1, declaration 3.1, designate 3.8, designated type 3.8, entity 3.1, antry 9.5, entry
family 9.5, evaluation 4.5, formal parameter 8.1, function call 6.4, identifier 2.3, indexed component 4.1.1 mode 6.1,
null ancess valug 3.8, object 3.2.1, operator symboi 8.1, raising of excaptions 11, ranaming declarations 8.5, selected
component 4.1.3, slice 4.1,2, subcomponent 3.3, type 3.3

4.1.7 Indexad Components

An Indexed component denotes either a component of an array or an entry In a family of entries.
indexad_component ::= prefix(exprassion |, expression})

In the case of a component of an array, the prefix must be appropriate for an array type. The
axprassions specify the Index values for the component; there must be one such expression for
each index position of the array tvpe. In the case of an entry in a family of entries, the prefix must
be a name that denates an entry family of a task object, and the expression (there must be exactly
one) specifies the index value for the individual entry.

Each expression must be of the type of the corrasponding index. For the evaluation of an indexed
component, the prefix and the expressions are evaluated In some order that is not defined by the
language. The sxception CONSTRAINT_ERRQR is raised if an Index value does not beiong to the
range of the corresponding index of the prefixing array or entry famnily.

Examples of /indexed components:

MY_SCHEDULE(SAT) -- & component of a one-dimensional array {sme 3.8.1)
PAGE(10} -- a component of a one-dimensional array {age 3.6)
BOARD(M, J + 1) -- a component of a two-dimansional array (see 3.8.1)
PAGE(10)420) -- @& component of a component {sse 3.8)
REQUEST(MEDIUM) -- an entry in a family of entries (sge 9.5)
NEXT..FRAME(L){M, N) -- & component of a function call (see 6.1)

Notes on the examplas:

Distinct notations are used for components of multidimensional arrays (such as BOARD) and
arrays of arrays {such as PAGE }. The componenta of an array of arrays are arrays and can therefore
be indexed. Tnus PAGE (10){20) denotes the 20th coinponent of PAGE (10). In the last example
NEXT_FRAME(L) Is a function call returning an access value which designates a two-dimansional
array.

References: appropriate for a type 4.1, array type 3.6, component 3.3, camponent of an array 3.6, constraint_arror

exception 11.1, dimensian 3.8, entry 9.5, entry famlily 9.5, svaluation 4.5, expression 4.4, function call 6.4, in some
order 1.6, index 3.8, name 4.1, prefix 4.1, raising of exceptions 11, returned value 6.8 6.5, task ubject 8.2

4.1.1 Indexed Components 4-2

tbos A il oo An g o v Riwnlon Sim 5oa b n

z".'.'."’.’ .
g

Names and Expressions

4.1.2 Slices

A slice denotes a one-dimensional array formed by a sequence of consecutive components of a
one-dimenslonal array. A slice of a variable |s a variable; a slice of a constant is a constant; a slice
of a value is a value.

slice = prefix(discrete_range)

The prefix of a slice must bs appropriate for a one-dimensional array type. The type of the slice is
the base type of this array typs. The bounds of the discrete renge define those of the slice and
must be of the type of the index; the slice is a nu// slive denoting a null array if the discrete range is
a null range.

For the evaluation of 8 name that is a slica, the prefix and the discrete range are evaluated In some
order that is not definad by the language. The exception CONSTRAINT_ERROR Is raised by the
evaluation of a slice, other than a null slice, if any of the bounds of the discrete range does not
belong to the index range of the prefixing array. (The bounds of a null siice need not belong tu the
subtype of the index.)

Examples of slices:

STARS(1 .. 15) - o slice of 15 characters (see 3.8.3)
PAGE{10 .. 10 + SIZE) -~ & slice of 1 + SIZE components (see 3.8 and 3.2.1)
PAGE(LKA .. B) -- & slice of the array PAGE(L) (soe 3.8)

STARS(1 ., 0) - & null slice (see 3.8.3)
MY_SCHEDULE(WEEKDAY) -- bounds given by subtype (sme 3.6 and 3.5.1)
STARS(6 .. 1B)(K) -~ same as STARS(K) (nee 3.8.3)

-~ provided that K is in 6 ., 16

Notes:

for a one-dimensional array A, the name A(N .. N) is a slice of one component; its type is the buse
type of A, On the othar hand, AiN) is a component of the array A and has the corresponding com-
ponent type,

Referencas: ap:nropriate for a type 4.1, array 3.8, array type 3.6, array valus 3.8, bass type 3.3, belong to 8 subtype
3.3, bound of u discrete range 3.8.1, component 4.3, component tyne 3.3, constant 3.2.1, constraint 3.3, con-
straint_error encuption 11,1, dimension 3.8, discrate ranga 7.8, evaluation 4.5, index 3.6, index range 3.8, name 4.1,
null array 3.8,1. null range 3.5, prefix 4 |, raising of exceptions 11, type 3.3, variable 3.2.1

4.1.3 Selected Components

Selected components are used to denote .)cord componants, entries, entry families, and objects
designated by access valuos; they are also used as expanded names as described below.

selected_component = prefix.selector

selector := simple_namo
| charactar_literal | operator_aymbol | all

4.3 Selected Components 4.1.3

ANSI/MIL-STD-1815A Ada Referance Manual

3 The following four forms of selected components are used to denote a discriminent, a record com-
ponent, an entry, or an object deaignated by an access value:

B
LT
'".'t.'.‘._..! L’.-.__.

;:‘. {
o =~
. {a) A discriminant:
- "]

ﬂ 5 The selector must be a simple name denoting a discriminant of an object or value. The prefix 9|
< must be appropriate for the type of this object or value. i
s {b) A component of a record: ".';;"
. 1 The selector must be a simple name denoting a component of a recard object or value. Tha j‘
x prefix must ba appropriate for the type of this object or value. .1
' For a component of a variant, a check is made that the values of the discriminants are such %
Y that the record has this componant, Tho exception CONSTRAINT..ERROR ls raised If this check i
o

o falls.

(c) A single entry or an entry family of a task:

.-
[-
’ _ '_ - N - o
@ B

10 The selector must be a simple name denoting a single entry or an entry family of a task. The
: prefix must be appropriate for the type of this task.
1 " (d) An object designated by an access value:
:é‘ 1 The selector must be the reservi:l A ored uil. The vauwss of the -~#x must belcng to an access
X type.
- 1 A selected coinponent of one of the remaining two forms is called an expanded name. In each

case the salactor must ba either a simple name, a character literal, or an operator symbol, A func-
tion call s not allowed as the prefix of an expanded name. An expanded name can denote:

.r-’ -

N (6) An entity declared in the visible part of a package:

-
-

a®a

1 Tha prefix must denote the package. The selector must be the simple name, character literal,
or operator symbol of the entity.

.
-
¢

. . RV . PRNS S w e e
. b P CL S LTt T

IR 2 - i el A N ST
‘s LT N L * Sl -

1 8. P PO - - . -

R ‘ et - S i PR

N/ P S LA NIy Yy F VLN S S

i {(f} An entity whose declaration occurs immediately within a named construct: !

Y

" The prefix must denote a construct that is either a program unit, a block statement, a loop e
statament, or an accept stutement. In the case of an ancept statement, the prefix must be " ;‘

- eithar the simpla name of the entry or entry family, or an oxpanded name ending with such a SR
4 simple name (that is, no index is allowed). The selector must be the simple name, character I
' literal, or operator symbul of an entity whose declaration occurs immediately within the con- oy
struct, Ve

A

" This form of expanded nama Is only allowed within the construct itself (including the body and . j

K any subunits, in the case of a program unit). A name declared by a renaming declaration s not o
’ allowed as the prefix, If the prefix is the name of a subprogram or accept statement and [f)
3 there is more than one visible snclosing subprogram or accept statement of this name, the NN

axpanded name is amblguous, independently of the salector.

- " If, according to the visibility rules, there Is at laast one possible Intarpretation of the prefix of a o \
o selectad component as the name of an anclosing subprogram or accept statement, than the only N
] Interpretations considered are those of rule (f), as expanded namas (no interpretations of the preflx -

as a function call are then ¢ nsidered),

4.1.3 Selected Components 4-4

e . i
. - . ’ - L . s .
M VO, VWL T SUL T S IR AT STV W PT VLT DI R APV WU ST TN W Sy P VDT | 3 VT PSP ST TS T JUTT T S s T S T T U R T T T A T TS SR YR

AT
s

L
M

e

L Ee

AR F AT § |

Nares and Exprassions

Thq evaluation of a name that is a sslected component includes the evaluation of the prefix.

Examples of selected components:

TOMORROW.MONTH -~ & record component (see 3.7)
NEXT.CAR.OWNER -« & record component (see 3.8.1)
NEXT_.CAR.OWNERAGE -- 4 record component {see 3.8.1)
WRITER.UNIT -- a record compunent (a discriminant) {ses 3.7.3)
MIN_CELL(H).VALUE -- a vscord component ot the result {see 6.1 and 3.8.1)
«- of the function call MIN_CELL(H)
CONTROL.SEIZE -- an antry of the task CONTROL {see 9.1 and 9.2)
POOL(K).WRITE -~ an antry of the task POOL(K) {see 9.1 and 9.2)
NEXT_.CAR.all -~ the object designated by
-- the access variable NEXT_CAR (sme 3.8.1)

Examples of expanded namaes:

"

k1

TABLE_MANAGER.INSERT -- @& procedure of the visible part of a package (ses 7.5)
KEY_MANAGER.,"<" -~ an operator of the visible part of a package (aee 7.4.2)
DOT_FRODUCT.SUM «- a varlable deciared in 4 procedure body (see B8.5)
BUFFER.POOL -- & varlable deciarad In a task unit (ses 9.12)
BUFFER,READ -~ an entry of a task unit (se0 9.12)
SWAP.TEMP ~- & variable declered in a block staternent looe 5.6)
STANDARD.BOOLEAN -- the name of a predefinad type {see 8.8 and C)
Note:

For a recurd with components that are other records, the above rules imply that the simple name
must be glven at each level for the name of a subcomponent. Fer example, the name
NEXT_CAR.OWNER .BIRTH.MONTH cannot be shortened (NEXT.CAH.OWNER.MONTH Is not
allowed).

References: accept statement 8.5, access type 3.8, access valus 3.8, eppropriate for a typw 4.1, block statemeant 5.6,
body of a program unit 3.8, character literal 2.8, component of a record 3.7, constraint_usrar exception 11.1, declars-
tion 3.1, designate 3.8, discriminant 3.3, entity 3.1, entry 9.8, entry family 9.8, function call 8.4, Index 3.6, loop state-
ment 5.5, object 3.2,1, ocour immadiately within 8.1, operator 4.8, opwrator symbol 8.1, overloading 8.3. parkage 7,
predefined type C, prafix 4.1, procedure body 6.3, program unit @, raising of uxceptions 1 1, record 3.7, recora sompo-
nent 3.7, renaming declaration 8.5, reserved word 2.1, slmple name 4.1, subprogram 8, subunit 10.2, task 9, task
object 9.2, task unit 9, varlable 3.7.3, varlant 3.7.3, visibifity 8.3, visible part 3.7.3

4.1.4 Attributes

An attribute denotes a basic operation of an entity given by a prafix,

attribute = prefix'attribute_designator

attribute_designator = simple_name |{universal_static.expression)]
The applicable attribute designators depand on the pretix. An attribute can be a basic operation
delivering a value; alternatively It cari be a function, a type, or a range. The meaning of the prefix of

an attribute must be deturminable independently of the attribute cesignator and independently of
the fact that it is the prefix of an attribute.

4-5 Attributes 4.1.4

' P T . . » . N -
F YUY W TV TP O 0 I TP W WP, WL O V0T WU WP TV ~'..'AAL~.".JA‘.""nlA"'. A M Ll v

i

24

.'j":‘t".

ANSI/MIL-STD-1816A Ada Reference Manual

-
4 The attributes defined by the langusge are summarized in Annex A. In addition, an .
implementation may provide implementation-defined attributes; their description must be glven in ,
Appendix F. The attribute designator of any implementation-defined attribute must not be the '
same as that of any language-defined attribute. :

5 The evaluation of a name that is an attribute consists of the evaluation of the prefix. s .

Notes:

6 The attribute designators DIGITS , DELTA, and RANGE have the same Identifier as a reserved word. Ca
Howevar, no confusion is possible since an attribute designator is always preceded by an LA
apostrophe. The only predefined attribute designators that have a universal expression are those Lo ,;9
for certain operations of array types (see 3.6.2). Y

1 Examples of attributes:)

COLOR'FIRST -« minimum value of the enumaration type COLOR (see 3.3.1 3.5) " ;
RAINBOW'BASE'FIRST -- same as COLOR'FIRST (see 3.3.2 3.3.3) Lo
REAL'DIGITS -- precision of the type REAL (see 3.5.7 3.6.8) L
BOARD'LAST(2) -- upper bound of ths second dimension of BOARD (ses 3.8.1 3.8.2)
BOARD'RANGE(1) ~ Index range of the first dimension of BOARD (see 3.6.1 3.6.2) ol
POOL(K)TERMINATED - TRUE if task POOL(K) Is tarminated (ace 9.2 9.9) -
DATE'SIZE - number of bits for records of type DATE (see 3.7 13.7.2) Do
MESSAGE'ADDRESS -~ address of the record variable MESSAGE (see 3.7.2 13.7.2) 4«

(] References. appropriate for a type 4.1, baslo operation 3.3.3, declarad entity 3.1, name 4.1, prefix 4.1, ressrvad word :
2.9, siivple name 4.1, static axpression 4.8, type 3.3, unlversal expression 4.10
4.2 Liternis "

! A literal is either a numerlc literal, an enumeration literal, the literal null, or a string literal. The
evaluation of a litera! yields the corresponding value.

2 Numeric literals are the literals of the types universal.integer and universal_real. Enumaeration
literals include character literals and yield values of the corresponding enumeration types. The et
literal null yields a null access value which designates no objects at all.

3 A string literal is a basic operation that combines a sequence of characters Into a value of a one- .
dimensional array of a character type; the bounds of this array are determined according to the , .
rules for nositional array aggregates (see 4.3.2). For a null string literal, the upper bound Is the B

predecessor, as given by the PRED attribute, of the lower bound. The evaluation of a null string
:Iteral ralae;a the exception CONSTRAINT_ERROR if the lower bound does not have a predecessor
ses 3.6.5).

a The type of a string literal and likewlse the type of the literal null must be determinable solely from
the contaxt in which this literal appears, excluding the literal itself, but using the fact that the literal
null is a value of an access type, and similarly that a string literal Is a value of a one-dimensional
array type whose component type is a character type,

8 The character literals corresponding to the graphic characters contained within a string literal must ‘
be visible at the place of the string literal (although these chararters themselves are not used to L
determine the type of the string literal). ‘

4.2 Literals 4-8

~ Foc, T

s e T
RS

LAY,
.

Qadeta 3 2

Names and Expressions

Examplas:
3.14159.28636 -- a real literal
1.3456 -- an integer literal
cLuses -- oan enumeration literal
‘A -- a character literal
"SOME TEXT® -- @& string literal

References: access type 3.8, apgregate 4.3, array 3.8, array bound 3.6, array type 3.8, charactar literal 2.5, character
typa 3.6.2, component type 3.3, conatraint_srror exception 11.1, designate 3.8, dimension 3.8, snumsration literal
3.5.1, graphic charactur 2,1, Intager literal 2.4, null access vaiue 3,8, null literal 3.8, numaeric literal 2.4, object 3.2.1,
real literal 2.4, string literal 2.8, type 3.3, universal_intagar type 3.6.4, univorsal_real type 3.5.6, visihility 8.3

4.3 Aggregates

An aggregate Is a basic oporation that combines component values into a composite value of a
record or array type,

aggregate i~
(componant_assaciation |, component_association))

componant_aasoclation !i=
|cholce || oholcel =>] expression

Each component association associates an axpression with components (possibly none). A compo-
nent assoociation ia sald to be named If the components are spacifiad axplicitly by choices; It Is
ntherwise said to ba posit/onal. For a positional association, the (single) component Is implicitly
specified Ly position, In tha order of the corresponding component declarations for record compo-
nents, in Index order for array components.

Named associations can be given In any order {except for the choloe others), but If both positional
and named assoclations are usec in the same aggregate, than positionai associations must occur
first, at thair normal posltion. Hence once a named association Is used, the rast of tha aggragate
must use only named assoclations. Aggregates containing a singlo component association must
always be glven In named notatlon. Specific rulas concerning component associations oxist for
racord aggregates and array aggregates.

Choices in component assoclations have the same syntax as in varlant parts (see 3.7.3). A cholce
that is £ component simple namae is only allowad in a record aggregate, For a comporiant associa-
tlon, a choice that is a simple expreasion or a discrete range (s only allowed In an array aggregate;
8 choice that is a simple expression speocifies the componiant at the corresponding index value;
similarly a digcrete range specifies the components at the index values in the range. The choice
others Is only allowed In 8 component association if the association appears last and has thlv
single choice; it specifies all ramaining components, if any.

Each component of the value defined by an aggregate must be represented once and only once in
the aggregate. Hence each aggregate must be complate and n glven component is not allowed to
be speciflec by mure than one cholos,

The type of an aggregate must be determinable solely from the context in which the aggregate
appears, excluding the aggregate itsslf, but using the fact that this type must be composite and not
limited. The type vt an aggregate in turn detarmines the required type for sach of its components.

4-7 Aggregates 4.3

L‘ u
e
+
.
) ™
| JURYSPAN
‘1
\
A D
'.I
L !
w s
-9
v .

D i~ 2
e S PR

5

4
[
(
A

ANSI/MIL-STD-18156A Ade Reference Manual

Notes:

The above rule implies that the deterrnination of the type of an aggre¢ate cannot use any informa-
tion from within the aggregate. In particuiar, this determination cannot use the type of tha expres-
sion of a component assocliation, or the form or the type of a choice. An agaregate can always be
distingulshed frorn an expression anclosed by parentheses: this is a consequence of the fect that
named notatio. is required for an aggregate with a singls component.

References: array aggregate 4.3.2, array typs 3.6, baslc oparatior 3.3.3, choice 3.7.3, component 3.3, compnsite
type 3.3. composite value 3.3, discrote range 3.8, oxpression 4.4, index 3.6, linitad type 7.4.4, primary 4.4, record
aggregote 4.3.1, racord type 3.7, aimple exprespion 4.4, simpie name 4.1, type 3.3, variant part 3.7 3

4.3.1 Racord Aggregates

If the type of an aggpregaie i3 a racord type, the componant namea given as chaices must denote
cormnponanta (including discriminants) of the record typs. |f the cholce others Is given a8 a cholce of
8 record aggregate, it must represent at lsast one compenont. A component asanclation with the
cholce others or with more than one choice is only allowad if the represented componeins are all
of the same type, The expression of o componant association must have the type of the assoclated
record componenta,

The value specified for a discriminant that governs & variant part must ba given by a static expres-
slon (note that this value determines which dependent components must appear in the racord
value).

For the evaluation of a record aggregute, the expressions given In the component associations are
evaluated in some order that is not definad by the language. The expression of a narned assocla-
tion Is evaluated once for each ussociated component, A chack is made that the value of each sub-
component of the aggregate belongs to tha subtype of this subcornponent. The exveption
CONSTRAINT_ERROR Is raised If this check fails.

Example of a record aggregate with positional assoc/ations.
(4, JULY, 1776) -~ ses 3.7
Examples of record aggragates with named associations.

(DAY > 4, MONTH > JULY, YEAR w> 1778)
(MONTH => JULY, DAY => 4, YEAR => 1776)

(DISK, CLOSED, TRACK => B, CYLINDER => 12) « gee 3.7.3
{UNIT --> DISK, STATUS => CLOSED, CYLINDER => 9, TRACK => 1)

Example of componant aysoclation with several choices:

(VALUE = 0, SUCCIPRED =.» new CELL'(0, null, nult)) ~ ges 3,81
The allocator is evalusted twice: SUCC and PRED designate differsnt colls

Note:

For an aggregate with positional assoclations, discriminant values appear first since the discrimi-

nant part Is given first In the record type deciaration; thay must be in the sarme urder ve In the dia-
criminant part,

4.3.1 Record Aggreates 4.9

\
1]
. ..
L] .‘“.'
i
(VR
R
K
.
'.k
.
.
')
"..‘ v‘
- .
) -
)

Names and Expreesions

References. agyregate 4.3, wllocator 4.8, choice 3.7.3, component assaclation 4.3, component name 3.7, conetraint]
3.3, constraint_error sxception 11,1, dapend on a discriminant 3.7.1, discriminant 3.3, discriminant part 3.7.1,
avaluate 4.5, expression 4.4, in some order 1.8, program 10, raising of exceptions 11, record component 3.7, racord

type 3.7, satisty 3.3, static axpreasion 4.9, subcomponent 3.3, subtype 3.3.2, type 3.3, variant part 3.7.3

4.3.2 Array Aggregates

If the type of an aggregate is a one-dimensional array type, then each choice must specify values ' . N
of the index tvpe, and the expressicn of each component association must be of the componaent | @

type.

If the type of an aggregate is a multidimensional array type, ah n-aimensional aggregate ia writtan 2 A
as n one-dimensional aggregate, in which the expression specified for each component association o
& itsalf writtan as an (n-1)-dimensional aggregate which is called 8 subaggregate; the index sub- S
type of the one-dimenaional aggregate is glven by the first index position of tho array type. The :
same rule is used o write a subaggregate If it Is again multidimerisional, using successive Index W
positiens, A string literal is allowed in a multidimensional aggregate at the placa of a one- BN

dimensional array of a character type. In what follows, the rules concerning array aggregates are
formulated in terms of one-dimensional aggregates.

Apart fiom a tina! componant assoclation with the single choice others, the rest (if any) of the com- 3 l: e

porient associations of an array aggrepate must be either all positionai or all namad. A named S

association of 8.1 array aggregate Is only allowed to have a cholce that is not static, or likewise a

cholae that Ia a null range, If the agyragate Includes a single componant association and this com- SRI

ponant association has a single choice, An others choice s static it the applicable index consiraint D

is static. BEBENE
"

‘The bounds of an array aggregate that haa an others choice are datermined by the applicable ihdex ‘
constraint. An others cholce Is only allowed if the aggregate appears in one of the following con-
texts (which defines the applicable index constraint):

(a) The aggragate is an actual parameter, a generlc actual parameter, the result exprassion of a b
function, or the oxprossion that follows an assignment compound delimiter. Moraovear, the
subtype of the corresponding formai parameter, genetic formal parameter, function rosult, or
object I8 a conatralned array subtype.

For an aggrogate that appears In such a context and contdins an assoclation with an others 8

cholce, named associations are allowed for othor asanclations only In the case of a

(nongeneric) actual parameter or function result. If the aggregate is 8 multidimensional array, ‘
this restriction also applles to each of its subaggregates. e

.48

{b) The aggregate Is the operand of u quslified expression whose type murk denotes a con- !
strained array subtype.

(¢) The nggregate Is the axpression of the cormponent assoclation of an encloaing (array or record) 1
aggragate. Moreover, If this enclosing aggregate s a multidimaensional array aggregate than it . e
is itseif In one of thase three contexis. ‘

The bounds nf an array aggregate that does not have an uthers choice are determined as follows.)
For an aggragate that has named assoclations, the bounds are datermined by the smallast and
largest choices given, For a positional aggregate, the lower bound Is detarminad by the applicable

Indnx conetraint If the aggregate appears in one of the contexts {a) through {c); otherwlse, the ;. ~Q
lower bound Is giver. by 8'FIRST where § s the Index subtype; in eithar case, the upper bound Is ‘
Jetermined by the number o! components,

4.9 Array Aggregates 4,.3.2

ANSIMIL-3TD-1815 1 Ada Reference Manual

The evaluation of an array aggregate that is not a subaggregate proceeds In two steps. First, the
choices of this aggregate and of its subaggregates, if any, are evaluatsd in some order that is not
defined hy the lariguage. Second, the exprassions of the component associations of the array
aggregate are evaluatnd In some order that is not defined by the language; the expression of a
named association Is v aluated once for each associated component. The evaluation of a subag-
gregate consists of this second step (the first step Is omitted since the choices have already been
evaluated).

For the evaluation of an aggregate that is not @ null array, a check is mada that the index values
defined by cholces belong to the corresponding index subtypes, and also that the value of each
subcomponent of the sggregate belongs to the subtyre of this subcomponent. For an n-
dimunsional multidimensional aggregata, a check is made that all {n-1)-dimensional subagyrega-
tes have the snme bounds. The exception CONSTRAINT_ERROR is raised If any of these checks
fails.

Note:

'The allowed contexts for an array aggregate including an others choice are such that the bounds of
such an aggregate are always known from the context.

Examples of array aggregates with posiilonal associations.

(7, 9. 6,1, 3, 2, 4,8, 6 0
TABLE'(6, 8, 4, 1, others => 0) -- sse 3.6

Examples of array aggregates with named assoclations:

(1.5 =>{1.8=>00) -- two-dimensional
(1 . N => new CELL) -~ N new cells, in particular for N = O

TABLE(2 | 4 | 10 => 1, others => 0)
SCHEDULE'(MON .. FRI :=> TRUE, others => FALSE) .- see 3.6
SCHEDULE'(WED | SUN => FALSE, others => TRUE)

Examples of two-dimensional array aggregates:
-- Three aggregates for the same value of type MATRIX (see 3.6):
1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
=> (1.1, 12, 1.3), 2 => (2.1, 2.2, 2.3))
=> (1 => 1.1, 2 => 12, 3 => 13), 2 => (1 => 2.1, 2 => 22, 3 => 2.3))

Exanples of aggregates as Inftial values.

- Al(1;=7, A(10)=0
1, others => 0); -- B{1)=0, B(10)=1
{1 . 8 => 00)); -- CFIRST{1)=1, C'LAST{2)=8

>
BIT_VECTOR(M .. N) = (M .. N => TRUE); -- see 3.6
BIT.VECTOR(M .. N) := (others => TRUE);
STRING(1 .. 1) = (1 => 'F); -- a one component aggregate: same as "F"

1]

TABLE := (7, 9, 5, 1, 3, 2, 4, 8, 6, O);
: TABLE TABLE2 | 4 | 10 =>
: constant MATRIX = (1 ., § =

mmg O >

References: actual parameter 8.4.1, aggregate 4.3, array type 3.6, asslgnment compound delimiter 6.2, cholce 3.7.3,
component 3.3, component assoclation 4.3, component type 3.3, constrained array subtype 3.6, constraint 3.3, con-
straint_error exception 11,1, dimension 3.6, evaluate 4.5, expression 4.4, formal parameter 8.1, function 8.5, in some
order 1.6, index constraint 3.6.1, index range 3.8, index subtype 3.8, index type 3.6, named component assoclatlon
4.3, null array 3.6.1, object 3.2, positional cornponent association 4.3, qualified expression 4.7, raising of exceptions
11, static vxpression 4.9, subcomponent 3.3, type 3.3

4.3.2 Array Aggregates 4-10

a r J * B

-t s

B »+ £ z2 ¢+ 2 I iR .

*» 3 r -

A

» -1R: .

Names and Expressions

4.4 Expressions

An expression is a formula that defines the computation of a value.

expression =

relation {and relation] | relation [and then relation)
| relation (or else relation|

| relation {or relation)
| relatinn {xor relation)

relation =

simple_expression [relational_operator simple_expression]

| simple_expression {not] in range
| simpla_exprassion [not] In type_mark

simple_expression = [unary_adding_.operator] term |binary_adding_operator term}
term = factor {multiplying_operator factor|

factor = primary [x» primary] | abs primary | not primary

primary =

numeric. literal | null | aggregate | string_literal | name | allocator
| {unction_call | type_conversion | qualified_expression | (expression)

Each primary has a value and a type. The only names allowsd as primaries are named numbers;
attributes that yield values; and names denoting objects (the value of such a primary is the value of
the object) or denoting values. Names that denote formal parameters of mode out are not allowed
as primaries; names of their subcomponents are only allowed in the case of discriminants,

The type of an expression depends only on the type of its constituents and on the operators
applied; for an overloade:l constituent or operator, the determination of the constituent type, or the
identification of the appropriate operator, depends on the context. For each predefined operator,

the operand and result types are given In section 4.5.

Examplas of primarles:

4.0 -- real literal
(P1l 10 =5 0) -- namod number

" =) -- array aggregate
SUM -- varlable
INTEGER'LAST -~ attribute
SINE(X) —~ function call
COLOR’'(BLUE) -- qualified expression
REAL(M*N) -- convarsion

(LINE_COUNT + 10) -

Examples of expressions:

VOLUME

not DESTROYED
2:LINE_COUNT

-4.0

40 + A

Buux2 - 4.0+AxC
PASSWORD(1 .. 3) = "BWV"
COUNT in SMALL_INT
COUNT not in SMALL_INT
INDEX == O or ITEM_HIT
{(rOLD and SUNNY) or WARM
A:I‘:‘v:(B:k:kC)

parenthesized expression

-- primary
-~ factor
-~ term
-- simple expression
-- slmple expression
.- glmple expression
-- relation
-- relation
-~ relation
-~ expression

-- expression (parentheses are required)
-- expression (parentheses are required)

TP

Ll

Expressions 4.4

FISPTLIES U S SN SN

U T

!

S

PR S I .

o : AR A R A

g S S N E I A R SR,

PR E - . PP Plela T

S -& . R, o BT
“ha - s

— e -t ."
S oaleTa --"‘ . LT e

@

i

s maa

AT e iadeals talaed

ANSI/MIL-STD-18158A Ada Reference Manual

References: aggregate 4.3, allocator 4.8, array aggiegate 4.3.2, attribute 4.1.4, binary adding opurator 4.6 4,53,
context of overload resolution 8.7, exponentiating operator 4.5 4.5.8, function nal! 8.4, muitiplying operator 4.5 4,56.5,
name 4.1, named number 3.2, null literal 3.8, numieric literal 2.4, object 3.2, operator 4.5, averloading 8.3,
overloading &n operator 6.7, qualified expression 4.7, range 3.5, real literal 2.4, relation 4.5.1, relational operator 4.5

4.5.2, result type 8.1, string literal 2.8, type 3.3, type conversion 4.6, type mark 3.3.2, unary adding operator 4.b
4.6.4, variable 3.2.1

4.5 Operators and Expression Evaluation

The fanguage defines the following six classes of operators. The corresponding operator symbols
(except /=), and only those, can be used as designators in declarations of functions for usar-
defined operators. They are given in the order of increasing precedences.

logical..opsrator u= and | or | xor

relational__operator e = | /=] < | €= | > | >=
binary..adding_operator e 4+ |« | &
unary..adding_operator = 4+ |-

multiplying_operator u= %« |/ | mod | rem
highest_precedence_oparator = wx | abs | not

The short-circuit control forms and then and or else have the same precedence as logical
operatuis. The mambership tests in and notin have the same precedence as relational operators,

For a term, simple expression, relation, or expression, operators of higher precedence are
associated with their operands before operators of lower precedence. In this case, for a sequence
of operators of the same precedence level, the operators are associated in textual order from left to
right; parentheses can be used to impose specific associations.

The operands of a factor, of a term, of a simple expression, or of a relation, and the operands of an
expression that does not contain a short-circuit control form, are evaluated in some order that is
not defined by the language (but before application of the corresponding operator). The right
operand of a short-circuit control form is evaluated If ard only If the left opeiand has a certain
valug (sae 4.5.1).

For each form of type declarai'on, certnin of the above operators are predefined, that is, they are
implicitly declared by the type declaration. For each such Implicit operator declaration, the names
of the parameters are LEFT and RIGHT for binary operators; the single parameter is called RIGHT
for unary adding operators and for the unary operators ahs and not. The effect of the predefined
operators Is explained In subsections 4.6.1 through 4.6.7.

The predefined operations on integer types either yleld the mathematically correct result or raise
the exception NUMERIC_ERROR. A predefined operation that delivers a result of an integer type
(other than universal.integer) can only raise the exception NUMERIC_ERROR If the mathematical
result is not a value of the type. The predefined operations on rea! types yield resulis whose
accuracy is defined in section 4.5.7. A predefined operation that delivers a result of & real type
{other than universal_real) can only ralse the exception NUMERIC_ERROR if the result is not within
the range of the safe numbers of the type, as explained in section 4.5.7.

4.5 Operators and Exprassion Evaluatfon 4-12

Names and Expressions

Examples of precedence:

not SUNNY or WARM -- same as inot SUNNY) ar WARM
X>40and ¥ > 00 -- same as (X > 4.0) and (Y > 0.0)
-4.0uAxx2 -~ game a5 (4.0 x (Axx2))

abs(1 + A) + B -- game as ‘abs (1 + A)) + B

Y u-3) -- parentheses are necessary

A/B «C -~ sams as (A/B)xC

A+ (B + C -- evaluate B + C before adding it (v A

References: designator 8.1, expresilon 4.4, factor 4.4, implicit declaration 3.1, in sume ordar 1.8, Integer type 3.5.4,
membership test 4.5.2, name 4.1, numeric_error exception 11,1, overloading 6.6 8.7, raising of an exception 11,
range 3.5, real type 3.5.8, relation 4.4, safe number 3.6.6, short-circult control form 4.6 4.5.1, simple expression 4.4,
term 4.4, type 3.3, type declaration 3.3.1, universal_integer type 3.5.4, universal_roal type 3.5.6

4.6.1 Logical Operators and Short-circuit Control Forms

The following logical operators are predefined for any boolean typs and any one-dimensional array
type whose components are of a boolean type; in either case the two operands have the same
type.

Oparator Operation Operand type Result type

and conjunction any boolean type same boolean type
array of boolean components same array type

or inclusive clisjunction any bnolean type same boolean type
array of boolean components same array type

xor axclusive disjunction any boolean type same boolean type
array of boolean components same array type

The operations on arrays are performed on a component-by-component basis on matching compo-
nents, if any (as for equality, see 4.6.2). The bounds of the resulting array are those of the left
operand. A check is made that for each component of the left operand there is 8 matching compo-
nent of the right oparand, and vice versa. The exception CONSTRAINT_ERROR Is raised If this
check fails.

The short-circuit control forms and then and or else are defined for two operands of a boolean type
and daeliver a result of the same type. The left operand of a short-circuit control form Is always
evaluated first. |f the left operand of an expression with the control form and then evaluates to
FALSE, the right operand is not evaluated and the value of the expression is FALSE. If the left
operand of an expression with the control form or else evaluates to TRUE, the right operand Is not
evaluated and the value of the expression I8 TRUE. |f both operands are evaluated, and then
delivers the same result as and, and or else delivers the same result as or.

Note: The conventional meaning of the logical operators Is given by tne following truth table:

A B Aand B AorB AxorB
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TPUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE
4-13 Logival Qperators and Shori circuit Control Forms 4.5.1

R P
a_ s, "r. T
- . L

ANSI/MIL-STD-1815A Ada Reference Manual

Examples of logical operators:

SUNNY or WARM
FILTER(1 .. 10) and FILTER(156 . 24) -~ see 3.6.1

Examples of short-circuit control forms:

NEXT_CAR.OWNER /= null and then NEXT_CAR.OWNERAGE > 25 -- see 3.8.1
N = O or else A(N) = HIT_VALUE

References.: array type 3.8, boolean type 3.5.3, bound of an index range 3.6.1, component of an array 3.6,
constraint_error exception 11,1, dimansion 3.8_{aige boolean value 3.5.3, index subtype 3.8, matching componentc of
arrays 4.5.2, null array 3.6.1, operation 3.3, operator 4.6, predefined opetator 4.5, raising of exceptions 11, true
boolean value 3.5.3, type 3.3

4.5.2 Relational Operators and Membership Tests

The equality and inequality operators are predefined for any type that is not limited. The other
relational operators are the ordering operators < (less than), <=: (less than or equal), > (greater
than), and >= (greater than or equal). The ordering onerators are predefined for any scalar type,
and for any discrete array type, that is, a one-dimensional array type whose components are of a
discrete type. The operands of each predefined relational operator have the same type. The result
type is the predefinad type BOOLEAN.

The relationa! operators have their conventional meaning: the result is equal to TRUE If the
corrasponding relation Is satisfied; the result is FALSE otherwise. The inequality operator gives the
complementary result to the equality operator: FALSE if equal, TRUE If not equal.

Operato: Operation Operand type Result type
= fe aquality and Iinoquality ony type BOOLEAN
< = > >= test for ordering any scelar type BOOLEAN

discrete array type BOOLEAN

Equality for the discrete types is equality of the values. For real operands whose values are nearly
equal, the results of the predefined relational operators are given In section 4.6.7. Two access
values are equal either if they designate the same object, or if both are equal to the null value of
the access type.

For two array values or two record values of the same type, the left operand is equal to the right
operand if and only If for each component of the left operand there is @ matching component of the
right operand and vice versa; and the values of matching components are equal, as given by the
predefined equality operator for the component type. In particular, two null arrays of the same
type are always equal; two null records of the same type are always equal.

For comparing two records of the same type, matching components are those which have the
same componsnt Identifier.

For comparing two one-dimensional arrays of the same type, matching components are those {if
any) whose index values match in the following sense: the lower bounds of the index ranges are
defined to match, and the successors of matching indices are defined to match. For compearing two
multidimensional arrays, matching components are those whosa Index values match in successive
index positions.

4.5.2 Relational Qperators and Membership Tests 4-14

g. -
PR 4 =

Names ana Expressions

If equality is explicitly defined for a limited type, it does not extend to composite types having sub-
components of tha limited type (explicit detinition of equality Is allowed for such composite types).

The ordering oparators <, <=, >, and >= that are defined for discrete array types correspond to
lexicographic order using the predefined order relation of the component type. A null array is lex-
Icographically less than any array having at least one component. In the case of nonnull arrays, the
left operand is lexicographically less than the right operand it the first component of the left
operand Is less than that of the right; otherwise the lefi operand is lexicographically less than the
right operand only if their first components are equal and the tail of the left operand is lex-
icographically less than that of the right (the tall consists of the remaining comporents beyond the
first and can be null),

The membership tests in and not in are predefined for all types. The result type is the predefined

_‘r?,j‘ type BOOLEAN. For a membership test with a rangs, the simple expression and the bounds of the

- range must be of the same scalar type; for a membership test with a type mark, the type of the

E;'.f simple expression must be the base type of the type mark, The evaluation of the membership test

e in yields the result TRUE if the value of the simple expression Is within the given range, or If this

{! value belongs to the subtype denoted by the glven type mark; otherwise this evaluation yields the

:.;.~f result FALSE (for a value of a real type, soe 4.5.7). The membership test not in gives the

o complementary resuit to the membership test in,

i

o Examples. "

:m x /—" Y o p
3 " < "A" and "A" < "AA” - TRUE SO
"AA" < "B" and "A" < *A " - TRUE T
RN
R MY_.CAR = null -~ true If MY_CAR has been set {5 null (see 3.8.1) TR

‘ MY_CAR = YOUR._CAR -- true if we both share the same car b '

! MY_CAR.all == YOUR_CAR.all -~ true [f the two cuars are identical *M
. N not in 1 ., 10 -- range membership test - '
;. TODAY in MON .. FRI -~ range membership test R

s TODAY in WEEKDAY -~ subtype membership test (see 3.5.1) o

‘ ARCHIVE In DISK_UNIT -- subtype membership test (ses 3.7.3) R

& Noiss: ~'ql

j.'j No exception Is ever raised by a predefined relational operator or by a membership test, but an 12 o

;f:ﬁ exception can ba ralsed by the evaluation of the operands. I

!!! if a record type has components that depend on discriminants, two values of this type have mat- 0 % ‘ ;‘J

ching components if and only If their discriminants are equal. Two nonnull arrays have matching T

g components If and only if the value of the attribute LENGTH(N) for each index position N is the Ce
- same for both. -
References: access value 3.8, array type 3.8, base type 3.3, belong to a subtype 3.3, boolean predefined type 3.5.3, 4 ’ A."

,,!' bound of a range 3.5, component 3.3, component identifier 3.7, component type 3.3, composite type 3.3, designate ®

4

3.8, dimension 3.6, discrete type 3.5, svaluation 4.6, exception 11, index 3.6, index ranye 3.8, limited type 7.4.4, nuil
access value 3.8, null array 3.8.1, null recoru 3.7, object 3.2.1, operation 3.3, operator 4.6, predefined operator 4.5,
raising of exceptions 11, range 3.5, record type 3.7, scalar type 3.5, simple expression 4.4, subcomponent 3.3, suc-
cessor 3.6.6, type 3.3, type mark 3.3.2

4-1B6 Relational Operators and Membership Tests 4.5.2

ANSI/MIL-STD-1815A Ada Referense Manual

4.5.3 Binary Adding Operators

The binary adding operators + and - are predefined for any numeric type and have their conven-
tional meaning. The catenation operators & are predafined for any one-dimensional array type that
is not limited.

Operator Operation Left operand type Right operand type Result type

+ addition any numeric type same numeric type same numeric type

- subtraction any numnaric type same numeric type same numeric type

& catenation any array type same &array typs same array type
any array type the component type same array type
the component type any array type same array type

the component type the componant type any array type

For real types, the accuracy of the result is determined by the operand type (see 4.5.7).

If both operands are one-dimenslor.al arrays, the result of the catenation is a one-dimensional
array whose length is the sum of the lengths of its operands, and whose components comprise the
components of the laft operand followed by the components of the right operand, The lower bound
of this result is the lower bound of the left operand, unless the ieft operand is a null airay, in which
case the result of the catenation is the right operand.

If either operand is of the component type of an array type, the result of the catenation is given by
the above rules, using in place of thia operand an array having this operand as its only component
and having the lower bound of the index subtype of the array type as its lower bound.

The exception CONSITRAINY_ERROR Is raised by catenation If the upper bound of the result
exceeds the range of the irdex subtype, unless the result is a null array. This exception s also
ralsed if any operand Is of the component type but has a velue that does not belong to the compo-
nent subtype,

Examples:
Z + 01 -~ 2 must be of a real type
"A" & "BCD" -- catenation of two string literals
‘A" & "BCD” -- catenation of a character literal and a string literal
‘A& A -- catenation of two character literals

References: array type 3.8, character literal 2.8, component type 3.3, constraint_arror exception 11.1, dimension 3.8,
index subtype 3.8, langth of an array 3.8.2, limited type 7.4.4, null array 3.8.1, numeric type 3.5, operation 3.3,
operator 4.5, pradefined operator 4.5, ralsing of exceptions 11, range of an index subtype 3.6.1, real type 3.5.8, atring
literal 2.8, types 3.3

4.5.4 Unary Adding Operators

The unary adding operators + and - are predefined for any numeric type and have their conven-
tional meaning. For each of these operators, the operand and the rasult have the same type.

4.6.4 Unary Adding Operators 4-18

e e V. o oML - AT .

A . & A

. A 8

- s X e . oz . - -

¢ s cwmm -

Names and Expressions

Operator Operation Operand type Result type
+ identity any numeric type same numeric type
- negation any numeric type same numeric type

References: numeric type 3.5, uperation 3.3, oparator 4.6, predefinad opurator 4.6, type 3.3

4.5.6 Multiplying Operators

The operators « and / are pradefined for any integer and any floating point type an:: have their con-
ventional meaning; the operators mod and rem are predefined for any integer type. For each of
these operators, the operands and the result have the same base tyre. For floating point types, the
accuracy of the result is determined >y the operand type (see 4.5.7).

Operator Operation Opurand type Result type
> multipilc: tion any integer type same integer typo
any foating point type same floating point type
/ intager division any Integer type same integer type
fi ating division any floating point type sama floating g int type
mod rmodulus any Integer type samu ntegsr typo
rem remainder any Integer type sarne integer type

Integer division and ramginder are defined by the relation
A = (A/B)+«B + (A rem B)

where (A rem B) has the sign of A and an absolute value less than the absolute vilue of B. Integer
division satisfies the identity

(-A)/B = -(A/B) = A/-B)
The result of the modulus operation (s such that (4 mod B) has the sign of B ond an absolute value

less than the absolute value of B; In addition, for scine integer value N, this result must satisfy the
relation

A = BsN + (A mod B)

For each fixud point type, the following multipiication and division operators, with an operand of
the predefined type INTEGER , are pradefined.

Oparator Oparation Left operand type Hiuht operand type Rasult type

» multiplication any fixed p»int wps INTEGER same as ieft
INTEGEA any fixed point type same as right

/ division any fixed point type INTEGER same as left

4-17 Multiplying Operators 4.5.6

e
[N

ANSI/MIL-STD-181564 Ada Refsrenca Manual

Integer multiplication of fixed point values Is equivalent to repeated addit.on. Division of a fixed
point value by an Integer does not involve a change in type but is approximate (see 4.6.7),

Finally, the following multiplication and division operators are daclared in the predefinad package
STANDARD. These two special operators apply to operands of all fixed point types (it is a conse-
quence of other rules that they cannot be renamed or given as generic actual parameters).

Operator Operation Left vperand type Right operand type Result type
" multiplication any fixed point type any fixed point type univarsal_fixed
/ diviston any fixed point iype any flxed point type universai_fixed

Multiplication of operands of the same or of d'fferent fixed point types is exact and delivers a resuit
of the anonymous predefinad fixed point typs universal_fixed whose delta is arbitrartly small. The
reault of any such multiplication must always be explicitly converted to some numeric type, This
ansures explicit control of the accuracy of the computation. The eame considerations apply to divi-
sion of a fixed point value by anothar fixed point value, No other operators are defined for the type
universal_fixed.

The exception NUMERIC_ERROR Is raised by integer division, rem, and mod if the right operand is
zeru,

Examplas:
I i INTEGER e 1;
J ! INTEGER '= 2;
K INTEGER = 3;
X : REAL digite 8 = 1.0; - see 3.5.7
Y : REAL digits 0 ;= 2.0;
F : FRACTION deita 0.0001 := 0.1; -~ see 3.69
G : FRACTION delta 0.0001 =~ 0.1;
Exprassion Velue Result Type
Ird 2 same as | and J, that s, INTEGER
YA 1 same as K and J, that is, INTEGER
K mod J i same as K and J, that is, INTEGER
XN 0.6 same as X and Y, that Is, REAL
F/2 0.08 same as F, that s, FRACTION
InF 03 same as F, that (s, FRACTION
FaG 0.01 universal_fixed, conversion needed
FRACTION(F«QG) 0.01 FRACTION, as stated by the conversion
REAL(J)«Y 40 REAL, the type of both operands after conversion of J

4.6.5 Muitiplying Operators 4-18

Names ana Expressions

T ..

) Notes:

” For positive A and B, A/B is the quatient and A rem B is the remainder when A is divided by B. The "
following relations are satisfied by the rem operator:

. A rem (-B) = A rem B

- ~A) rem B = (A rem B)

For any integer K, the following identity holds: 15

i A mod B = (A 4 K«B) mod B

- The relations between integer division, remaincier, and modulus are lllustrated by the following 16
table:

. A B A/B AremB AmodB A B A/B Arem8B Amod B

i 10 B 2 0 0 10 6 -2 0 0

: N] 2 1 1 -1 6 -2 -1 4

' 12 6 2 2 2 -12] -2 -2 3

3 13 b 2 3 3 -13 6 -2 -3 2

;-: 14] 2 4 4 -14 6 -2 -4 i

10 5 2 0 0 10 6 2 0 0

g 11 6 -2 1 -4 -1 B 2 -1 -1

- 12 -5 -2 2 -3 -12 -5 2 -2 -2

g 13 -b -2 3 -2 -13 8 2 -3 -3

N 14 5 -2 4 -1 -14 -5 2 -d4 -4

References: actual psrumeter 8.4.1, base type 3.3, declaration 3.1, deita of a fixed point iype 3.6.9, fixed point type 1

' 3.6.9, fioating point type 3.8.7, generic formal subprogram 12.1, Integer typs 3,5.4, numarlo type 3.8, numerlc_arror
sxcaption 11,1, pradefiried operstor 4.5, raising of axcaptions 11, renaming declaration 8.6, standard predefined

package 8.8, type conversion 4.8

! 4.5.8 Highest Precedence Operators

The highest precedence unary operator abs Is predetined for any numeric type. The highast |
. precedence unary operator not is predefined for any boolean type and any one-dimensional array
i type whose components have a boolean type,

u' Operator Operation Operand type Rasult type F
::: abs absolute value any numeric type same numatic type
“jf not logical negation any boolean type same boolean type

array of boolean components same array type

'! The operator not that applies to a one-dimensionai array of boolean components ylulds a one- 3
dimensional boolean array with the same bounds: each component uf the result is ohtained by
logical negation of the correaponding componarnt of the operand (that is, the componant that has

the same index value).

4-19 Highest Precedence Oparators 4.5.6

-«
b
e
)
\)
X
L

.
5,
l
4
4
4

sy

0 -

ANSI/MIL-STD-1815A Ada Reference Manual

The highest pracedence exponentiating operator »x Is predefined for each integer type and for
each fioating point type. In either case the right operand, callad the exponent, is of the predefined

type INTEGER.

Oparator Operation Left operand type Right operand type Result type
e e exponentiation any Integer type INTEGER same as left
any ‘loating point type INTEGER same 8s left

Exponentiation with a positive sxponent Is squivalent to repeated multiplication of the left opsrand
by itself. as indicatad by the exponarit and from left to right. For an opsrand of a floating point type,
the exponant can be negsative, In which case the value Is the reciprocal of the value with the
positive exponent. Exponentiation by a zero exponent dalivers the alue one. Exponentiation of a
value of a floating point type is approximate (see 4.5.7). Exponentiation of an integer ralses the
exception CONSTRAINT_ERROR for a negative exponent.

References: array type 3.8, boolean typs 3.5.3, bound of an array 3.6.1, componant of an array 3.8, constraint_error
exception 11,1, dimensionality 3.8, floating point type 3.6.8, index 3.8, integer type 3.5.4, multiplication operation
4.6.6, predefined oparator 4.5, raising of exceptions 11

4.5.7 Accuracy of Operations with Real Operands

A real subtype specifies a set of model numbers. Both the accuracy required from any basic or
precefined operation glving a real result, and the result of any predefined relation between real
operands are defined in terms of these model numbers.

A model interval of a subtype Is any Interval whose bounds are model numbers of the subtype. The
model interval associated with & valuns that belongs to a real subtype lu the smallest model interval
{of the subtype) that Includes the value. (The model interval assuciated with a model number of a
subtype conslista of that number only.)

For any basic operation or predefined operator that yields a result of a raal subtype, the required
bounds on the result are given by & model Interval defined as tollows:

® The rasult modsl interval is the smallast model intarval (of the result subtype) that includen
the minimum and the maximum of all the values obtained by applying the (exact)
mathematical operation, when sach operand s given any value of the model interval (of the
operand subtype) defined for the operand.

¢ The model Interval of an operand that is itself the result of an operatlon, oti.ar than an implicit
converslon, I8 the result model interval of this pperation,

® The model interval of an operand whose valua is obtalnad by implicit conversion of a universal
axpression |8 the model Interval associated with this valus within the operand subtype,

The result model Interval is undefined If the absolute value of one of the above mathematical
results exceads the |largest safe number of the result type. Whenever the rasult model Interval is
undefinad, it Is highly desirable that the exception NUMERIC_ERROR be ralsed i the
implemantation cannot produca an actual result that is In the range of safe numbaers, This s,
howevaer, not required by the language rules, In recognition of the fact that certain target imachines
do not permit easy detection of overfiow situations. The wvalue of the attribute
MACHINE_OVERFLOWS Indicates whather the torget machine raises the exception
WUMERIC_ERROR In overflow situations {see 13.7.3).

4.6.7 Accuracy of Operations with Real Operands 4-20

Namaes and Expressions

=i

" The safe numbers of a real type are defined (see 3.5.6) as a supersst of the mode! numbers, for 8
¥ which error bounds follow the same rules as for model numbers, Any definition given in this sec-

X tion in terms of model intervals can therefore be exiended to safe intervals of safe numbers. A

R consequence of this extension Is that an implementation is not allowed to raise the exception N
{ NUMERIC.__ERROR when the result interval iz a safe interval, ' 9

! For the result of exponentlation, the model interval detining the bounds on the result is abtained by 9
" applying the above rules to tI.» sequence of multiplications defined hy the exponent, and to the
final division in the case of a negative expcnent,

For the result of a relation between two real operands, consider for each operand the model inter- 10
val {of the operand subtype) defined for the operand; the result can be any value obtained by

" applying the mathematical comparison to vaiues arbitrarily chosen in the corresponding operand
mode! intarvals. If either or both of the operend modol iintervals is undefined (and if neithet of the

, operand evaluations raises an exception) then the result of the comparison is allowed to be any

-»i possible value (thut i3, either TRUE or FALSE),

The result of a membership test is defined in terms of comparisons of the operand value with the 1 N
lower and upper bounds of the given range or type mark (the usual rules apply to these com- SAAI
parisons). \

ST A

Note:

oy - &

- &

For 8 floating point type the numbars 16.0, 3.0, and 5.0 are always modal numbers. Hence X/Y 0 h",i" Rl
where X equals 15.0 and Y equals 3.0 ylelds exactly 5.0 according to the above rules. In the e
gon7ra| case, division does not yiald model numbars and in consequance one cannot assume thut
(1»0 x)'"x = 1001

Feferances: attribute 41,4, basic operation 3.3.3, bnund of u range 3.5, error bound 3.5.8, exponentiation operation 13 A P
v 4.5.8, falue boolean value 3.8.3, floating point typs #.8.9, machine_overfiows sttribute 13.7.1, membership tost P -
B 4.5.2, modsl number 3,8.8, muliiplication operation 4.8.8, numeric_error axception 11.1, pradefined operation 3.3.3, IR
raising of exceptions 11, range 3.5, real type 3.8.8, relation 4.4, relational operator 4.5.2 4.5, safe number 3.6.8, sub- AN

type 3.3, trus boolean value 3.5.3, type conversion 4.8, type mark 3.3.2, universal expression 4,10 G

X 4.6 Type Conversions

The evaluation of an explicit type conversion evaluates the expreasion given as the operand, and '
' converts the resuiting value to a specified target type. Explicit type conversions are allowad
betweer: closely related types as defined below.

L.’ et ol

type_conversion := type_mark{expression) ?

P

The tarnet type of a type conversion s the base type of the type mark. The type of the operand of a 2

type converaion musi be determinable Independantly of the context (I particular, independently of e
the targat type). Furthermore, the operand of a type conversion ls not allowad to be a literal null, an Y
& allocator, an aggregate, or a string literal; an expression enclosed by parentheses s allowed as the o
operand of a4 type conversion only If the expression alone s allowed.

e = !
AR i B4 -4

. A convarsion to a subtype consists of a converaion to the target type followsd by a check that the 4
. result of the converslon belongs to the subtype. A conversion of an operand of a given type to the
. type Itself |a allowed, L.

4-21 Type Conversions 4.6

‘ L] ". v
‘ ' Tt e . f . . .
ot gl o g ity ok e o B b e R b Rare amrc Pa Ve e e 9 I T P T R R S T T T N A S S S N R T T

ANSIMIL-STD-181EA Ada Referance Manuat

The other allowed explicit type conversions corraspond to the following thres cases:
{a) Numerig types

The operand can be of any numeric type; the value of the operand is ¢anverted to the target
type which must also be a numaeric type. For conversions involving reai types, the result is
within the accuracy of the spenified subtype (see 4.5.7). The conversion of a real valug to an
integer type rounds to th.e nearest Integer: it the operand is halfway hetween two integers
{within the esccuracy of the real subtype) rounding may be either up or down,

(b} Derlved types

The conversion is allowed if one of the target type and thy operand type Is darived frum the
other, directly or indirectly, or if thare exists a third type from which hoth types are derived,
directly or indirectly.

{c) Array types

The conversion Is allowed if the operand type and the target type dre array tyj.es that satisfy
the following conditions: both types must have the seme dimensionality; fur each indax posi-
tion the index types must either be the same or be convertibly to each other; the componant
types must be the same; finally, If the component type is a type witi discrimina~ts or an
accass type, the component subtypes must be sithar both constrained or both unconstiained.
If the type mark denotes an unconstrained array type, then, for each !ndex position, the
bounds of the result are obtalined by converting the bounds of the operand to thu cor-
responding index type of the target type. |f the type mark deriotes a constrained array subw-
type, then the bounds of the result are those impoyed by the type tnatk, In aither case, the
Xaluo)of aach componont of the rasult |a that of the matching cornponent of *he operand (set
5.2).

In the caae of conversions of numaeric typas and derived types, the exceptiorn CONSTHAINT_ERACR
is raised by thu evaluation of a type conversion If the result of the conversion fails to satisfy « con-
straint imposed by the type mark,

In the case of array types, a check Is made that any constraint on the componont subtyt » is the
same for the oparand array type as for the iarget array type. it the type mark denotes an
unconstrainad array type and If the cperand Is not a null array, then, for each index position, a
chack I8 made that the bounde of the resuit belong to the corresponding index subtype of thy
target typa, If the typs mark denotes a constraliiad arrey subtype, a chack is made that for sach
comy.onent of the operand there is a matching component of thu target subtype, und vice versa.
The exception CONSTRAINT_ERROR Is raised If any of these checks falis.

It a conversion is allowed from one typu to anather, the reverse conversion is also allowed. This
reverse convarsion is used whare an actual parameter of mocde In out or out has the form of a type
conversion of a (variable) name as explained In section 8.4.1,

Apart from the explicit type convaraioris, the oniy allowad form of type conversion Is tha implicit
conversion of a value of tha type universal_integer or universal_real into anoth-; numeric type. An
implicit conversion ot an operand of type universal_intager to another integur type, or of an
operand of type uiiversal_real to another raal typs, can only be applied If thr uprrand s either a
numaric literal, o named numbar, or an attribute; such an operand is carud a convertible universal
operand in this section, An Implicit conversion of a convertible universal oparand s applied if and
only If the Innarmost complete context (see 8.7) determines a unique (numaric) target type for the
implicit conversion, and thare ia no legal Intarpretation of this context without this convaersion,

4.6 Type Conversions 4.272

Names and Expressions

A ®
; Notes:

Tt s rules for implicit conversions imply that no Implicit conversion is ever applied to the operand of ua . '-.
: an explicit type conversion. Similarly, implicit conversions are not applied if both operands uf a o
' predefined relational operatci are convartible univarsal operands, ,
N The language allows Implicit subtype conversions in the case of array types (ses £.2,1). A explicit 16 g

type convarsion can have the afiect of a change of representation (in particular see 13.8). Explicit
conversions are also used for actual parameters (sie 6.4),

l Examples of numeric typs convarsion: 1" .
. REAL(ZwJ) -~ value is converted to floating point .
K INTEGER{1.8) - value Is 2 .

INTEGER(-0.4) -- value la O
Cxamgple or conversion between derived types: 1

type A_FORM Is ntw B.FORM;

X 1 ALFORM;
Y B.FORM;
- X e ALFORM(Y); | '
! Y = B_FORM(X); -- the reversn convursion Lo v
Examplas of conversions between array types: W
! typo SEQUENCE le aray (INTEGER range <>) of INTUGER: BN
subtype DOZEN (w SEQUENCE(Y ., 12); SR
i LEDGER ! wreay(! .. 100) of INYEGER; L
. A
‘ SEQUENCE(LEDGER) = bounds are those uf LEDGER ‘ '
2 SEQUENCE(LEDGER(31 .. 42)) - bounds are 31 and 42
g DOZEN(LEDGER(31 .. 42)) == bounds are those of DOZEN
I' Examples of Impllclt conversions: 2 :
X ! INTEGER := 2,
X+ 1 + 2 - Impllet converslon of sach Integer literal
1 4+ 2 + X -- impllclt conversion of each Iintoger litarol .
X 41 4+ 2) -« Iimpllalt converslon of each Intager literal N
" 2 o (1 4 1) == no Implicit conversion: the type Is universal_integer . 0
» A'LENGTH = B'LENGTH -~ no Implicit conversion: the type |s universal_integer
. C : conetant ;= 3 + 2. - no Impliclt . ~nversion: the type la univarsal_integer
‘- X 3 and 1w 2 -+ Implolt conversion of 3, but not of 1 and 2
! References: aciual paramatar 8.4.1, array typs 3.0, attrlbute 4.1.4, hose typa 3.3, belong to 4 subtyps 2.3, 2N . L
' component 3.3, constrained array subtype 3.8, conatraint_error excsption 11.1, derived typs 3.4, dimension 3.6,
exprension 4.4, flonting polnt type 3.8.7, index 3.8, Index aubtype 3.8, index type 3.8, integer typs 3.5.4, mutching B
component 4,.8.2, mode 6.1, name 4,1, namad number 3.2, null array 3.8, 1, numerlic literal 2.4, numaric type 3.8, rais- '
ing of excaptions 11, real type 3.5.6, representation 13.1, atatemant 8, subtype 3.3, type 3.3, type mark 3.3.2,
. unconatrained array type 3.6, universal_integer type 3.5.4, universal_real type 3.6.6, varlable 3.2.1 :
9

4-23 Type Conversions 4.6

ANSI/MIL-STD-1815A Ada Reference Manual

4.7 Qualified Expressions)
1 A qualified expression is used to state explicitly the type, and possibly the subtype, of an operand
that is the given expression or aggregate. ’
2 qualified_sxpression ::= .)
type_mark'{expression} | type_mark'aggregate R
3 The operand must have the same typse &s the base type of the type mark. The value of a qualified
expression is the value of the operand. The evaluation of a qualified expression evaluates the L
operand and checks that its value belongs to the subtype denoted by the type mark, The exception N)

CONSTRAINT_ERROR Is raised Iif this check fails.
‘. Examplas.

type MASK is (FIX, DEC, EXP, SIGNIF);
type CODE is (FIX, CLA, DEC, TNZ, SUB});

PRINT (MASK'(DEC)); -- DEC is of type MASK

PRINT (CODE'{DEC)); - DEC ie of type CODE

for J in CODE'(FIX) .. CODE'(DEC) loop .. -- qualification needed for either FIX or DEC
for J in CODE range FIX .. DEC loop .. -- qualification unnecessary

for J in CODE'(FIX) .. DEC loop .. -- qualification unnecessary for DEC

DOZEN'(1 | 3| 6 | 7 => 2, others => 0) -- see 4.6

Notes:

5 Whengver the type of an enumeration litaral or aggregate is not known from the context, a quali-
fied expression can be used to state the type explicitly. For example, an overioaded enumeration
literal must be qualified in the following cases: when given as a parameter in a subprogram call to
an overloaded subprogram that cannot otharwise be identifled on the basis of remaining parame-
ter or result types, in a relational sxpression where both operands are overloaded enumaeration lite- AR
rals, or in an array or loop parameter range where both bounds are overloaded enumeration fite-
rals. Explicit qualification is also used to specify which one of a set of overloaded paramaeterless -
functions |s meant, or to constrain a value to a given subtype. SR

‘-ﬁ;: 8 References: aggregate 4,3, array 3.8, base type 3.3, bound of a range 3.5, constraint_error axception 11.1, context of
s overload resolution 8.7, enumeration literal 3.6.1, expression 4.4, function 6.5, loop parameter 6.5, overloading 8.5, R
ot raising of excaptions 11, range 3.3, relation 4.4, subprogram 8, subprogram call 6.4, subtype 3.3, type 3.3, type mark ;.‘{-f
o 3.3.2 .
e :
. 4.8 Allocators R
! 1 The evaluation of an allocator creates an object and yields an access value that designates the .
- object.
H allocator =

. new subtype_indication | new qualified_expression

-

4.8 Allocators 4-24

&« § ORI
A AR

Names and Expressions

The type of the object created by an allocator is the base type of the type mark given in either the
subtype indication or the qualified expression. For an ailocator with a qualifiad expression, this
expression defines the initial value of the created object. The type of the access value returned by
an allocator must be determinable solely from the context, but using the fact that the value
returned is of an access type having the named designated type.

The only allowed forms of constraint in the subtype indication of an allocator are index and dis-
criminant constraints, If an allocator includes a subtype indication and if the type of the objact
created is an array type or a type with discriminants that cdo not have default expressions, then the
subtype indication must either denote a constrained subtype, or include an explicit index or dis-
criminant constraint.

If the type of the created object is an array type or a type with discriminants, then the created
object is always constrained. If the allocator includes a subtype indication, the created object Is
constrained either by the subtype or by the default discriminant values. |f the aliocator includes a
qualified expression, the created object is constrained by the bounds or discriminants of the initial
value. For other types, the subtype of the created object is the subtype defined by the subtype
indication of the access type definition.

For the evaluation of an allocator, the elahoration of the subtype indication or the evaluation of the
qualifled expression is performed first. The new object is then created. Initializations are then per-
formed as for a declared object (see 3.2.1); the Initialization is considered explicit in the case of a
qualified expression; any initializations are impli¢it in the case of a subtype Indication. Finally, an
access value that designates the created object is returned.

An Implementation must guarantee that any object created by the evaluation of an allocator
remains allocated for as long as this object or one of its subcomponents is accessible directly or
indirectly, that is, as long as It nan be denoted by some name. Moreover, if an object or one of ita
subcnmponents belongs to a task type, it is considered to be accessible as long as the task Is not
terminated. An implementation may (but need not) reclaim the storage occupied by an object
created by an allocator, once this object has become inaccessible.

When an application needs closer control over storage allocation for objects designated by values
of an access type, such control may be achieved by one ar more of the following means:

{a) The total amount of storage avallable for the collection of objects of an access type can be set
by means of a length clause (see 13.2).

{b) The pragma CONTROLLED informs the implementation that automatic storage reclamation
must not be performed for objects designated by values of the access type. except upon leav-
ing the innermost block statement, subprogram body, or task body that encloses the access
type declaration, or after leaving the main program.

pragma CONTROLLED (access_type_simple_name);

A pragma CONTROLLED for a pglven access type Is allowed at the same places as a
rapresentation clause for the type (see 13.1). This pragma Is riot allowed for a derived type.

{c) The explicit deallocation of the coject designated by an access value can be achieved by call-
ing a procedure obtained by instantiation of the predefined generic library procedure
UNCHECKED_DEALLOCATION (see 13.10.1),

The exception STORAGE_ERROR is raised by an allocator If there is not enough storage. Note also

that the exception CONSTRAINT_ERROR can be raised by the evaluation of the qualified
expression, by the elaboration of the subtype Indication, or by the initializatlon.

4-25 Allocators 4.8

" VPR

7

ANSI/MIL-STD-1815A Ada Reference Manual

Examples (for access types declared in section 3.8).

new CELL'(O, null, null) -~ initialized explicitly

new CELL(VALUE => 0, SUCC => null, PRED => null) -- initialized explicitly

new CELL -- not initialized

new MATRIX(1 .. 10, 1 .. 20) -- the bounds only are given
new MATRIX(1 . 10 => (1 .. 20 => 0.0)) -~ [nitialized explicitly

new BUFFER(100) -~ tha discriminant only is given
new BUFFER'(SIZ:- => 80, POS => 0, VALUE => (1 .. 80 => 'A’)) -- Initialized explicitly

References: access typs 3.8, access type definition 3.8, access value 3.8, array type 3.6, block statsment 5,6, bound
of an array 3.6.1, collection 3.8, constiained subtype 3.3, conatraint 3.3, constraint_error axception 11,1, context of
overload resolution 8.7, derived type 3.4, designate 3.8, discriminant 3.3, discriminiant constraint 3.7.2, elaboration
3.9, evaluation of a qualified expression 4.7, generic procedure 12.1, Index constraint 3.6.1, initial vaiue 3.2.1,
initialization 3.2.1, instantiation 12.3, length clause 13.2, library unit 10.1, main program 10.1, name 4,1, object
3.2.1, object declaration 3.2.1, pragma 2.8, procedure 6, qualified exprassion 4.7, raiaing of exceptions 11, represen-
tation clause 13.1, simple name 4.1, storage_error exception 11.1, subcomponent 3.3, subprogram body 6.3, subtyps
3.3, subtype indication 3.3.2, task body 9.1. task type 9.2, terminated task 9.4, type 3.3, type declaration 3.3.1, type
mark 3.3.2 type with discriminants 3.3

4.9 Static Expressions and Static Subtypos

Certaln expressions ot a scalar type are said to be stat/c. Similarly, certain discrete ranges are sald
to be static, and the type marks of certain scalar subtypes are said to denote static subtypes.
An sxpression of a scalar type is said to be static if and only if every primary is one of those listed in
{a) through (h) below, every operator denotes a predefined operator, and the evaluation of the
expression delivers a value (that is, It does not raise an exception):

(a) An enumaeration literal (including a character literal).

(b) A numeric literal.

(¢} A named number.

{d) A constant explicitly declared by a constant declaration with a static subtype, and Initialized
with a static expression.

(e) A function call whose function name is an operator symbol that denotes a predefined
operator, including a function name that is an expanded name; each actual parameter must
also be a static expression.

(f) A language-defined attribute of a static subtype; for an attribute that is a function, the actual
parameter must also be a static expression.

4.9 Static Expressions and Static Subtypes 4-28

OGRS SO VIO PPN SO WO SIS WP WPUN VU, SR WU TP - WP GODINE. YU WP, WU PPN S0 SO0 TPAUE STt ST WP A0 . R A S s Ui O S S SO VOV TPV

a .
' :'J;‘!i_,,l. e

.- ‘,‘
N
“

-

AT

» = ¥ T &

PP X S I I

I A

Names end Exprassions

(g) A qualified expression whose type mark denotes n static subtype and whose operand is a
static exprassion.

{h} A static expression enclosed in parentheses.

A static range is a range whose bounds are static oxpressions. A static range constraint is a range
constraint whose range is static. A static subtype Is either a scalar base type, other than a generic
formal type; or a scelar subtype farmed by Imposing on a static subtype either a static range con-
straint, or a floating or fixed point constraint whose range constraint, if any, is static. A static dlis-
crete range is aither a static subtype or a static range. A static index constraint is an index con-
straint for which each index subtype of the corresponding array type is static, and in which each
discrete range is static. A static discriminant constraint is a discriminant constraint for which the
subtype of each discriminant is static, and in which each expression Is static.

Notes:

The accuracy of the evaluation of a static expression having a real type is defined by the rules given
in section 4.5.7. If the result Is not @ model number (or a safe number) of the type, the value
obtained by this evaluation at compilation tirne need not be the same as the valuae that would be
obtained by an evaluation at run time.

Array attributes are not static: in particular, the RANGE attribute Is not static.

References: actual parametsr 6.4.1, attribute 4,1.4, base type 3.3, bound of a range 3.5, character literal 2.5,
constant 3.2.1, constant daclaration 3.2.1, discrete range 3.6, discrete type 3.5, anumeration literal 3.5.1, exception
11, expression 4.4, function 8.5, generic actual parameter 12.3, generic formal type 12,1.2, implicit declaratior; 3.1,
initialize 3.2.1, model number 3.6.8, named number 3.2, numeric literal 2.4, predafined upurator 4.5, qualitled expras-
sion 4.7, raising of exceptions 11, range constraint 3.5, safe number 3.56.8, scalar type 3.5, subtype 3.3, type mark
3.3.2

4.10 Universal Expressions

A universal_exprassion is eithar an expression that delivers a result of type universal_integer or
one that delivers a result of type un/versal_real.

The same operations are predefined for the type universal_integer as for any integer type. The
same operations are pradefined for the type universa/_real as for any floating point type. In addi-
tion, these operations include the following multiplication and division operators:

Operator Operation Left operand type Right operand type Result type

multiplication universal_real universal_integer universal_real
universal_inteper universal_real universal_real

/ divigion universal_real universal_integer universal._real

The accuracy of the evaluation of a universal expression of type universal.real is at least &s good
as that of the most accurate predefined floating point type supported by the implementation, apart
from universal_real Itself. Furtharmoro, If a universal expression Is a static expression, then the
gvaluation must be exact.

4-27 Universal Exprassions 4.10

10

ANSI/MIL-STD-1815A4 Ada Reference Manual

5 For the evaluation of an operation of a nonstatic universal expression, an implementation is
allowed to raise the exception NUMERIC_ERROR only if the result of the operation is a real value
whose absolute value exceeds the largest safe number of the most accurate predefined floating
point type (excluding universal_real), or an Integer value greater than SYSTEM .MAX_INT or less

3 than SYSTEM .MIN_INT. e
. Note:
j“j" s It is 8 consequence of the above rules that the type of a universal expression is universal_integer i
- cvery primary contained in the expression is of this type (excluding actual parametars of attributes .
‘ that are functions, and excluding right operands of exponentiation operators) and that otherwise T e
n the type is universal_real.
1 Examples:
- 1+ -2 SR
‘. abs(-10)+3 -- 30 e
N KILO : constant := 1000; :
b MEGA : constant = KILOXKILO; -- 1_.000.000
. LONG : constant :== FLOAT'DIGITS#2;
HALF_PI ! constant := PI/2; - sse 3.2.2
b DEG.TO_RAD : constant := HALF_PI/90; v gy
0 RAD_TO_DEG : oonstant := 1.0/DEG_TO_RAD; -- equivaient to 1.0/((3.14159_28536/2)/90) L
.::] Referances: actual peramster 8.4.1, attribute 4.1.4, evaluation of an expression 4.6, floating point type 3.5.9, ‘ "
o function 6.5, Integer typs 3.6.4, multiplying operator 4.6 4.6.5, predefined operation 3.3.3, primary 4.4, real type o
B 3.5.6, safa number 3.5.8, system.max.int 13,7, system.min_int 13.7, typo 3.3, univarsal_integer type 3.5.4, univer- S .
. sal._real type 3.6.8 . ‘.
L. »
o —
4l o
1 4.10 Universal Expressions 4-28

5. Statements

A statement defines an action to be performed; the process by which a statement achieves its
action is called execution of the statement.

This chapter describes the generai rules applicable to all statements, Some specific statements are
discussed In later chapters. Procedure call statements are described in Chapter 6 on suburograms,
Entry call, delay, accept, select, and abort statements are described in Chapter 9 on tz sks. Raise
statements are described in Chapter 11 on exceptions, and code statements in Chapter 13, The
remaining forms of statements are presented in this chapter

References: abort statemsnt 9.10, accept statement 9.5, code statement 13.8, delay statement 9.8, entry call
statemeant 9.5, procedure call statement 8.4, raiss statement 11.3, select statement 9.7

5.1 Simple and Compound Statements - Sequences of Statements

A stateinent is elther simple or compound. A simple statement encloses no other statemant. A
compound statement can encloss simple statements and other compound statements.

sequence_of_statements = statement {statament}

statement =
| label} simple_statement | {label} compound_statement

simple_statement = null_statement

assignment_statement | procedurs_call_statement
| exit_statament return_statement
| goto_statement antry._cali_statement
| delay_statament abort_statement
| ralse_statement code_statoment
compound_statement =
If _statemant case_statement
| loop_statament block_statament
| accept_statement select_atatement
label := <</abel/_simple_name>>
null_statement ::= null;

A statement is said to be /abe/ed by the label name of any label of the statement. A label name,
and similarly a loop or block name, |s Implicitly declared at the end of the declarative part of the
innermost block statemant, subprogram body, package body, task body, or generic body that
encloses the labeled statement, the named loop statement, or the named block statament, as the
case may be. For a block statement without a declarative part, an implicit declarative part (and
preceding declare) Is assumaed.

5-1 Simple and Compound Statements - Sequences of Statements 5.1

ANSI/MIL-STD-1815A Ada Reference Manual

4 The implicit declarations for diffarent label namas, loop names, and block names occur in the same
order as the baginnings of the corresponding labeled statements, loop statements, and biock state-
ments. Distinct identifiars must be used for all label, loop, and block names that are implicitly

. declared within the body of a program unit, including within block statements enclosed by this

'ﬂ body, but excluding within other enclosed program units (a program unit is either a subprogram, a

AT package, a task unit, or a generic unit).

. L,;A:A'_L;A'.jn.! R

5 Execution of a null statement has no other effect than to pass to the next acti~ .. -I:';:Il
6 The execution of a sequence of statements consists of the execution of the Individual statements }
in successlon until the sequence is completed, or a transfer of control takes place. A transfer of " .

controi is caused either by the execution of an exit, return, or goto statement; by the selection of a
terminate alternative; by the raising of an exception; or (indirectly) by the execution of an abort
statement.

W ? Examples of labeled statemaents.

£

<<HERE>> <<ICI>> <<AQUID> <<HIER>> null;
<<AFTER>> X = 1;

s
- %

> ¥ B & & 2
St

:'..-‘ Note:
:) 8 The scope of & declaration starts at the place of the declaration itself (see 8.2). In the case of a
Ry label, loop, or block nama, it follows from this rule that the scope of the implicit declaration starts

before the first explic/t occurrence of the corresponding name, since this occurrence is sither in a
statement label, a loop statement, a block statement, or a goto statement. An implicit declaration
in a block statement may hide a declaration given in an outer program unit or block statament (ac-
cording to the usual rules of hiding explained in section 8.3).

N 9 References: abort statement 9.10, accept statement 9.8, assignment statement 5.2, block name 5.8, block
e statemant 5.8, case statement 5.4, code statemant 13.8, declaration 3.1, daciarative part 3.9, delay statement 9.8,
-'_:‘\ entry call statement 9.5, exception 11, exit statement 6.7, generic body 12,1, generic unit 12, goto statement 5.9,
"‘-".' hiding 8.3, Iidentifier 2,3, If statement 8.3, implicit declaration 3.1, loop name 5.6, loop statement 5.5, package 7,
o package body 7.1, procsdure call statement 6.4, program unit 6, raise statement 11.3, raising of exceptions 11, return
“ statemunt 5.8, scope 8.2, select statement 9.7, simple name 4.1, subprogram 8, subprogram body 8.3, task 9, task

body 9.1, task unit 8.1, tarminate alternative 9.7.1, terminated task 9.4

5.2 Assignment Statement

:) An assignment statement replaces the current value of a variable with a new value specified by an
! expression, The named variable and the right-hand side expression must be of the same type; this
' type must not be a limited type.

N e - . - . . .

RN . i B ; I

2 assignmant_statement =
varlab/e.name = expression;
::W-;') For the execution of an assignment statement, the variable name and the expression are first T
o avaluated, in some order that is not defined by the language. A check is then made that the value |
e of the expression bslongs to the subtype of the variable, except in the case of a varlable that Is an |
* e array (the assignmant then Involves a subtype conversion as dagcribed in section 5.2.1). Finally,
.’ the value of the expression becomes the new value of the variable. . ‘1‘
» 5.2 Assignment Statement 5-2 1
1 o

PR e N N R R R T IR ST I R 11

N L CR “ " o .
“u el VW b LA YRR

Statements

The exception CONSTRAINT_ERROR Is raised if the above-mentioned subtype check falls; in such a
case the current value of the variable is left unchanged. If the variaktle is a subcomponent that
depends on discriminants of an unconstrained record variable, then the execution of the assign-
ment is erroneous if the value of any of these discriminants is changed by this execution,

Examples. .

VALUE = MAX_VALUE - 1;

SHADE :== BLUE;
NEXT_FRAME(F)(M, N) := 2.5; -- see 4.1.1
U := DOT_PRODUCT(V, W); -- see 6.6

WRITER := (STATUS => OPEN, UNIT => PRINTER, LINE_LCOUNY => 60); -- see 3.7.3
NEXT_CAR.all = (72074, null}: -- see 3.8.1

Examples of constraint checks:

. J : INTEGER range 1 .. 10;

K : INVEGER range 1 .. 20;

| = J; -- ldentical ranges

K = J; -- compatible ranges

J = K; - will raise the exception CONSTRAINT_ERROR If K > 10

Notes:

The values of the discriminants of an object designated by an access value cannot be changed (not
aven by assigning a complete value to the object itself) since such objects, created by allocators,
are always constrainad (see 4.8); howavar, subcomponents of such objects may be unconstiained.

If the right-hand side expression is either a numeric literal or named number, or an attribute that
ylelds & rasult of type universal_integer or univarsal_real, then an implicit type conversion is per-
formed, as describod in section 4.6,

The determination of the type of the variable of an agsignment statement may require consids:a-
tion of the expression if the variable name can be Interpreted as the namea of a variable designated
by the accese value returned by a function call, and similarly, as 8 component or slice of such a
variable (sea section 8.7 for the context of overload resolution).

References: access typa 3.8, allocator 4.8, array 3.8, array assignment 5.2.1, component 3.8 3.7, constraint._error
excaption 11.1, designete 3.8, discriminant 3.7.1, erroneous 1.8, evaluation 4.6, exprassion 4.4, function call 8.4,
impiicit type conversion 4.6, name 4.1, numeric litaral 2.4, object 3.2, overloading 6.6 B.,7. slice 4.1.2, subcomponant
3.3, subtype 3.3. subtypse conversion 4.8, type 3.3, universal_integer type 3.5.4, universal_real type 3.5.8, variable
3.241

B5.2.1 Array Assignments

If the variable of an assignment statement is an array variable (including a slice variable), the value
of the expression is implicitly converted to the subtype of the array variable; the result of this sub-
type conversion becomes the new value of the array variable,

6-3 Array Assignments 5.2.1

1

ANSI/MIL-STD-1815A Ada Reference Manual

2 This means that the new value of each component of the array variable is specified by the
matching component in the array value obtainad by evaluation of the expression (see 4.5.2 for the
definition of matching components). The subtype conversion checks that for each component of
the array variable there is 8 matching component in the array value, and vice versa. The exception o
CONSTRAINT_ERROR Is ralsed If this check falls; in such a case the value of each component of °
the array variable is left unchanged. -

N 3 Examples. -
o A : STRING(1 .. 31);
. B : STRING(3 . 33); Py
A = B, - same number of components
Al1 .. 8) = "tar sauce”;
A A4 . 12) = A1 .. 9); - A{1 . 12) = "tertar sauce” i
i e
H Notes: L
‘ Array assignment s defined even In the case of overlapping slices, bacause the expression on the
- right-hand side is evaluated befora performing any component assignment. In the above example,
, an implementation ylelding A(1 .. 12) = "tartartartar" would he iricorrect,
N
N B The implicit subtype conversion described above for assignment to an array variable is performed I
KX only for the value of the right-hand side expression as a whole; it is not performed for subcompo-
K nents that are array values,
. s Refersnces: array 3.8, asslgnment 5.2, conutraint_error exception 11.1, matching aray components 4.5.2, slice s
l 4.1.2, subtype conversion 4.8, type 3.3, variable 3.2.1 il
- 5.3 If Statoments
' ' An If atatement selects for execution one or none of the enclosed sequences of statements, h
' depending on the (truth) value of one or more corresponding conditions.
2 if_statement =
it condition then
. sequence..of _statements
R | elsit condition then -2
: sequence_of._staternents|
[alse
sequence_of_statements)
end If:
: condition 1= boolean_expression S
D, P .
3 An expression specifying a condition must be of a boolean type.
4 For the execution of an if statement, the condition specified after if, and any conditions specified

after elsif, are evaluated In si:ccession (treating a final else as elsif TRUE then), until one avaluates

to TRUE or all conditions are evaluated and yleld FALSE. If one condition evaluates to TRUE, then
D the corresponding sequaence of statements is executed. otherwise none of the sequeances of state- —
ments is axecuted.

8.3 If Statements b-4

Statements

Examples:

it MONTH == DECEMBER and DAY = 31 then

O MONTH := JANUARY;

‘ DAY = 1

YEAR = YEAR + 1;
ond if;

if LINE_TOO.SHORT then
raisa LAYOUT_ERROR;
elsif LINE_FULL then
NEW_LINE;
PUT{ITEM);
olse
PUT(ITEM);
end if;

it MY_CAR.OWNER.VEHICLE /== MY_CAR then -~ gee 3.8
REPORT ("Incorrect data”);
end if;

References: boolean type 3.5.3, evaluation 4.5, expression 4.4, saquence of statsments 5.1 s

5.4 Case Statements

A caese statement selacts for execution one of a number of alternative sequences of statemaents; 1
the chosen alternative Is defined by the value of an sxprassion.

cagse_statemant ;i= ? TS
case expression is R
case_statament_alternative
| casm._statement_alternative)
end case;

casu_statement_alternative iim D
when choice || aholce | => Bl
ssquence_of_statements '

The expression must be of a discrete type which must be determinable independently of the con- 1

text In which the expression occurs, but using the fact that the expression must be of a discrete

type. Moraover, the type of this axpression must not be a generic formal type, Each cholice In a

case statement altarnative must be of the same type as the expression; the list of cholces specifies
for which values of the expression the alternative is choaen,

If the expression is the name of an object whose subitype is static, then each value of this subtype 4
) must be represented once and only once in the aet of choices of the case statement, and no other
'. value is allowed; this rule is likewlse applied if the expression is a qualified axpression or type con- :
- varsion whose type mark danotes a static subtype. Otherwise, for other forms of expression, each B
value of the (base) type of the expression must be represented once and only once Iin the set of :
choices, and no other value s allowed.

5-5 Case Statements 5.4

L

X
PR

T

- -8 -8 w F v
> e = x-

S - |

rw

r

.
W

0

.

.

L}

N

.

»

.

R
e
w '

10

ANSIIMIL-STD-1815A Ada Refarence Manual

The simple expressions and discrete ranges given as choices in a case statement must be static. A
choice defined by a discrete range stands for all values in the corresponding range (none if a null
range). The choice others Is only allowed for the last alternative and as its only cholce; it stands
for all values (possibly none) not given in the choices of previous alternatives. A component simple
name is not allowed as a choice of a case statement alternative,

The execution of a case statement consists of the aevaluation of the exprassion followed by the
execution of the chosen sequence of statements.

Examples.

cuse SENSOR is
when ELEVATION => RECORD_ELEVATION (SENSOR_VALUE);
when AZIMUTH => RECORD_AZIMUTH (SENSOR_VALUE);
when DISTANCE => RECORD_DISTANCE (SENSOR_VALUE);
>

when others => null;

ond case;

cusa TODAY s
when MON => COMPUTELINITIAL_BALANCE;
when FR| => COMPUTE_CLOSING_BALANCE;

when TUE .. THU => GENERATE_REPORT(TODAY);
when SAT ., SUN => null:
ond case;

cuna BIN_NUMBER{COUNT' Is

when 1 => UPDATE_BIN(1):
whon 2 => UPDATE_BIN(2);
when 3 | 4 =>

EMPTY..BIN(1);

EMPTY..BIN(2);
when others > raise ERROR;
and case!

Notes:

The exacution of a case statement choosen one and only one alternative, since the cholces are
exhaustive and mutually exclusive, Qualification of the expression of a case statement by a static
subtype can oftan be used to limit the number of choices that need be given explicitly.

An others choice is required in a case statement if the type of the expression Is the type univer-
sal.integer (for example, if the expression is an integer literal), since this is the only way to cover
all values of the type universal_integer

References! baso typn 3.3, choice 3.7.3, context of overload resolutlon 8.7, discrate typa 3.8, expression 4.4,
function call 8.4, gunaric formal type 12,1, convarslon 4.8, diacrete typoe 3.6, enumeration literal 3.6.1, expression 4.4,
name 4.1, object 3.2.1, overloading 6.8 8.7, qualifiad expreasion 4.7, sequence of stataments 5.1, static diacrete
rango 4.9, static subtype 4.9, subtype 3.3, type 3.3, type conversion 4.6, type mark 3.3.2

5.4 Case Statements 5-6

.

Ao cais Ca acr -

BN
s *

et ea’a s al

Teaa o o L3

1
N

r ‘__
AN

T3

A anm Zae

P .o
s L ~ -
! a2 e an

1
4! e e sl :.'A

ax 2o a-a"a s

LI R}

C Lo

Statements

6.6 Loop Statements

A loop statement includes a sequence of statements that is to be sxacuted repeatadly, zero or
more times,

loop_statement :i=
[loop._simple_name:]
[iteration_schema] joop
saquance_of_statemants
end loop [/oop_simple_name);

iteration_schemsa := while condition
| for loop_parameter_specification

loop_paramater_specification ;=
identifier in [reverse] discrete_rangs

If a loop statament has a lcop simple name, this simple name must be given toth at the beginning
and at the and.

A loop statemeant without an iteration scheme specifies repeated execution of the sequence of
statemonts. Exacution of tho loop statement is complete when the loop is left as a consequence of
the execution of an ex|t statement, or as a consequence of some other transfer of control (see 5.1),

For a loop statement with a while iteration scheme, the condition is evaluated before each execu-
tion of the sequence of statements; if the value of the condition is TRUE, the sequence of
statements is executed, if FALSE the exacution of the loop statement is complste.

For a loop statement with a for iteration scheme, the loop paramater spacification is the declara-
tion of the loop parameter with the given identifler. The loop parameter is an object whose type is
the buse type of the discrete range (see 3.8.1). Within the sequence of statements, the loop
parameter is a constant. Hence a loop parameter is not allowed as the (left-hand side) varlable of
an assignmant statemaent, Similarly the loop parameter must not be given as an out or In out
parameter of a procedure or entry call statement, or as an In out parameter of a generic instantia-
tion,

For the execution of a loop statemant with a for iteration scheme, the loop parametar specification
is first elaboratad. This eluboration creates the loop parameter and evaluates the discrete range.

If the discrete range is a null range, the execution of the loop statement Is complete, Otherwise,
the sequence of stataments I8 exacuted once for each value of the discrete range (subject to Jn
loop not being left as a consequence of the execution of an exit statement or as a consequence of
some othar transfar of control). Prior to each such iteration, the corresponding value of the discrete
range is assigned to the loop parameter. These values are assigned in increasing order uniess the
reserved word reverse Is prasent, In which case the values are assigned in decreasing order.

Example of a loop statament without an lteration schema.

loop

GET(CURRENT_CHARACTER);

exit when CURRENT_CHARACTER = '»';
end loop;

5-7 Loop Statements 5.5

.

) I 1. .- . K1

»

s W P o ATE X
PR A

ANSI/MIL-STD-1815A Ada Reference Manual

Example of a Inop statement with a while iteration scheme:

while BID(N;.PRICE < CUT._OFF.PRICE loop
RECORD_BID(BID(N).PRICE};
N = N + §;

end loop;

Example of a loop statement with a for iteration scheme:

for J in BUFFFR'RANGE loop -- legal even with a null range
it BUFFER(J) /= SPACE then
PUT(BUFFER(J));
end if;
end loop;

Example of a loop statement with a loop simple name:

SUMMATION:
while NEXT /= HEAD loop -- see 3.8
SUM = SUM + NEXV.VALUE;
NEXT := NEXT.SUCC;
end loop SUMMATION;

Notes:

The scope of a loop parameter extende from the loop parameter specification to the end of the loop
statement, and the visibility rules are such that a loop parameter is only visible within the sequence
of statements of the loop.

The discrete range of a for loop is evaluated just once. Use of the reserved word reverse does not
alter the discrete range, so that the following iteration schemes are not equivalent; the first has a
null range.

for J in reverse 1 . O
for J in O .. 1

Loop names are also used in exlt statements, and in expanded names (in a prefix of the loop
parameter),

References: actual parameter 6.4.1, agsignment statement 5.2, base type 3.3, bound of a range 3.5, condition 5.3,
constant 3.2.1, context of overload resolution 8.7, conversion 4.6, declaration 3.1, discrete range 3.6.1, elaboration
3.1, entry call statement 9.5, avaluation 4.5, exit statement 5.7, expanded name 4.1.3, false boolean value 3.5.3,
generic actual paramaeter 12.3, generic instantiation 12.3, goto statement 5.9, identifier 2.3, integer type 3.6.4, null
range 3.5, object 3.2.1, prefix 4.1, procedure call 6.4, ralsing of exceptions 11, reserved word 2.9, return statement
6.8, scope 8.2, sequence of statements 5.1, simple name 4.1, terminate alternative 9.7.1, true boolean value 3.5.3
3.5.4. visibility 8.3

5.5 Loop Statements 5-8

0

-
CRPTSn,

.

.5 F e
P P

Ll 2553
B
E .

i - e
Pl
.

3,

Statements
6.6 Block Statements

A block statement encloses a sequence of statements optionally preceded by a declarative part
and optionally followed by exception handlers,

block_statement =
{block_simple_name:)
| declare
declarative_part)
begin
sequance_of_statements
| axception
exception_handler
| excaption_handler}]
end [block_simple_name];

if a block statament has a block simple name, this simple name must be given both at the beginn-
ing and at the end.

The execution of a block statement consists of the elaboration of its declarative part (If any) fol-
lowed by the execution of the sequence of statements. If the block statement has exception
handlers, these service corresponding exceptions that are ralsed during the execution of the
sequence of statements (see 11.2).

Example:

SWAP:
declare
TEMP : INTEGER;
begin
TEMP = V; V = U U = TEMP;
end SWAP;

Notes:

If task objects are declared within a block statement whose execution Is completed, the block
statement is not left until all its dapendent tasks are terminated (see 9.4). This rule applies also to
a completion caused by an exit, return, or goto statement; or by the raising of an exception.

Within a block statement, the block name can be used in expanded names denoting local entities
such as SWAP.TEMP In the above example (see 4.1.3 (f)).

References: declarative part 3.9, dependent task 9.4, exception handler 11.2, exit statement 5.7, exparided name

4.1.3, goto statement 5.9, raising of exceptions 11, raturn statement 5.8, sequence of statements 6.1, simple name
4.1, task object 9.2

5-9 Block Statements 5.6

ANIIVIIL-0TU-TTTOA Ada neterence ivianuai

6.7 Exit Statements ;
An exit statement is used to complete the execution of an enclosing loop statement (called the
loop in what follows); the completion Is conditionai if the exit statement includes a condition. ol

exit_statement ;.=
axit [/oop_name] [when condition];

An exit statement with = loop name is only allowed within the named loop, and applies to that

loop; an exit statement without a loop name ie only allowed within a loop, and applies to the S
innermost enclosing loop (whether named or not). Furthermore, an exit statement that applies to a K/
given loop must not appear within a subprogram body, package body, task body, generic body, or '
accept statement, if this construct is itself enclosed by the given loop.

For the execution of an exit statement, the condition, If present, Is first evaluated. Exit from the
loop then takes place If the value is TRUE or if there is no condition.

Examples:

for N in 1 .. MAX_NUM_ITEMS loop :
GET_NEW_ITEM{NEW_ITEM), a
MERGE_ITEM(NEW_ITEM, STORAGE_FILE}); DoV,
exit when NEW_ITEM = TERMINAL_ITEM; L.

end loop; o

MAIN_CYCLE:
loop
-~ Initlal stataments
exit MAIN_CYCLE when FOUND;
-- final statements '
end loop MAIN_CYCLE;

Note:
Several nested loops can be exited by an exit statement that names the outer loop.

References: accept statement 9.5, condition 6.3, evaluation 4.5, generic body 12.1, loop name 5.5, loop statemert
6.5, package body 7.1, subprogram body 6.3, true boolean value 3.5.3

5.8 Return Statements

A return statement is used to complete the execution of the innermost enclosing function,
procedure, or accept statement,

return_statement ;= return [expression);

A return statement is only allowed within the body of a subprogram or generic subprogram, or
within an accept statement, and applias to the innermost {enclosing) such construct; a return
statement Is not allowed within the body of a task unit, package, or generic package enclosed by
this construct (on the other hand, it is allowed within a compound statement enclosed by this con-
struct and, in particular, in a block statement).

5.8 Return Statements 6-10

S S A

s
T

TR VAT

at. LT eZllaTa

- - P
- s

A

ce_t_ 2

Statements

A return statement for an accept statemant or for the body of a procedure or generic procedure
must not Include an expression. A return statement for the body of a function or generic function
must include an expression.

The value of the expression defines the result returned by the function. The type of this expression
must be the base type of the type mark given after the reserved word return in the specification of
the function or generic function (this type mark defines the result subtype).

For the exacution of a raturn statement, the expression (if any) Is first evaluated and a check is
made that the value belongs to tne result subtype. The execution of the return statement is thereby
completed if the check succeeds; so also is the execution of the subprogram or of the accept
statement. The exception CONSTRAINT_ERROR Is raised at the place of the return statement if the
check fails.

Examples:

return; -- in @8 procedure
return KEY_VALUE(LAST_INDEX): -- In @ function

Note:

If the expression Is either a numeric literal or named number, or an attribute that yiaids a result of
type universal_integer or universal_real, then an implicit conversion of the result is performed as
described in section 4.6.

References: accept statement 9.5, attribute A, block statemant 8,6, constraint_error exception 11,1, expression 4.4,
function body 6.3, function call 8.4, generic body 12.1, implicit type conversion 4.6, named number 3.2, numeric
literai 2.4, package body 7.1, procedurs body 8.3, reserved word 2.9, result subtype 8.1, subprogram body 6.3, sub-
program specification 6.1, subtype 3.3, task body 9.1, typs mark 3.3.2, universal_integer type 3.6.4, universal_resl
type 3.6.6

5.9 QGoto Statements

A goto statement specifies an explicit transfar of control from this statement to a target statement
named by a label.

goto_statement ::= goto /ale/_name;

The innermost sequence of statements that encloses the target statement must also encliose the
goto statement (note that the goto statement can be a statement of an inner sequence). Further-
niore, if a goto statement Is encloged by an accept statement or the body of a program unit, then
the target statement must not be outside this enclosing construct; conversely, it follows from the
previous rule that if the target statement is enclosed by such a construct, then the goto statement
cannot be outside.

The execution of a goto statement transfers control to the named target statement.

5-11 Goto Statements 5.9

ANSI/MIL-STD-1815A Ada Reference Manual

K
ote: .
The above rules allow transfer of coritro! to a statement of an enclosing sequence of statements
but not the reverse. Similarly, they prohibit transfers of control such as between alternatives of a)
caso statemant, if statament, or select statemant: between exception handlers; or from an excep- e
tion handler of a frame back to the sequence of statements of this frame. .
Example:
< <COMPARE>> e
it Al < ELEMENT then .
it LEFT(l) /= O then
) = LEFT{l);
goto COMPARE;
ond If;
-- some statements e
end i . .
References: accept statement 9.5, block statement 5.8, case statcment 5.4, compound statement 5.1, exception a
handler 11.2, frame 11.2, generic body 12.1, if statement 5.3, label 5.1, package body 7.1, program unit 6, select .
statement 9.7, sequence of statements 5.1, statement 5.1, subprogram body 8.3, task body 9.1, transfer of contro! ' o %
B.1 e ;’
'\.._ .'.\‘ .
Lo
. »4._
.
N
|

5.9 Goto Statements 6-12

8. Subprograms

Subprograms are one of the four forms of program unit, of which programs can be composed. The
other forms are packages, task units, and generic units,

A subprogram is a program unit whose execution is invoked by a subprogram call. There are two
forms of subprogram: procedures and functions. A procedure call is a statement; a function cali is
an expression and returns a valus. The definition of a subprogram can be given in two parts: a sub-
program declaration defining its calling conventions, and a subprogram body defining its execu-
tion.

Referencos: function 8.6, function call 8.4, generic unit 12, package 7, procedure 6.1, procedure call 8.4, subprogram
body 6.3, subprogram call 8.4, subprogram declaration 8.1, task unit

6.1 Subprogram Declarations

A subprogram declaration declares a procedura or a function, as indicated by the initial reserved
word.

subprogram._declaration = gubprogram_specification;

subprogram..specification .=
procedure Identifier [formal._part]
| function designator [formal_part] return type_rnark

designator ::== identifler | operator_symbol
operator_symbol = string_litersl

formal_part =
(parametar_specification {; parameter._specification|)

parameter_specification 1=
identifier_list : mode type_mark [:= expression)

mode = [in] | In cut | out

The specification of a procedure specifies Its identifier and its forma/ parameters (if any). The
specification of a function specifies its designator, its formal parameters (if any) and the suhtype of
the returned value (the rasult subtype). A designator that is an operator symbol is used for the
overloading of an operator. The sequence of characters represented by an operator symbol must
be an operator belonging to one of the six classes of overloadable operators defined in section 4.6
(extra spaces are not allowed and the case of letters is not significant).

6-1 Subprogram Declarations 6.1

ANSI/MIL-STD-1815A Ada Reference Manual

j 4 A parameter spacification with several identifiers is equivalent to a sequence of single parameter
specifications, as explained in section 3.2, Each single paramater specification declares a formal
parameter. If no mode is explicitly given, the mode in is assumed. If a parameter specification
ends with an expression, the expresasion is the defsult expression of the formal parameter, A :

_ default expression is only allowed in a parameter specification if the mode is in {(whether this mode . o
g is indicated explicitly or implicitly). The type of a default expression must be that of the cor- Sl
‘ responding formal parameter. ERISEI
3 s The ust of a name that denotes a formal parameter is not allowed in default expressions of a for- T

mal part if the specification of the parameter is itself glven in this formal part. e
A -

) s The elaboration of a subprogram declaration elaborates the corresponding formal part, The NIRRTy

elaboration of a formal part has no other effect. L

7 Examples of subprogram declarations: BN
I procedure TRAVERSE_TREE; L
3 procedure INCREMENT(X : in out INTEGER); R
- procedure RIGHT_INDENT(MARGIN : out LINE_SIZE): -- sen 364 o
d procedure SWITCH(FROM, TO : in out LINK): -- see 3.81 o

K function RANDOM return PROBABILITY; - see 357 e

g function MIN_CELL(X : LINK) retum CELL: -~ ses 381 v
y function NEXT_FRAME(K : POSITIVE) retum FRAME; -- see 38
. function DOT_PRODUCT(LEFT,RIGHT: VECTOR) return REAL; -- see 3.8 L
y function “+"({LEFT,RIGHT : MATRIX) return MATRIX; - see 3.8
‘ \‘:

- ' Examples of in parameters with dafault expressions: " ‘
K R
g procedure PRINT_HEADER(PAGES : In NATURAL: -
HEADER : in LINE 1= {1 . LINE'LAST => "' ') -- gee 3.8 -
CENTER : in BOOLEAN := TRUE); .
Notes: ‘
v The evaluation of default expressions is caused by certain subprogram calls, as described In sec-
tion 6.4.2 {default expressions are not evaluated during the elaboration of the subprogram declara-
g tion). et
10 All subprograms can be called recursively snd are reentrant.
: " References. declaration 3.1, slaboration 3.9, svaluation 4.5, expression 4.4, formal parametar 6.2, function 6.5,
»1i identifior 2.3, idantifier list 3.2, mode 6.2, name 4.1, elaboration has r.o other etfect 3.9, operator 4.5, overloading 6.6 ' - @
2 8.7. procedura 6, string literal 2.6, subprogram call 6.4, type mark 3.3.2 : |
! ! ,.'t..

3 6.1 Subprogram Declarations 6-2 3

4 EN |

L owm e A A, e,

o S i, e e o e B T A b e A o Bt e e e T

-
Fall

- TR PP

(I -
« a’a 272"a

0
LR I

5

¥
i S

LY

Subprograms

6.2 Formal Parameter Modes

The value of an object Is said to be read when this value is avaluated; it is also said to be read
when one of its subcomponents is read, The value of a varlable is said to be vpdated when an
assignment is performed to the variable, and also (indirectly) when the variable is used as actual
parameter of a subprogram call or entry call statement that updates its value; it is also said to be
updated when one of its subcompanents is updated.

A formal parameter of a subprogram has one of the three following modes:

in The formal parameter is a constant and permits only reading of the value of the
associated actual parameter,

in out The formal paramater is a variabia and permits both reading and updating of the value of the
associated actual paramater.

out The formal paramuter is a variable and permits updating of the value of the associated actual
parameter.

The value of a acalar parametar that is not updated by the call is undefined upon return; the
same holds for the value of a scalar subcomponent, other than a discriminant, Reading
the bounds and discriminanta of the formal parametsr and of its subcomponents is allowed,
but no other reading.

For a scalar parameter, the above effects are achieved by copy: at the start of each call, If the rnode
is In or in out, the value of the actual paramater is copied into the associated formal parameter;
then after normal completion of the subprogram body, if the mode is in out or out, the vaiue of the
formal parameter is copied back into the assoclated actual parameter. For a parameter whose
type is an access type, copy-in is used for all three modes, and copy-back for the modes in out and
out.

For a parameter whosa type is an array, record, or task type, an implementation may likewise
achieve the above effacts by copy, as for scalar types. In addition, If copy Is used for a parametar of
mode out, then copy-in is required at least for the bounds and discriminants of the actual
parameter and of its subcomponents, and s'so for each subcomponent whose type I8 an access
type. Alternatively, an Iimplementation may achlave these effects by referance, that is, by arranging
that every use of the formal parameter (to read or to update its value) be troated as a use of the
assoclated actual parameter, throughout the execution of the subprogram call. The language does
not define which of these two mechanisms Is to be adopted for paramaeter paasing, nor whether
different calls to the sama subprogram are to use the same mechanism. Tha executizn of a
program is erroneous If its effact depends on which machanism is selected by the Implemaentation.

For a parameter whose type is a private type, the above effects are achleved according to the rule
that applies to the corresponding full type declaration.

Within the body of a subprogram, a formal paramater Is subject to any constraint resulting from
the type mark given In ite parameter specification. For a formal parameter of an unconstrained
array type, the bounds are obtained from the actual parameter, and the formal parameter is con-
strained by these bounds (see 3.8.1). For a formal parameter whose declaration specifies an
unconstrainad (private or record) type with discriminants, the discriminants of the formal
parameteor are Initialized with the values of the corresponding discriminants of the actual
parameter; the formal parameter Is unconstrained If and only If the mode is in out or out and the
variable name given for the actual parametar denotes an unconstrained varlable (see 3.7.1 and
6.4.1),

If the actual parameter of a subprogram call is a subcomponent that depends on discriminarits of
an unconstrained record variable, then the executior of the call is erroneous if the value of any of
the discriminants of the variable is changad by this execution; this rule does not apply if the mode
is In and the type of the subcomponent is a scalar tvpe or an access type.

8-3 Formal Parameter Modes 6.2

ANSI/MIL-STD-1815A Ada Reference Manual

Notes:
For parametars of array and record types, the parameter passing rules have these conssquences:

@ |f the execution of a subprogram is abandoned as a result of an exception, the final value of an
actual paramater of such a typa can be either its value before the call or a vaiue assigned to
the formal parameter during the execution of the subprogram.

® |f no actual parameter of such a type is accessible by more than one path, then the effact of a
subprogram call (unless abandoned) is the same whether or not the implementation uses
copying for parameter passing. |f, however, there are multiple access paths to such a
parameter (for exampie, if a global variable, or another formal parameter, refars to the same
actual parameter), then the value of the formal is undefined after updating the actual other
than by updating tha formal. A propram using such an undefined value is erroneous.

The same parameter modes are defined ! f»'mal paramaters of entries (see 9.5) with the same
meaning as for subprograms. Differant parameter modes are defined for generic formal
paramaeters (see 12.1.1),

For all modes, If an actual parameter designates a task, the associated formal parameter
designates the same task; the same holds for a subcomponent of an actual parameter and the cor-
responding subcomponent of the assoclated formal parameter.

References: access type 3.8, actual parameter 0.4.1, array type 3.6, assignment 5.2, bound of an array 3.8.1,
constraint 3.3, dapend on a discriminant 3.7.1, discriminant 3.7.1, entry call statement 9.5, sironsous 1.6, evaiuation
4.5, exception 11, axprossion 4.4, formal parameter 6.1, generic formal parameter 12.1, global 8.1, mode 8.1, null
access value 3.8, object 3.2, parameter specification 8.1, private type 7.4, record type 3.7, scalar type 3.5, subcompo-
nent 3.3, subprogram body 8.3, subprogram call statement 6.4, task 9, task type 8.2, type mark 3.3.2, unconstrained
array type 3.6, unconstrained type with discriminants 3.7.1, unconstrained variable 3.2.1, variable 3.2.1

6.3 Subprogram Bodies

A subprogram body specifies the execution of a subprogram.

subprogram_body =
subprogram._specification is
| declarative_part)
begin
sequence_of_statements
[exception
exception_handler
| exception_handler}]
end [designator];

The declaration of a subprogram is optional. In the absence of such a declaration, the subprogram
specification of the subprogram body (or body stub) acts as the declaration. For each subprogram
declaration, there must be a corresponding body (except for a subprogram written In anothar
language, as explained in sectlon 13.9). If both a declaration and a body are given, the subprogram
specification of the body must conform to the subprogram specification of the declaration (see
section 6.3.1 for conformance rules).

6.3 Subprogram Bodies 68-4

.

..

'
f
A

XY
-

Subprogram.s

if a designator appears at the and of a subprogram b Jy, it must repeat the designator of the sub-
program specification.

The elaboration of a subprogram body has no other effect than to establish that the body can from
then on be used for the execution of calls of the subprogram.

The execution of a subprogram body is invoked by a subprogram call (see 6.4). For this execution,
after establishing the association between formal parameters and actual paramaters, the
declarative part of the body is elaborated, and the sequence of statements of the body is then
executed. Upon complation of the body, return is made to the caller (and any necessary copying
back of formal to actual parameters occurs (see 6.2)). The optional exception handlers at the end
of a subprogram body handle exceptions raised during the execution of the sequence of state-
ments of the subprogram body (see 11.4),

Note:

It follows from the visibility rules that if a subprogram declared In a package is to be visible outside
the package, a subprogram specification must be given in the visible part of the package. The same
rules dictate that a subprogram declaration must be given If a call of the subprogram occurs tex-
tually before the subprogram body (the declaration must then occur earlier than the call in the
program text). The rules given in sections 3.9 and 7.1 inply that a subprogram declaration and the
corresponding body must both occur immediately within the same declarative region.

Example of subprogram body:

procedure PUSH(E : in ELEMENT_TYPE; S : In out STACK) le
in
if S.INDEX = S.SIZE then
ralse STACK_OVERFLOW,;
olve
S.INDEX := SINDEX + 1;
S.SPACE(S.INDEX) = E;
ond f;
end PUSH;

References: actual parameter 8.4.1, body stub 10.2, conform 6.3.1, deciaration 3.1, declarative part 3.8, declarative
reglon 8.1, designator 8.1, eiaboration 3.9, slaboration has no other effect 3.1, exception 11, exception handier 11.2,
formal parameter 8.1, occur immaediately within 8.1, package 7, sequence of statements 5.1, subprogram 6, sub-
program call 8.4, subprogram declarstion 8.1, subprogram spscification 6.1, visibility 8.3, visible part 7.2

6.3.1 Conformance Rules

Whenever the language rules require or aliow the spacification of a given subprogram to be
provided in more than one place, the following variations are allowed at each place:

® A numeric literal can ba replaced by a different numeric literal If and only if both have the
same value.

e A simple name can be replaced by an expanded name In which this simplu name is the selec-
tor, if and only if at both places the meaning of the simple name is given by the same daclara-
tion,

® A string literal given as an operator symbol can be replaced by a different string literal if and
only if both represent the same uparator,

8-6 Conformance Rules 6.3.1

N PR .
.t . -) 0L
: DTelts P

’ X
A

ANSI/MIL-STD-1815A Ada Reference Manual

Two subprogram specifications are said to conform if, apart from comments and the above
allowed variations, both specifications are formed by the same saquence of lexical elements, and
corresponding lexical elements are given the same meaning Ly the visibllity and overloading rules.

Conformance is likewise defined for formal parts, discriminant parts, and type marks (for deferred
constants and for actual parameters that have the form of a type conversion (see 6.4.1)),

Notes:

A simple name can be replaced by an expanded name even if the simple namae is itself the prefix of
a selected component. For example, Q.R can be replaced by P.Q.R If Q is declared immediately
within pP.

The following specifications do not conform since they are not formed by the same sequance of
lexical elements:

procedure P(X)Y : INTEGER)
procedure P(X : INTEGER; Y : INTEGER)
procedurs P(XY : In INTEGER)

Refersnces: actual parameter 6.4 6.4.1, allow 1.8, comment 2.7, declaration 3.1, deferred constant 7.4.3, direct
visibility 8.3, discrirninant part 3.7.1, expanded name 4.1.3, formal part 6.1, lexical slement 2, name 4.1, humeric
literal 2.4, operator symbol 8.1, overloading 8.8 8.7, prefix 4.1, selected component 4.1.3, soluctor 4.1.3, simple
name 4.1, subprogrem specification 8.1, type conversion 4.6, visibllity 8,3

6.3.2 Inline Expansion of Subprograms

The pragma INLINE s used to indicate that inline expansion of the subprogram body Is desired for
every call of each of the named subprograms. The form of this pragma Is as follows:

pragma INLINE (name {, namel).

Each name is either the name of & subprogram or the name of a generic subprogram. The pragma
INLINE is only allowed at thu place of a declarative item in a declarative part or package spacifica-
tion, or after a library unit in a compllation, but before any subsequent compllation unit.

If the pragma appears at the place of a declarative item, each name must denote a subprogram ur
a genaric subprogram declared by an earlier declarative itern of the sarme declarative part or
package specification. If several (overloaded) subprograms satisfy this requirement, the pragma
applies to all of them. If the pragma appears after a glven library unit, the only name allowed is the
name of this unit. If the name of a generic subprogram Is mentioned in the pragma, this indicates
that inline expansion is desired for calls of all subprograms obtalned by instantiation of the named
generic unit.

The meaning of a subprogram Is not changed by the pragma INLINE . For each call of the named
subprograms, an implementation Is free to follow or to ignore the recommendation expressed by
the pragma. (Note, In particular, that the recommendation cannot generally be follcwed for a
recursive subprogram.)

Refarences: sllow 1.8, compilation 10,1, compilation unit 10.1, dec!arative item 3.9, declarative part 3.9, generic
subprogram 12,1, generic unit 12 12.1, Instantiation 12.3, library unit 10.1, name 4.1, overloading 6.6 8,7, package
specification 7.1, pragma 2.8, subprogram 6, subprogram body 8.3, subprogram call 6.4

6.3.2 Infine Expanslon of Subprograms 6-6

&

Subprograms
6.4 Subprogram Calls

A subprogram call is either a procedure call statement or a furiction call; it invokes the execution
of the corresponding subprogram body. The call specifies the association of the actual parameters,
if any, with formal parameters of the subprogram.

procedure_call_statement =
procedure_name |actual_parameter_part];

function_call =
function_name [actual_parameter_part]

actual_parameéter_part ;=
(parameter_association |, parameter_usaocistion})

parameter_assoclation =
[formal_parameter =>} actual_parameter

formal_parameter ::= parametet..simple_name

actual_parameter =
exprassion | varfable.name | type_mark(variable_name)

Each parameter assoclation associates an actual parameter with a corresponding formal
parameter. A parameter association is said to be named if the formal parameter is named explicit-
ly: It is otherwige said to be positional. For a positional association, the actual paramater corres-
ponds to the formal parameter with the same position in the formal part.

Named assoclations can be given in any order, but If both positiorial and named associations are
used in the same call, positional associations must occur first, at thair normal position. Hence
once a named association |s used, the rest of the call must use only named associations.

For each formal parameter >f a subprogram, & subprogram call muat specify exactly one cor-
responding actual parameter. This actual parameter is specified either explicitly, by a parameter
association, or, in the absence of auch an association, by a default expression (see 6.4.2).

The parameter associations of a subprogram call are svaluated in some order that is not defined by

the language. Similarly, the language rules do not define in which order the values of in out or out
parameters are copied back into the corresponding actual parametars (when this Is done).

Examples of procedure calls:

TRAVERSE_TREE; -~ nes 6.1
TABLE_MANAGER.INSERTI(E); - umee 7.5
PRINT_HEADER(128, TITLE, TRUE); -~ see 8.1
SWITCH(FROM => X, TO => NEXT); -~ see 8.1
PRINT_HEADER(128, HEADER => TITLE, CENTER => TRUE); - Bsea 8.1
PRINT_HEADER(HEADER => TITLE, CENTER => TRUE, PAGES => 128); - ses 8.1

Examples of function calls:

DOT..PRODUCT(U, V)
CLOCK

see 8.1 and 6.5
see 9.6

1
1

6-7 Subprogram Calls 6.4

TR o

ANSI/MIL-STD-1815A Ada Reference Manual

References: default expreasion for a formal paramater 8.1, erroneous 1.6, expransion 4.4, formal parameter 6.1,
formal part 6.1, name 4.1, simple name 4.1, subprogram 8, typs mark 3.3.2, variable 3.2.1

6.4.1 Paramater Assoclations

Each actual parameter must have the same type as the corresponding formal parameter.

An actual parameter associated with a formal parameter of mode in must be an expression; It is
avaluated befora the call.

An actual parameter ssgociated with a formal parameter of mode in out or out must be either the
name of a varliable, or of tha form of a type conversion whose argument ie the name of a variable,
in either case, for the mode in out, the variable must not be a formal parameter of mode out or a
subcomponent thereof. For an actual parametar that has the form of a type conversion, the type
mark must conform (see 8.3.1) to the typs mark of the formal paiameter; the allowed operand and
target types are the sama as for type conversions (sec 4.8),

The variable name given for an actual parameter of mode in out or out is evaluated before the call.
If the actual parameter has the form of a type conversion, then before tha call, for a parameter of
mode in out, the variable is converted to the specified type; after (narmal) completion of the sub-
program body, for a parameter of mode in out or out, the formal parameter is converted back to the
type of the varliable. (The type specified in the convarsion must be that of the formal parameter.)

The following constraint checks are performed for paramaters of scalar and access types:

¢ Befors the call: for a parameter of mode In or in out, it Is checkad that the value of the actual
parameter belongs to the subtype of the formal parameter,

o After (normal) completion of the subproyram body: for a parameter of mode in out or out, it is
checked that the value of the formal parameter beiongs to the subtype of the actual variable.
in the case of a type conversion, the value of the formal parameter is converted back and the
check applies to the result of the conversion.

in each of the above cases, the execution of the program Is erroneous if the checked value Is
undefined,

For other types, for ail modes, a check is made before the call as for scalar and access types; no
check I8 made upon return,

The exception CONSTRAINT_ERROR Is raised at the place of the subprogram call if either of these
checks falls,

Note:
For array types and for types with discriminants, the check before the call s sufficlent {a check

upon return would be redundant) If the type mark of the formal parameter denotes & constrained
subtypa, since neither array bounds nor discriminants can then vary,

6.4.1 Paramater Assoc/ations 8-8

[PV

Subprograms

If this type mark denotes an unconstrained array type, the formal parameter is constrained with the
bounds of the corresponding actual parameter and no check (nsither before the call nor upon
raturn) is needed (see 3.6.1). Similarly, no check is needed if the type mark denotes an
unconstrained typs with discriminants, since the formal parameter is then constrained exactly as
the corresponding actual parameter (see 3.7.1).

References: actual parameter 8.4, array bound 3.6, array type 3.6, call of a subprogram 6.4, conform 8.3.1,
constrained subtype 3.3, constralnt 3.3, constraint_error exception 11.1, discriminant 3.7.1, erronsous 1.6, svaluation
4.5, evaluation of a name 4.1, expression 4.4, formal paramestar 8.1, mode 8.1, name 4.1, paramaeter association 8.4,
subtype 3.3, type 3.3, type conversion 4.8, type mark 3.3.2, unconstrained array type 3.6, unconstrainad type with
discriminants 3.7.1, undefined value 3.2.1, variable 3.2.1

6.4.2 Dafault Paramaters

If a parameter specification includes a dafault expression for a parameter of mode in, then cor-
responding subprogram calls need not include a parameter association for the parameter. If a
parameter associatio:. is thus omitted from a call, then the rest of the call, following any initial
positional assoclations, must use only named assoclations,

For any omitted parameter association, the default expression is evaluated beforo the call and the
resulting value Is used as an Implicit actual parameter,

Examples of procedures with default values.

procedure ACTIVATE(PROCESS : in PROCESS_NAME;

WAIT
PRIOR

in DURATION := 0.0
in BOOLEAN = FALSE):

procedure PAIR(LEFT, RIGHT : PERSON_NAME := new PERSON);

AFTER i In PROCESS_NAME := NO_PROCESS:

Examples of thelr calls:

ACTIVATE(X);

ACTIVATE(X, AFTER :=> Y}

ACTIVATE(X, WAIT => 80.0, PRIOR > TRUE);
ACTIVATE(X, Y, 10,0, FALSE);

PAIR;
PAIR(LEFT => new PERSON, RIGHT => new PERSON)

Note!

If a default expression Is used for two or more parameters in 8 multiple parameter specification,
the default expression is evaluated once for each omitted parameter. Mence in the above exam-
ples, the two calls of PAIR are equivalant,

Refvrencas. actual parameter 8.4.1, default expression for # formal parameter 8.1, evaluation 4.5, formal paramaeter

8 1. mode 6.1, named parameter assoclation 8,4, parameter assoclation 8.4, 1 arameter specification 6.1, positional
parameter association 8.4, subprogram call 8.4

Defauit Parameters 6.4.2

ANSI/MIL-STD-1815A Ada Reference Manual
6.5 Function Subprograms

A function is a subprogram that returns a value (the result of the function call). The specification of
a function starts with the reserved word function, and the parameters, if any, must have the mode
in {(whether this mode Is specified explicitly or implicitly). The statements of the function body (ex-
cluding statements of program units that are inner to the function body) must include one or more
return statements specifying the returned value.

The exception PRGGRAM_ERROR is raised if a function body is left otherwise than by a return
statement. This does not apply if the execution of the function is abandoned as a result of an
exception,

Example:

function DOT_PRODUCT(LEFT, RIGHT : VECTOR) return REAL is
SUM : REAL = 0.0;
begin
CHECK(LEFT'FIRST = RIGHT'FIRST and LEFT LAST = RIGAT'LAST);
for J in LEFT'RANGE loop ’
SUM = SUM + LEFT(J)xRIGHT(J):
end loop; , .
return SUM:
end DOT_PRODUCT;

References: exception 11, formal parameter 6.1, function 8.1, function body 8.3, function call 8.4, function
spacification 6.1, mode 6.1, program_error exception 11.1, raising of exceptions 11, return statement &.8, statement
5

6.6 Parameter and Result Type Profile - Overloading of Subprugrams '

Two formal parts are sald to have the same parameter type profile if and only if they have the same
number of parameters, and at each parameter position corresponding parameters have the same
base type. A subprogram or sntry has the sarne parameter and result type profile as another sub-
program or entry if and only if both have the same parameter type profile, and either both are func-
tions with the same result base type, or neither of the two is a function.

The same subprogram identifler or operator symbol can be used in several subprogram specifica-
tions. The identifier or operator symbol Is then sald to be overloaded; the subprograms that have
this identifier or operator symbol are also said to be overloaded and to overload each other. As
explained in section 8.3, If two subprograms overload each other, one of them can hide the other
only if both subprograms have the same parameter and result type profile (see section B.3 for the
other requirements that must be met for hiding). -

A call to an overloaded subprogram is ambiguous (and therefore lllegal) if the name of the sub-
progr-m, the number of parameter associations, the types and the order of the actual parametaers,
the namas of the formal parameters (If named associations are used), and the result type (for func-
tions) are not sufficlent to determine exactly one {overloaded) subprogram specification,

6.6 Parameter and Result Type Profile - Overloading of Subpregrams 6-10

e

Subprograms

Examples of overloaded subprograms:

procedure PUT(X : INTEGER):
procedurs PUT(X : STRING):
procedurs SET(TINT : COLOR);
procedure SET{SIGNAL : LIGHT);

Examples of calls:

PUT(28);
PUT("no possible ambiguity here”);

SET(TINT => RED}):
SET{SIGNAL => RED);
SETICOLOR'(RED));

-- SET(RED) would be ambiguous since RED may
-- denote a value either of tyne COLOR or of type LIGHT

Notes:

The notion of parameter and rasult type profiie does not Include parameter names, parameter
modes, parameter subtypes, default expressions and their presence or absence.

Ambiguities may (but need not) arise when actual paremeters of the call of an overloaded sub-
program are themselves overloaded function calls, literals, or aggregates. Ambiguities may also
(but need not) arise when severa! overloaded subprograms belonging to different packages are
visible. These ambiguities can usually be resolved in several ways: qualified expressions can be
used for some or all actual parameters, and for the result, if any; the name of the subprogram can
be expressed more explicitly as an exparded name: finally, the subprogram can be renamed.

References: actual parameter 6.4.1, aggregate 4.3, base type 3.3, default expression for a formal parumeter 6.1,
entry 9.5, formal parameter 8.1, function 6.5, function call 6.4, hiding 8.3, identifler 2.3, illegal 1.8, literal 4.2, mode
6.1, named parameter assoclation 8.4, operator symbo! 6.1, overloading 8.7, package 7, parameter of a subprogram
6.2, qualified exprassion 4.7, renaming daclaration 8.5, result subtype 6.1, subprogram 6, subprogram specification
6.1, subtype 3.3, type 3.3

6.7 Overloading of Operators

The declaration of a function whose designator is an operator symbol Is used to overload an
operator. The sequence of characters of the operator symbol must be either a lugical, a ralational, a
binary adding, a unary adding, a multiplying, or a highest precederice operator (see 4,6). Neither
membership tests nor the short-circuit control forms are allowed as function designators.

The subprogram specification of a unarv operator must have & single parameter. The subprogram
specification of a binary opsrator must have two parametets; for each use of this operator, the first
parameter takes the left operand as actual parameter, the second parameter takes the right
operand. Similarly, a generic functlon instantiatior whose designator is an operator symbol is only
allowed If the spacification of the generic function has the corresponding number of parameters,
Default expressions are not sllowed for the parameters ot an operator (whether the operator Is
declared with an explicit subprogram specification or by a generic instantiation).

Overloading of Operators 3.7

ANSI/MIL-STD-1815A Ada Reference Manual

For each of the operators "+ and "-", overloading is allowed both as a unary and as a binary
operator,

The explicit declaration of a function that averloads the equality operator "=", other than by a
renaming declaration, 1s only allowed If both paramaters are of the same limited type. An
overioading of equality must deliver a result of the predefined type BOOLEAN; it also implicitly
overloacis the inequality operato: "/==" so that this still gives the complementary result to the
equality operrtor, Explicit overloading of the Invquality operator is not allowed.

A renaming declaration whose designator is the equality operator is only allowed to rename
another equality operator. (For example, such a renaming declaration ¢an be used when equality is
visible by selection but not directly visible.)

Note:

Overloading of rslational operator: does not affect basic comparisons such as testing for
membership in a range or the choives in & case statement.

Examples:

function “+" (LEFT, RIGHT : MATRIX) retumn MATRIX;
function “+" (LEFT. RIGHT : VECTOR) return VECTOR:

- assuming that A, B, and C are of the type VECTOR
-- the three following assignments are equivalent

A =8 + C

A = "+"(B, C);
A == "+"(LEFT => B, RIGHT =>)

References: allow 1.8, actual parameter 8.4.1, binary adding operator 4.6 4.6.3, boolean predefined type 3.5.3,
character 2.1, complementary result 4.5.2, declaration 3.1, default expression for a formal parameter 6.1, designator
6.1, directly visible 8,3, equality operator 4.5, formal parameter 6.1, function declaration 8.1, highest precedence
operator 4.5 4,58, implicit declaration 3.1, inequality operator 4.6.2, limited type 7.4.4, logical operator 4.6 4.5.1,
membership test 4.5 4.5.2, multiplying operator 4.6 4.6.6, operator 4.5, operator symbol 6.1, overloading 6.8 8.7,
relational operator 4.5 4.5.2, short-circult control form 4.6 4.6.1, type definition 3.3.1, unury adding operator 4.5
4.56.4, visible by selection 8.3

6.7 Ove.r/oadfng of Operators

and & Tl L - -

e e R e f LR TR A P P STl 3

7. Packages

Packages are one of the four forms of program unit, of which programs can be composed. The
other forms are subprograms, task units, and generic units.

Packages allow the specification of groups of logically related entities. In their simplest form pac-
kages specify pools of common object and type declarations. More generally, packages can be
used to specify groups of related entities including also subprograms that can be called from outsi-
de the package, whils their inner workings remain concealed and protected from outside users.

References: ganeric unit 2, program unit 8, subprogram 6, task unit 9, type declaration 3.3.1

7.1 Package Structure

A package Is generally provided in two parts: a package specification and a package body. Every
package has a package specification, but not all packages have a package body.

package_declaration = package_specification;

puckage_specification i:=
psckage Identifier Is
|basic_declarative._ item}
[private
|basic_daclarative_item}]
end [package_simple_name)

package_body =

package body packags_simple_name s
| declarative..part

[beg'n
scquence_of_statements

[exception
exception_handler
| exception_handler})]

ond [rackage_simple_name];

The simple name at the start of a package body must repeat the package identifier. Similarly if a

simple name appears at the end of the package specification or body, It must repeat the package
identifier.

If a subprogram declaration, a package declaration, a task declaration, or a generic declaration Is a
declarative Item of a given package specification, then the body (if there is one) of the program unit
declared by the declarativa item must itsslf be a declarative item of the declarative part of the body
of the given package.

7-1 Package Structure 7.1

ANSIIMIL-STD-1815A Ada Reference Manual

Notes:

5 A simple form of package, specifying a pool of objects and types, does not require a package body.
One of the possible uses of the sequence of statements of & package body I8 to initialize such .
objects. For each subprogram declaration there must be a corresponding body (except for a sub- o
program written in another language, as explained in section 13.9). If the body of a program unit A
is & body stub, then a separately compiled subunit containing the corresponding proper body is
required for the program unit (see 10.2). A body Is not a basic declarative item and so cannot
appear in a package specification.

s A package declaration is either a library package (see 10.2) or a dec!arative item declared within .
another program unit. B

? References: basic declarative item 3.9, body stub 10.2, declarative item 3.9, declarative part 3.9, excaption handier)
11.2, generic body 12.2, generic declaration 12.1, Identifier 2,3, library unit 10,1, object 3.2, package body 7.3, pro- R
gram unit 8, proper body 3.9, sequence of statements 5.1, simple name 4.1, subprogram body 6.3, subprogram decla- i i
ration 6.1, subunit 10.2, task boay 9.1, task declaration 8.1, type 3.3 - 9

7.2 Package Speoifications and Declarations

1 The first list ot declarative items of a packaga specificatinn Is calied the visib/e part of the packa-
ge. The optional list of declarative items after the reserved word private is calied the private part of
the package.

2 An entity declared in the private part of a package Is not visible outside the package itself (a name - .
denoting such an entity s only poasible within the package). In contrast, expanded names deno- "
ting entities declared In the visible part can be used even outside the package; furthermors, direct
visibility of such entities can be achisved by means of use clauses (see 4,1,.3 and 8.4). .

3 The elaboration of a package declaration consists of the elaboration of its basic declarative items
in the given order.

Notas:

4 The visible part of a package contains &ll the information that another program unit is able to know
about the package. A package consisting of only a package specification (that is, without a packa-
ge body) can be used to rapresent & group of common constants or variables, or a common poo! of
objects and types, as in the examples below.

|
s Example of a package describing a group of common variables: ;

package PLOTTING_DATA is
PEN_UP : BOOLEAN;

CONVERSION_FACTOR, NN |
X_.OFFSET, Y_OFFSET, '
X_MIN, Y_MIN,

X_MAX, Y_MAX: REAL; -- uee 3.6.7

X_VALUE : array {1 .. 500) of REAL;
Y_.VALUE : array {1 .. 500) of REAL: oo
end PLOTTING_DATA;

7.2 Package Specifications and Declarations 7-2

ILAY

Packages

Example of a package describing 8 common pool of objects and types.

package WORK_DATA s
type DAY Is (MON, TUE, WED, THU, FRI, SAT, SUN);
type HOURS_SPENT is delta 0.256 range 0.0 .. 24.0;
type TIME_TABLE is arrmy (DAY) of HOURS_SPENT:

WORK_HOURS : TIME_TABLE;
NORMAL_HOURS : constant TIME_TABLE :
{MON .. THU => 825 FRI => 7.0, SAT | SUN => 0.0);
ond WORK_DATA;

References: basic declarative item 3.9, conetant 3.2.1, declarative item 3.8, diruct visibility 8.3, elaboration 3.9,
expanded name 4.1.3, name 4.1, number declaration 3.2.2, object declaration 3.2.1, package 7, packuage dacieration
7.1, package identifisr 7.1, package specification 7.1, scope 8.2, simple name 4.1, type declaration 3.3.1, use clause
8.4, veriabla 3.2.1

7.3 Package Bodiec

In contrast to the entitias declared in the visible part of a package specification, the entities decla-
red In the package hody are only visible within the package body itself, As a consaquence, a packa-
ge with a package body can be used for the construction of a group of related subprograms (& pac-
kage in tha usual sense), in which the logical operations available to the users are clearly isolated
from the internal entities.

For the elaboration of a package body, its declarative part is first slaborated, and its sequence of
statements (If any) is then executed. The optional exception handlers at the end of a package body
service exceptions raised during the exacution of the sequence of statements of the package body.

Notes:

A varlable declared in the body of a package is only visible within this body and, consequently, its
value can only be changed within the package body. In the absence of local tasks, the value of
such a variable remains unchanged betwaen calls issued from outside the package to subprograms
declared in the visible part. The properties of such & variable are similar to those of an "own”
variable of Algol 80,

The elaboration of the body of a subprogram deciarad in the visible part of a package is caused by
the elaboration of the body of the package. Hence a call of such a subprogram by an outside pro-
gram unit raises the exception PROGRAM..ERROR |f the call takas place before the elaboration of
the package body (see 3.9).

7-3 Package Bodies 7.3

b

ANSI/MIL-STD-18186A Ada Refarence Manual

s Example of a package:

' package RATIONAL_NUMBERS is

type RATIONAL Is
record
NUMERATOR : INTEGER;
DENOMINATOR : POSITIVE;
ond record;

function EQUAL (XY : RATIONAL) return BOOLEAN;
function /" (X,Y ! INTEGER) return RATIONAL; -- to construct a rational number

function "+" {X,Y : RATIONAL) return RATIONAL;
function "-* (XY : RATIONAL) retum RATIONAL:
function "** {(X,Y : RATIONAL) retumn RATIONAL;
function “/* {X,Y : RATIONAL} return RATIONAL,

S snd; ;
5 package body RATIONAL_NUMBERS Is B
P procedure SAME_DENOMINATOR (XY : in out RATIONAL) is ; ,
. bagin e
Q -- reduces X and Y to the same denominator:
- end:
B function EQUAL(X,Y @ RATIONAL) return BOOLEAN s
- UV : RATIONAL; Lo
' begin .
U = X;
V=Y,
SAME_DENOMINATOR (U, V);
return UNUMERATOR =~ V.NUMERATOR:
end EQUAL: L
funation /" (XY : INTEGER) return RATIONAL is o
beagin
Y > 0 ithen
return (NUMERATOR => X, DENOMINATOR => Y);
- ehe R
3 return (NUMERATOR =. -X, DENOMINATOR => -Y); —
. ond If; !
.- .nd »/u;
::3 function “+" (XY : RATIONAL) return RATIONAL in .. end "+ - .
iy function "-" (XY : RATIONAL) return RATIONAL is .. end "-";
j function “*’ (XY : RATIONAL) return RATIONAL is .. end "*"; ‘
3 function “/* (XY : RATIONAL) return RATIONAL in .. end “/"; . .9
end RATIONAL.NUMBERS:
6 References: Jeclarution 4.1, declarative part 3.9, elaboration 3.1 3.9, exception 11, exception handlar 11.2, nama
4.1, package spacification 7.1, program unit 8, program_uarror exception 11.1, sequence of statements 5.1, subpro- '
;:_. gram 8, variable 3.2.1, visible part 7.2

7.3 Package Bodles 7-4

EE % Y

4'48‘"

Claml v,

Packages

7.4 Private Type and Deferred Constant Declarations

The declaration of a type as a private type in the visible part of a package serves to separate the
characteristics that can be used directly by outside program units (that is, the logical properties)
from other characteristics whose diract use is confined to the package (the details of the definition
of the type itself), Daferrad constant declarations declare constants of private types.

private_type..declaration ‘=
type Identifier [discriminant_part] is (limited] private;

deferred_constant_declaration .=
identifier_list : constant type_mark;

A private type declaration is only allowed as a declarative item of the visible part of a package, or
as the generic parameter declaration for a generic formal type in a generic formal part.

The type mark of a deferred constant declaration must denote a private type or a subtype of a pri-
vate type; a deferred constant declaration and the declaration of the corresponding private type
must both be declarative items of the visible part of the same package. A deferred constant decla-
ration with several identifiers is equivalent to a sequence of single deferred constant declarations
as explained in section 3.2,

Examples of private type ceclarations:

type KEY is private;
type FILE_NAME s limited private;

Example of deferred constant daclaration:

NULL_KEY : constant KEY:

References: constant 3.2.1, declaration 3.1, declarative item 3.9, deferred constant 7.4.3, discriminant part 3.7.1,
generic formal part 12,1, generic formal type 12.1, generic parameter declaration 12,1, identifler 2.3, dentifler list
3.2, limited type 7.4.4, package 7, privete type 7.4.1, program unit 6, subtype 3.3, type 3.3, type mark 3.3.2, visible
part 7.2

7.4.1 Private Types

If a private type declaration Is given In the visible part of a package, then a corresponding declara-
tion of a type with the sarne identifier must appear as a declarative item of the private part of the
package. The corrasponding declaration must be eithar a full type declaration or the declaration of
a task type. In the rest of this section explanations are given in terms of full type declarations; the
same rules apply also to declarations of task types.

7-5 Private Types 7.4.1

o

-A!LA‘LJ»LA_“&!‘ ..4_._.L_IJ_IJF~"'

ANSI/MIL-STD-1R154 Ada Reference Manual!

A private type declaration and the corresponding full type declaration define a single typa. The
private type declaration, together with the visible part, define the operations that are available to
outside program units (see section 7.4.2 on the operations that are avallable for private types). On
the other hand, the full type declaration defines other operations whose direct use is only possible
within the package itsaif.

It the private type declaration includes a discriminant part, the full declaration must include a dis-
criminant part that conforms {see 6.3.1 for the conformance rules) and its type definition must be a
record typa definition. Conversely, if the private type declaration does not include a discriminant
part, the type declared by the full type declaratior: (the fu/l type) must not be an unconstrained type
with discriminants. The full type must not be an unconstrained array type. A limited type ({in par-
ticular a task type) is allowed for the full type only if the reserved word limited appears in the
private type declaration (see 7.4.4),

Within the specification of the package that declares a private type and before the end of the cor-
responding full type declaration, a restriction applies to the use of a name that denotes the private
type or a subtype of the private typs and, likewise, to the use of a name that denotes any type or
subtype that has a subcomponent of the private type. The only allowed occurrences of such a
name are in a deferred constant declaration, a typ2 or subtype declaration, a subprogram specifica-
tion, or an entry declaration; moreover, occurrences within derived type definitions or within sim-
ple expressioris are not allowed,

The elaboration of a private type declaration creates & private type. if the private type declaration
has a discriminant part, thia slaboration includes that of the discriminant part. The elaboration of
the full type declaration consists of the aslaboration of the type definition: the discriminant part, if
eny, Is not elaborated (since the conforming discriminant part of the private type declaration has
already been elaborated).

Notes.

It follows from the given rules that neither the declaration of a variable of a private type, 1ior the
creation by an allocator of an object of the private type are allowed before the full declaration of
the type. Similarly before the full declaration, the name of the private type cannot be used in a
generic instantiation or in a representation clause.

References: allocator 4.8, acray type 3.8, conform 6.3.1, declarative item 3.9, deferred constant declaration 7.4.3,
derived type 3.4, discriminant part 3.7.1, elaboration 3.9, entry declaration 9.5, expreasion 4.4, full type declaration
3.3.1, generic instantiation 12.3, Identifler 2.3, incomplete type daclaration 3.8.1, limited type 7.4.4, name 4.1, opera-
tion 3.3, package 7, package specification 7.1, private part 7.2, private type 7.4, private typa declaration 7.4, record
type definition 3.7, reprasentation clause 13.1, resasrved word 2.9, subcomponent 3,3, subprogram spacification 6.1,
subtype 3.3, subtype declaration 3.3.2, type 3.3, type declaration 3.3.1, type definition 3.3.1, unconstrained array
type 3.6, variabie 3.2.1, visible part 7.2

7.4.2 Operations of a Private Type

The operations that are implicitly declared by a private type declaration include basic operations.
These are the operations involved in assignment (unless the reserved word Himited appears in the
declaration), membership tests, selected components for the selection of any discriminant,
qualification, and explicit converslons.

7.4.2 Opearations of a Private Type 7-6

. "ﬁ.

-l

Packages

For a private tvpe T, the basic operations also include the attributes T'BASE (see 3.3.3) and T'SIZE
(see 13.7.2). For an object A of a private type, tha basic operations include the attribute
A'CONSTRAINED If the private type has discriminants {see 3.7.4), and in any case, the attributes
A'SIZE and A'ADDRESS (see 13.7.2).

Finally, the operations implicitly declared by a private type daclaration include the predefined com-
parison for equality and inequality unless the reserved word limited appears in the private type
declaration.

The above operations, together with subprograms that have a parameter or result of the private
type and that are declared in the visible part of the package, are the only operations frorn the
package that are available outside the package for the private type.

Within the package that declares the private typs, the additional operations implicitly declared by
the full type declaration are also avallabie. However, the redefinition of these implicitly declared
operations is allowed within the same declarative ragion, including between the private type
declaration and the corresponding full declaration. An explicitly declared subprogram hides an
implicitly declared operation that has the same parameter and result type profiia (this is only possi-
ble if the implicitly declared operation is a derived subprogram or a predefined operator).

If a composite type has subcomponents of a private type and is declared outside the package that
declares the private type, than the oparations that are implicitly declared by the declaration of the
composite type include all operations that only depend on the characteristics that result from the
private typ)e declaration alone. (For sxample the operator < is not included for a one-dimensional
array type.

If the composite type Is itself declared within the package that declares the private type (including
within an Inner package or generic package), then additional operations that depend on the
characteristics of the fuil typs are implicitly declarod, as required by the rules applicable to the
composite type (for example the operator < is declared for a one-dimensional array type if the full
type Is discrete). These additional operations are implicitly declared at the sarliest place within the
immediate scope of the composite type and after the full type declaration.

The same rules apply to the operations that are implicitly declared for ar access type whose
designated type is a private type or a type declared by an incomplste type declaration.

For evary private type or subtyps T the following attribute is defined:

T'CONSTRAINED Yleids the value FALSE If T denotes an unconstrained nonformal private type
with discriminants; also yields the value FALSE if T denotes a generic formal
ptivate type, and the assoclated actual subtype Is either an unconstrained type
with discriminants or an unconstrained array type: ylelds the value TRUE
otherwise. The value of this attribute is of the predefined type BOOLEAN.

Note:

A private type declaration and the corresponding full type declaration define two different views of
one and the same typs. Outslde of the defining package the characteristics of the type are those
defined by the visible part. Within these outside program units the type is just a private type and
any language rule that applies only to another class of types does not apply. The fact that the full
declaration might /implement the private type with a type of a particular class (for example, as an
array type) Is only relevant within the package Itself.

7-7 Operations of a Private Type 7.4.2

10

L)

i EEa

v 4 e

. . B
S S R

ANSI/MIL-STD-1815A Ada Reference Manual

12 The consequences of this actual implementation are, however, valid everywhere, For example:
any default initialization of components takes place; the attribute SIZE provides the size of the full
type; task dependence rules still apply to components thuat are task objects.

3 Example:

package KEY_MANAGER s
typa KEY is private;
NULL_KEY : constant KEY; - -
procedure GET_KEY(K : out KEY); '
function "¢" (X, Y : KEY) retum BOOLEAN;

private
type KEY Is new NATURAL;
NULL_KEY : constant KEY := O;

oend;

package body KEY_.MANAGER is
LAST_KEY : KEY := O
procedure GET_KEY(K : out KEY) is TR
begin RN

LAST_KEY := LAST_KEY + {;
K = LAST_KEY; B
end GET_KEY; "
funetion “¢" (X, Y ! KEY) return BOOLEAN Is
bagin
return INTEGER(X) < INTEGER(Y);
ond ("

end KEY.MANAGER;

Notes on the example:

" Outside of the package KEY.MANAGER, the operations available for objects of type KEY Include
assignment, the comparison for equality or inequality, the procedure GET_KEY and the operator
“<"; they do not include other relational operators such as ">=", or arithmetic operators.

" The explicitly declarad operator "<" hides the predefined operator "<" Iimplicitly declared by the
full type daclaration. Within the body of the function, an explicit conversion of X and Y to the type
INTEGER is necessary to invoke the “<" operator of this type. Alternatively, the result of the func-
tion could be written as not (X >= Y), since the operator ">=" Is not redefined.

10 The value of the variable LAST_KEY, declared In the package body, remains unchanged between —
calls of the procedure GET_KEY. (See also the Notes of section 7.3.)

\ References: assignmant 6.2, attribute 4.1.4, basio opsration 3.3.3, componant 3.3, compoalite tyne 3.3, convarsion
4.6, declaration 3.1, declarative region 8.1, derlved subprogram 3.4, derived type 3.4, dimenslon 3.6, discriminant
3.3. equality 4.5.2, full type 7.4.1, full type declaration 3.3.1, hiding 8.3, Immediate scope 8.2, implicit declaration 3.1,
incompleta type declaration 3.8.1, membaership teat 4.5, operation 3.3, package 7, parametar of a subprogram 6.2,
pradefinad function 8.8, predefined operator 4.5, private type 7.4, private type declaration 7.4, program unit 8,
qualification 4.7, relational operator 4.5, selectad component 4.1.3, subprogram 6, task dependence 8.4, visible part
7.2

7.4.2 Operations of a Private Type 7-8

[. . .
CO R TN I s e gy N S N Y WO W N W e

Packages
7.4.3 Defarred Constants

It a deferred constant declaration is given in the visible part of a package then a constant declara- '
{ tion (that is, an object declaration declaring a constant object, with an explicit initialization) with
- the same Iidentiflar must appear as a declarative item of the private pert of the package. This
N object declaration is called the fu// declaration of the deferrad constant. The type mark given in the
. full declaration must conform to that given in the deferred constant declaration (see 6.3.1). Multi-
F. ple or single declarations are allowed for the deferred and the full declarations, provided that the
equivalent single declarations conform.

Within the specification of the package that declares a deferred constant and before the end of the 2
corresponding full declaration, the use of a name that denotes the deferred constant is only
allowed in the default axpression for a record component or for a formal parameter (not for a
generic formal parameter),

The selaboration of a defsrred constant declaration has no other effect. a -
The execution of a program Is erronsous if it attempts to use the value of a deferred constant .
before the elaboration of the corresponding full declaration,
. Note:
’ The tull daclaration for a deferred constant that has a given private type must not appear before 8 3 ‘.

the corresponding full type declaration. This Is a consequence of the rules defining the allowed
uses of a name that dencres a ptivate type (see 7.4.1).

-
EASE A SR

References: conform 8.3.1, constant declaration 3.2.1, declarative itern 3.9, default expression for a discriminant)
3.7.1, deferred constant 7.4, deferred constant declaration 7.4, alaboration has no othar effect 3.1, formal parametar

6.1, genoric formal parameter 12,1 12.3, [dentifler 2,3, obect declaration 3.2.1, package 7, package speoification 7.1, !
private part 7.2, record component 3.7, type mark 3.3.2, visible part 7.2 -

. e T
atala oo T

7.4.4 Limited Types

A limited type is a typa for which neither assignment nor the predefined comparison for equality '
and Inaquality Is /mplicitly declared.

A private type declaration that includes the reserved word limitad declares a limited type. A task ? L .
K type s & limited type. A type derived from a limited type Is itself a limited typo. Finally, 8 com- k
¥ posite type is limited if the type of any of its subcomponents is limited, o
N The operations avallable for a private type that s limited are as given in saction 7.4.2 for private 2
X types excapt for the absence of assignmaent and of a predefined comparison for equality and Ine-
' quality.
" For a formal parameter whose typo s limited and whose declaration occurs In an expliclt sub- 4 |

program declaration, the made out is only allowed if this type is private and the subprogram
declaration occura within the visible part of the package that declares the private type. The same
_ holds for formal parameters of entry declarations ard of (jenerlc procedure declarations. The cor-
¥ responding full type must not be limitea If the mode out Is used fur any such formal parameter,
Otherwise, the corresponding full type Is allowed {(but not required) to be a limited type {in par-

| ticular, it Is allowed to be a task type). If the full type corresponding to a limited private type is not
+ itself limited, then asslgnment for the type is avallable within the package, but not outside.
7-9 Limited Types 7.4.4

bt Skl Sie® w A A w s

ANSI/MIL-STD-1815A Ada Referance Manual

5 The followina are consequences of the rules for limited types:
s e An explicit initialization is not allowed In an object declaration If the type of the object is
limited,
e
7 ® A default expression is not rliowed In a component declaration if the type of the record com- :
ponent is limited.
8 ® An explicit initial value is not allowed in an allocator if the designated type is limited.
@
v e A generic formal parameter of mode in must not be of a limited type. ~
Notes:!
10 The above rules do not exclude a default axpression for a formal parameter of a limited type; they e

do not exclude a doeferred constant of a limited type if the full type is not limited. An explicit : -
declaration of an aquality operator |s allowed for a limited type (see 8,7). R

" Aggregates are not available for a limited composite type (see 3.68.2 and 3.7.4). Catenation is not
available for a limited array type (see 3.8.2).

2 Example:
package |_O_PACKAGE Is .7
type FILE_NAME is limited private;
procedure OPEN (F ! in out FILE_NAME);
procedure CLOSE (F : in out FILE_NAME); o
procedure READ (F : in FILE_NAME; ITEM : out INTEGER): Lo
procedure WRITE (F : in FILE_NAME; ITEM : In INTEGER);
private b
type FILE_NAME Il
record
INTERNAL_NAME : INTEGER = O;
end record; .
end |_O_PACKAGE: Lo
package body |_O_PACKAGE is o
LIMIT : constant := 200;
type FILE..DESCRIFPTOR is record .. end record; IR
DIRECTORY : array (1 .. LIMIT) of FILE_DESCRIFTOR; :
'p‘roooduu OPEN (F : in out FILE_NAME) is .. end B ".
procedure CLOSE (F : In out FILE_NAME) is .. end; |
_procedure READ (F : in FILE_NAME; ITEM : out INTEGER) is .. end;
procedure WRITE (F : in FILE_NAME; ITEM : in INTEGER) Is .. end;
begin
end |_O_PACKAGE; L.
Notes on the example.
5 1 In the axample above, an outside subprogram making use of |_O_PACKAGE may obtaln a flle
- name by calling OPEN and later uso it in oalls to READ and WRITE. Thus, outside the package, a .
3 tile nama obtalred from OPEN acts as a kind of pussword; It internal properties (such as S
. containing a numaric value) are not known and no other operationr (such as addition or com- :
N parison of internal names) can be performed on & file name.
: 7.4.4 Limited Types 7-10 | o

L . et “w o .ot e
Ty I Y R N I A N T A T T AT Y

- Packages

This example is characteristic of any case where complete control over the operations of a type Is 14
desired. Such packagas serve a dual purpose. They prevent a user from making use of the internal
o structure of the typa. They also implement the notion of an encapsulated data type where the only
= operations on the type are those given in the package specification.

Refersnces. aygregate 4.3, allocator 4.8, ossignment 6.2, catanation oparator 4.6, component declaration 3.7, 15

component type 3,3, composite type 3,3, default expression for @ discriminant 3.7, deferred constant 7.4.3, darived

type 3.4, designate 3.8, discriminant specification 3.7.1, aquality 4.5.2, formal parameter 6.1, full typa 7.4.1, fuli type

declaration 3.3.1, generic forrnal parameter 12.1 12.3, Implicit declaration 3.1, initlal value 3.2.1, mode 12 1.1, object

S 3.2, operation 3.3, package 7, pratefined operator 4.%, private type 7.4, private type declaration 7.4, record compo- s
nent 3.7, racord type 3.7, relational operator 4.6, subcomponent 3.3, subprogram 6, task type 9.1 9.2, typa 3.3 ‘ '

7.6 Example of a Table Management Package

The following example Illustrates the use of packages in providing high level procedures with a \
simple Interface to the user, '

RS A
1
!
4

The problem |a to define a table managsment package for inserting and ratrieving items. The 2
items are inserted into the table as they are suppliad. Each Inserted item has an order number. The

items are retrieved according to their order number, where the item with the lowest order number

is retriaved first.

From the user's point of view, the package s quite simple. There is a type called ITEM designating 2 Co
table items, a procedure INSERT for inserting items, and a procedutre RETRIEVE for obtaining the C
item with the lowest order number. There is a special Item NULL_ITEM that is returned when the v

‘ table is qmpty, and an exception TABLE_FULL which Is raised by INSERT if the table is aiready full, , 1.
,3:‘; A sketch of such a package is given balow. Only the spacification of the package Is exposed to the 4
™ uset,
* ‘package TABLE.MANAGER |s 5 .
type ITEM s o
record
ORDER_NUM : INTEGER;
N ITEM_.CODE : INTEGER;
S QUANTITY . INTEGER;
. ITEM_TYPE : CHARACTER;
Y ’ and record; !
N NULLITEM : constant ITEM :m R
X (ORDER_NUM | ITEM_.CODE | QUANTITY => O, ITEM_TYPE => ' ')
procedure INSERT (NEW.ITEM : In ITEM);
Q‘ procedure RETRIEVE (FIRST JTEM : out ITEM); 0
- TABLE.FULL : exception; -- raised by INSERT when table ful 1
. end;
L -9
7-11 Example of a Table Management Package 7.5

e -] gkl T s 1A g A g A ML G e e b 8 e

ANSI/MIL-STD-1815A Ada Reference Manual

6 The details of implementing such packages can be quite complex; in this case they involve a two-
way linked table of internal items. A local housekeeping procedure EXCHANGE is used to move an
- internal item between the busy and the free lists. The initial table linkages are established by the
initialization part. The package body need not be shown to the users of the package.

& 7 package hody TABLE_MANAGER is
8.~ SIZE . constant := 2000;
%% subtype INDEX is INTEGER range O .. SIZE;
N
= type INTERNAL_ITEM is
record ‘ ST
CONTENT : ITEM; &)
succ : INDEX; .
o PRED i INDEX; -
end record; o

TABLE : array (INDEX) of INTERNAL_ITEM; A
FIRST_BUSY_ITEM : INDEX = 0; il
FIRST_FREEITEM : INDEX i= 1; N

function FREE_LIST.EMPTY return BOOLEAN is .. end;
N function BUSY._LIST_EMPTY vreturn BOOLEAN is .. end;
“;. procedure EXCHANGE (FROM : in INDEX: TO : in INDEX) is ... end;

M procedure INSERT (NEWLITEM : in ITEM) Is NP

begin T

if FREE_LIST_EMPTY then : S
raise TABLE_FULL;

1

! end If;

1 -- remaining code for INSERT "
end INSERT; :
‘ e
& procedure RETRIEVE (FIRST_ITEM : out ITEM) is .. end:
~ begin ' '.fj s
- initialization of the table linkages .

) end TABLE_MANAGER; '.f 0
2 7.6 Example of a Text Handling Package

1 This example illustrates a simple text handling package. The users only have access to the visible
i part; the implementation is hidden from them in the private part and the package body (not e
. shown). :

o 2 From a user's point of view, a TEXT Is & varlable-length string. Each text object has a maximum
= tength, which must be given when the object is declared, and a current value, which Is a string of
B somae length between zero and the maximum. The maximum possible length of a text object is an .
) implementation-dJfined constant. K

3 The package defines first the necessary types, then functions that return some charactaristics of
objects of the type, then the conversion functions between texts and the predefined CHARACTER
and STRING types, and finally some of the standard operations on varying strings. Most operations
- are overloaded on strings and characters as well as on the type TEXT, in order to minimize the :
p 4 number of explicit conversions the user has to write.

7.6 Example of a Text Handling Package 7-12 ¥ -

JL e e - - Al»‘,-“ . ‘A'_-..._.*_.. .','~ »‘.‘-.I. . "4‘ R .,,‘ o e L
e N T T R o T R S T L T T T L

Ao EL

Packages

package TEXT_HANDLER is
MAXIMUM : constant := SOME_VALUE; -- Iimpiementation-defirned
subtype INDEX is INTEGER range 0 .. MAXIMUM;

type TEXTIMAXIMUM_LENGTH : INDEX) Is limited private;
function LEMGTH (T : TEXT) retum INDEX;

function VALUE (T : TEXT) return STRING;
function EMPTY (T : TEXT) return BOOLEAN;

function TO_TEXT (S : STRING; MAX : INDEX) return TEXT; -- maximum length MAX
function TO_TEXT (C : CHARACTER; MAX : INDEX) return TEXT,

function TO_TEXT (S : STRING) return TEXT: - naximum length S'LEMGTH

function TO_TEXT (C : CHARACTER) return TEXT;

function "&" (LEFT : TEXT, RIGHT : TEXT) return TEXT:

function "&" (LEFT : TEXT: RIGHT : STRING) return TEXT;

function "&"” (LEFT : STRING; RIGHT : TEXT) return TEXT,

function "&" (LEFT : TEXT; RIGHT : CHARACTER) returmn TEXT;

function "&" (LEFT : CHARACTER: RIGHT : TEXT) return TEXT,

function "=" (LEFT : TEXT; RIGHT : TEXT) return ..OOLEAN;
function "¢" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN:

function "{=" (LEFT : TEXT; RIGHT : TEXT) veturn BOCLEAN; .
tunction ">" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN;
function ">=" (LEFT : TEXT; RIGHT : TEXT) return BOULEAN;

procedure SET (OBJECT : in out TEXT; VALUE : in TEXT):
procedurs SET (OBJECT : in out TEXT; VALUE : in STRING);
procedure SET (OBJECT : In out TEXT; VALUE : in CHARACTER):

procedure APPEND (TAIL : in TEXT; TO : In out TEXT);
procedure APPEND (TAIL : in STRING; TO : in out TEXT);
procedure APPEND (TAIL : In CHARACTER; TO : in out TEXT);
procedure AMEND (OBJECT : In out TEXT; BY : in TEXT; POSITION : v INDEX);
procedure AMEND (OBJECT : in out TEXT; BY : Iin STRING; POSITION : In INDEX);

procadura AMEND (OBJECT : In out TEXT; BY : In CHARACTER; POSITION : in INDEX);

-- amend replaces part of the object by the given text, string, or character
-- starting at the given position in the object

function LOCATE (FRAGMENT : TEXT, WITHIN : TEXT) retumn INDEX;
function LOCATE (FRAGMENT : STRING; WITHIN : TEXT) return INDEX;
function LOCATE (FRAGMENT : CHARACTER; WITHIN : TEXT) retum INDEX:

-~ all return O if the fragment is not Incated

private
type TEXT(IMAXIMUM_LENGTH : INDEX) Is
record
POS t INDEX == Q;
V.LLUE ¢ STRING(T .. MAXIMUMLLENGTH);
end record;

ena TEXT_HANDLER;

713 Example of ¢ Text Mandling Package 7.6

..........

ANSIIMIL-OTD-T8T DA Ada Heference Manual

Example of use of the text handling package: S ‘
A program opens an output file, whose name is supplied by the string NAME. This string has the
form .
[DEVICE :] [FILENAME [LEXTENSION]] o 'l_.
There are standard defaults for device, filename, and extension. The user-supplied name is passed
to EXPAND_FILE_.NAME as a paramater, and the result Is the expanded version, with any necessary
defaults added.
function EXPAND_F'LE_NAME (NAME : STRING) return STRING is) ,
use TEXT_HANDLER; _
DEFAULT_DEVICE : constant STRING i= "SY:"
DEFAULT_FILE_NAME : constant STRING := "HESULTS"; .
DEFAULT_EXTENSION : constant STRING := ".DAT"; .
MAXIMUM_FILE_NAME_LENGTH . constant INDEX = SOME_APPROPRIATE, VALUE; T
FILE_NAME : TEXT(MAXIMUM._FILE_NAME_LENGTH}; oL
begin
SET(FILE_NAME, NAME);
it EMPTY(FILE.NAME) then b
SET(FILE_.NAME, DEFAULT.FILE.NAME):
and if;

it LOCATE('", FILELZNAME) = O then]
SET(FILE_NAME, DEFAULT_DEVICE & FILE_NAME);
end if; [

if LOCATE('.', FILE_LNAME) = O then
APPEND(DEFAULT.EXTENSION, TO => FILE_NAME),

end if;

ruturn VALUE(FILE_NAME);

end EXPAND_FILE_NAME;

7.6 Example of a Text Handling Package 7-14 S -

P S D

£ 2

RN -3 S

3 \ .v . . ! ° o N N N) ° B .~ ' - ". . .' ’ - - - . .
PPTPVIIR W STV NPLIP WS TUT P T OUTI T VLTI U WET0 Y TR0 PO T AP TR JUPVITE U TR g POy Culr S Pt Pl U U U Ot PO P U U ey G S S o S S U o PO

8. Visibility Rules

The rules defining the scope of daclarations and the rules defining which identifiurs are visible at
various points in the text of the program are described in this chapter. The formulation of these
rules uses the notlon of a declarative region.

References. declaration 3.1, declarative region 8.1, identifier 2.3, scope 8.2, visibllity 8.3

8.1 Declarativa Ragion

A declarative region is a portion of the program text. A single declarative region Is formed by the
text of each of the following:

® A subprogram declaration, a package declaration, a task daclaration, or a generic declaration,
together with the corresponding body, if any. If the body Is a body stub, the declarative region
also Includes the corrasponding subunit, If the program unit has subunits, they are also
included,

® An entry declaration together with the corresponding accept statements.

® A racord type declaration, together with a corresponding private or incomplste type declara-
tion if any, and together with & corresponding record representation clause if any.

® A renaming declaration that includes a formal part, or & genaric parameter declaration that
includes either a formal part or a discriminant part,

® A block statement or a loop statement,

In each of the above cases, the declarative region is said to be assoc/ated with tha corresponding
declaration or statement. A declaration is sald to occur immediately within a declarative region if
this region Is the innermost region that encloses the declaration, not counting the declarative
region (if any) assoclated with the declaration itself.

A declaration that occurs immedi|ately within a declarative reglon Is said to be /oca/ to the region.
Declarations in outer (enclosing) regions are said to be g/obal/ to an inner (enclosed) declarative
r.glon. 4, local entity is one declared by a local declaration; a global entity is one declated by a
global declaration.

Some of the above forms of declarative region include several disjoint parts (for exampie, other
declarative itams can be between the declaration of a package and its body). Each declarative
region is nevertheless considered as a (logically) continuous portion of the program text. Hence if
anv rule defines a portion of axt as the text that extends from some specific point of a declarative
tegion ¢ the en of this region, then this portion is the corresponding subset of the declarative
rey T 4o~ .. it does not Include Intermediate declarative items between the two parts of a

' P 2]

Declarative Regilon 8.1

(<]

ANSI/MIL-STD-1815A Ada Reference Manual

Notes:

As defined in section 3.1, the term declaration includes basic declarations, implicit dectarations,
and those declarations that are part of basic declarations, for example, discriminant and parameter
specifications, It follows from the definition of a declarative region that a discriminant specification
occurs immadiately within the region associated with the enclosing record type declaration.
Similarly, a parameter specification occurs immediately within the region associated with the
enclosing subprogram body or accept statement.

The package STANDARD forms a declarative region which encloses all library units: the implicit
declaration of each library unit is assumed to occur immediately within this package (see sections
8.6 and 10.1.1).

Declarative regions can be nested within other declarative reglons. For example, subprograms,
packages, task units, generic units, and block statements can be nested within each other, and can
contain record type declarations, loop statements, and accept statements.

References. accept statement 9.5, basic declaration 3.1, block statement 5.8, body stub 10.2, daclaration 3.1,
discriminant part 3.7.1, discriminant specification 3.7.1, entry declaration 8.6, formal part 6.1, generic budy 12.2,
generic declaration 12,1, generic pararneter declaration 12,1, implicit declaration 3.1, incomplete type duclaration
3.8.1, library unit 10,1, loop statement 5.6, package 7, package body 7.1, package declaration 7.1, paramaeter
specification 6.1, privats type declaration 7.4, record representation clause 13.4, record tyre 3.7, ranaming declara-
tion 8,6, standard package 8.8, subprogram body 8.3, subprogram declaration 6.1, subunit 10.2, task body 9.1, task
declaration 9.1, tagk unit 9

8.2 Scopo of Declarations

For each form of declaration, the language rules define a certain portion of the program text valled
the scope of the declaration. The scope of a declaration Is also celled the scope of any untity
declared by the declaration. Furthermore, if the declaration associatus some notation with a
declared entity, this portion of the text is also called the scope of this notation (either an Identifier,
a character literal, an operator symbo!, or the notation for a basic operation). Within the scope of
an entity, and only thero, there are places where It is legal to use the assnciated notation in order
to refer to the daclared entity. These places are defined by the rules of visibliity and overloading.

Tha scope of a declaration that occurs Iimmediately within a declarative region extends from the
beginning of the declaration to the end of the declarative region; this part of the scope of a declara-
tion is called the /mmediate scope. Furthermore, for any of the declarations listed below, the scope
of the declaration extends beyond the immediate scope:

(a) A declaration that occurs immediately within the visible part of a package declaration.
(b) An entry declaration.

(c) A component declaration.

(d) A discriminant spacification,

(e} A parameter specification.

(f} A generic parametar declaration,

8.2 Scope of Declarations 8-2

R

3 e T
-

Visibility Rules

In each of these cases, the glven declaration occurs immediately within some enclosing declara-
tion, and the scope of the given declaration extends to the end of the scope of the enclosing
declaration.

In the absence of a subprogram declaration, the subprogram specification given in the subprogram
body or in the body stub acts as the declaration and rule {e) applies also in such a case.

Notes.

The above scope rules apply to all forms of declaration defined by section 3.1; In particular, they
apply also to implicit declarations. Rule (a) applies to a package declaration and thus not to the
package specification of a generic declaration. For hested declarations, the rules (a) through (f)
apply at each lavel, For example, if a task unlit is declared in the visible part of a package, the scope
of an entry of the task unit axtends to the end of the scope of the task unit, that Is, to the end of the
scope of the enclosing package. The scope of a usa clause |s defined in saction 8.4,

References: baualc operation 3.3.3, body stub 10,2, character literal 2.8, component declaration 3.7, declaration 3.1,
declarative region 8.1, discriminant specification 3.7.1, entry deciaration 8.5, extends 8.1, generic declaration 12.1,
generic parameter declaration 12.1, identifier 2.3, implicit declaratlon 3.1, occur immediately within 8.1, operator
symbol 6.1, overloading 8.8 8.7, package declaration 7.1, package specification 7.1, parameter specification 8.1,
record type 3.7, renaming declaration 8.8, subprogram body 8.3, subprogram declaration 6.1, task declaration 9.1,
task unit 9, typa declaration 3,3.1, use clause 8.4, visibility 8.3, visible part 7.2

8.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text is defined by the visibllity
rules and also, in the case of overloaded declaratiors, by the overloading rules. The identifiers con-
sidered in this chapter include any identifier other than a reserved word, an attribute designator, a
pragma Identifier, the identifler of a pragma argument, or an identifier given as a pragma argu-
maent. The places considered In this chapter ara those whaore a lexical slement (such as an Iden-
tifier) occura. The overloaded declarations considered In this chapter are those for subprograms,
enumeration literals, and single entries.

For each idantifier and at each place in the text, the visibllity rules determine a set of declarations
(with this identitier) that define possible meanings of an occurrence of the Identifier. A deciaration
i+ sald to be vis/h/e at a givan place In the text when, according to the visibility rules, the declara-
tion defines a possible meaning of this occurrence. Two cases arise.

¢ Thae visibllity rules detarmine at most one possible meaning. In such a case the visibility rules
are sufficient to determine the declaration defining the meaning of the occurrence of the iden-
tifier, or in the absence of such a declaration, to determine that the occurrence is not legal at
the given point,

¢ The visibility rules determine more than one possible meaning. In such a case the occurrence
of the identifier is legal at this point if and only if exact/y one visible declaration is acceptable
tfor the overloading rules in the glven context (see section 6.6 for the rules of overioading and
gection 8.7 for the context used for overload resolution).

8-3 Visibllity 8.3

r. oot

’

ANS//MIL-STD-1815A Ada Reference Manual

A declaration is only visible within a certain part of its scope; this part starts at the end of the
declaration excapt in a package spacification, in which case it starts at the reserved word s given
after the identifiler of the package specification. (This rule applies, in particular, for implicit
declarations.)

Visibility is either by selection or direct. A declaration Is visible by select/on at places that are
defined as follows,

{(a) For a declaration given in the visible part of a package declaration: at the place of the selactor
after the dot of an expanded name whose prefix denotes the package.

(b) For an entry declaration of a given task type: at the place of the selector after the dot of a
selected componant whose prefix Is appropriate for the task type.

(c) For a component declaration of a given record type declaration: at the place of the selector
after the dot of a selected component whose prefix is appropriate for the type; also at the
place of a componant simple name (before the compound delimiter =>) in a named compo-
nent association of an aggregate of the type.

(d) For a discriminant specification of a given type declaration: at the same places as for a com-
ponent declaration; also at the place of a discriminant simple name (before the compound
delimiter =>) in a namead discriminant association of a discriminant constraint for the type.

(e) For a parameter spacification of a given subprogram specification or entry declaration: a: the
place of the formal parameter (before the compound delimiter =>) in a named parameter
association of a corresponding subprogram or entry call.

() For a generic paramaeter declaration of a given generic unit: at the place of the generic formal
parameter (before the compound delimiter =>) in a named generic assoclation of a cor-
responding genaric instantiation.

Finally, within the declarative region associated with a construct other than a recored type declara-
tion, any declaration that occurs Iimmediately within the region is visible by selection at the place
of the selector after the dot of an expanded name whose prefix denotes the construct.

Where it is not visible by selection, a visible declaration is said to be directly vis/ble. A declaration
is directly visible within a certain part of its Immadiate scope; this part extends to the end of the
immediate scope of the declaration, but excludes places where the decluration is hidden as
explained below. In addition, a declaration occurring immadiately within the visible part of a
package can be made directly visible by means of a use clause according to the rules described in
section 8.4, (See also section 8.6 for the visibility of library units.)

A declaration is sald to be hidden within (part of) an inner declarative region if the inner region con-
tains @ homograph of this declaration; the outer declaration is then hidden within the immediate
scope of the innar homograph. Each of two declarations is said to be a homogra..i of the other if
both declarations have the same identifier and overloading is allowed for at most one of the two. If
overloading Iis allowed for both declarations, then sach of the two Is a homograph of the other if
they have the same Identifier, oparator symbol, or character literal, as well as the same paramater
and result type profile (sae 6.8).

Within the specification of a subprogram, evary declaration with the same designator as the sub-
program is hidden; the same holds within a generic instantiation that declares a subprogram, and
within an entry declaration or the formal part of an accept statement; whoro hidden in this mannar,
a declaration is visible neither by seslection nor directly.

8.3 Visibitity 8-4

dev o e
ERRE LG P

.n;-'zﬁ ;-n .. - -

e 0 e -
28 o m &

r
= .

- -
v’—n‘

L e

Visibility Rules

Two declarations that occur immediately within the same declarative ragion must not be
homographs, uniess either or both of the following requirements are met: (a) exactly one of them
is the implicit declaration of a predefined operation; (b) exactly one of them is the implicit declara-
tion of a derived subprogram, In such cases, a predefined oparation is always hidden by the other
homograph; a derived subprogram hides a predefined operation, but is hidden by any other
homograph. Where hidden in this manner, an implicit declaration is hidden within the entire scope
of the other daclaration (regardiess of which declaration occurs first); the implicit declaration is
visible neither by salection nor directly.

Whenever a declaration with a certain identifier is visible from a given point, the identifier and the
declared entity (if any) are also said to be visible from that point. Direct visibility and visibility by
selection are likewise defined for character literals and operator symbaols. An operator Is directly
visible if and only if the corresponding operator declaration is directly visible. Finally, the notation
associated with a basic operation is directly visible within the entire scope of this operation.

Example:

procedure P s
A, B : BOOLEAN;

procedure Q Ie
C : BOOLEAN;
B : BOOLEAN; -- @an Inner homograph of B
begin
B = A -~ means QB = PA;
C = PB; -- means QC == PB;
ond;
begin
A = B -- means PA = PB;
end;

Note on the visibiiity of llbrary units:

The visibility of library units is determinad by with clauses (see 10.1.1) and by the fact that library
units are implicitly declarad in the package STANDARD (see 8.8).

Note on homographs:

The same Identifier may occur in different declarations and may thus be associated with diffarent
entities, sven If the scopes of these declarationa overlap. Overlap of the scopes of declarations
with the same identifier can result from overloading of subprograms and of enumeration literals.
Such overiaps can also occur for entities declared in package visible parts and for antries, record
components, and parameters, whare thers is overlap of the scopes of the enclesing package
declarations, task declarations, record type declarations, subprogram declarations, renaming
declarations, or generic declarations. Finally overlapping scopes can result from nesting.

Note on immediate scope, hiding, and visibility:

The rulus defining Immediate scope, hiding, and visibility Imply that a reference to an identifier
within its own declaration s illegal (except for packages and generic packages). The identifier
hides outer homographs within its Immediate scope, that is, from the start of the declaration; on
the other hand, the identifier is visible unly after the end of the declaration, For this reason, all but
the last of the following declarations are illegai:

8-5 Visibliity 8.3

i

1]

3

»3

ANSI/MIL-STD-1815A Ada Reference Manual

K : INTEGER := K « K; -~ lllegal

T: T -~ lllegal

procedure P(X : P); - Ilegal

procedure Q(X : REAL := Q); -- illegal, even if there is a function named Q
procedure R(R : REAL): -- an inner declaration is legal (aithough confusing)

Referonces: accept statement 9.5, aggregats 4.3, appropriate for a type 4.1, argument 2.8, basic operation 3.3.3,
character litoral 2.6, component assoclation 4,3, componant decla, ation 3.7, compound delimiter 2.2, declaration 3.1,
declarative ragion B.1, designate 3.8, discriminant constraint 3.7.2, discriminant specification 3.7.1, entry call 9.5,
entry declaration 9.5, entry family 9.5, enumeration literal specification 3.5.1, expanded name 4.1.3, extends 8.1, for-
mal parametsr 6.1, ganeric association 12,3, generlc formal parameter 12.1, generic Instantiation 12.3, generic
package 12.1, generic parameter declaration 12.1, generic unit 12, identifler 2.3, immediate scope 8.2, implicit
declaration 3.1, lexical element 2.2, library unit 10.1, object 3.2, accur immediately within 8.1, operator 4,6, operator
symbol 6.1, overloading 6.8 8.7, package 7, parameter 8.2, parameter association 6.4, parameter specification 6.1,
pragma 2.B, program unit 8, record type 3.7, reserved word 2.9, scopa 8.2, selected component 4,1.3, selector 4.1.3,
simple name 4.1, subprogram 68, subprogram call 6.4, subprogram declaration 6.1, subprogram specification 8. |, (ask
type 8.1, task unit 9, type 3.3, type declaration 3.3,1, use clause 8.4, visible part 7.2

8.4 Use Clauses

A use clause achieves direct visibility of declarations that appear in the viaible parts of named
packages.

use_clause := use packege.name |, package_namel;

For each use clause, there is a certain region of text called the scope of the use clauce. This region
starts immediately after the use clause. If n use clause is a declarative item of some declarative
region, the scope of the clause extends to the and of the declarative region. |f a use clause occurs
within a context clause of a compilation unit, the scope of the use clause extends to the end of the
declarative region associated with the compilation unit.

In order to dafine which declarations are made directly visible at a given place by use clauses, con-
sider the set of packages named by all use clauses whoae scopes enciose this place, omitting from
this set any packages that enclose this place, A declaration that can be made directly visible by a
use clause (a potentially visible declaration) is any declaration that occurs immediately within the
visible part of a package of the set. A potentially visible declaration is actually made directly visible
except in the following two cases:

® A pot-ntially visible declaration is not made directly visible if the place considered Is within
the .nmediate scope of a homograph of the declaration.

e Potentially visible declarations that have the same (dentifier are not made directly visible
unleas each of them ig either an enumeration literal specification or the declaration of a sub-
program (by a subprogram declaration, a renaming declaration, a generic instantiation, or an
implicit declaration),

The elaboration of a use clause has no other effect.
Note:!
The above rules guarantee that a declaration that is made dirsctly visible by a use clause cannot

hide an otherwise directly visible declaration. The above rules are formulated In terms of the set of
packages named by use ciauses,

8.4 Use Clauses 8-6

i
. 1
L _:.t‘.I

Visibility Rules

Consequently, the following lines of text all have the same effect (assuming only one package P). 0
use P, .
use P; use P, P
Example of conflicting narnes In two packages: 10 - ®
procedure R is o
packages TRAFFIC s S
type COLOR s (RED, AMBER, GREEN); N
and TRAFFIC; 3
e
package WATER_COLORS s .
type COLOR Is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK); J
end WATER_COLORS; Lo
use TRAFFIC; - COLOR, RED, AMBER, and GREEN are directly visible PR
uss WATER_COLORS; -- two homographs of GREEN are directly visible T
- but COLOR Is no longer directly visible
subtype LIGHT is TRAFFIC.COLOR; -~ Subtypes are usad to resolve
subtype SHADE Is WATER_COLORS.COLOR; -- the confilcting typs name COLOR o
SIGNAL : LIGHT; L
PAINT : SHADE; :
begin
SIGNAL := GREEN; -- that of TRAFFIC .
PAINT = GREEN; -- that of WATER_COLORS '
end R; N
Example of name [dentification with a use clause: 1 A o
package D s
T. U, V i BOOLEAN;
end D; RN
procedura P s E »
package E s Jo e
B, W, V ! INTEGER; :
ond E:
procedure Q s
T, X : REAL;
use D, E; -,
begin "
-~ the name T means Q.T, not DT
-- the name U means D.U
== the nume B means EB R
-+ the name W means EW N
-- the name X means Q.X \ 9
-- the name V s lllegal : either D.V or EV must be used
om.l" Q; .
begin
cn(.l“ P
N \
8-7 Use Clauses 8.4

o, . ot , . . . L. L, . R .
[A A /A Aottt o e A At el gm0 o i Aot et bt bt Bt B oot shpncs B0 A, Mk Lo i Wl ot b Mo de- it hin b g am ikl g tae g ® e B Brne A W e h ke W

SR

B o |

ANSIIVIIL-0TU-TOT VA AQd Heterence [ianual

References: compliaticn unit 10.1, context clause 10.1, declaration 3.1, daclarative item 3.9, declarative region 8.1,
direct visibility 8.3, staboration 3.1 3.9, elaboraticn has no other effect 3.1, enumeration literal specification 3.6.1,
axtends 8.1, hiding 8.3, homcgraph 9.3, identifler 2.3, immediate scope 8.2, nama 4.1, occur immeadiately within 8.1,
package 7. scope 8.2, subprogram declaration 6.1, visible part 7.2

8.5 Renaming Declarations

A ronaming daeclaration declares another name for an entity.

renaming..declaration :=
identifier : type..mark renamas object_nsme;
| identifier : exception ranames exception_name;
| package identifier renames package_name;
| subprogram_spacification renames subprogram_or.antry.name;

The elaboration of a renaming declaration evaluates the name that follows the reserved word
renamaes and thereby determinas the entity denoted by this name (the renamed entity}, At any
point where a renaming declaration Is visible, the identifier, or operator symbol of this declaration
denotes the renamsd antity,

The first form of renaming declaration is used for the renaming of objects. The renamed entity
must be an object of the base type of the type mark. The properties of the ranamed object are not
affected by the renaming declaration. In particular, its value and whether or not it is a constant are
unaffected; similarly, the constraints that apply to an object are not affected by renaming (any
constraint implied by the typa mark of the renaming daclaration is ignored). The renaming declara-
tion is legal only If exactly one object has this type and can be denoted by the object name.

The following restrictions apply to the renaming of a subcomponent that depends on discriminants
of a variable. The renaming Is not allowed If the subtype of the variable, as defined in & cor-
responding object declaration, component declaration, ot component subtype indication, is an
unconstrained type; or if the variable is a ganeric formal object (of mode in out). Similarly if the
variable is a formal paramaeter, the renaming is not allowad if the type mark given in the parameter
specification denotes an unconstrained type whose discriminants have default expressions.

The second form of renaming declaration is used for the renaming of exceptions; the third form,
for the renaming of packages,

The last form of renaming declaration Is used for the renaming of subprograms and entries, The
renamed subprogram or entry and the subprogram specification given in the renaming declaration
must have the same parameter and result type profile (see 8.6). The renaming declaration Is legal
only if exactly one visible subprogram or entry satisfies the above requirements and can be
denoted by the glven subprogram or entry name. In addition, parameter modes must be identical
for formal parameters that are at the same paramaeter position,

The subtypes of the parameters and result (if any) of a renamed subprogram or sntry are not
affected by renaming. These subtypes are those given in the original aubprogram declaration,
peneric instantiation, or entry declaration (not those of the renaming declaration); even for calls
that use the new namea. On the other hand, a ranaming declaration can introduce parametar names
and default expreasions thet differ from those of the renamed subprogram; named assoclations of
calls with the new subprogram name must use the new parameter name; calls with the old sub-
program name must use the old parameter names.

8.6 Renaminy Declarations R-8

w b
. '
.
' -
' «
R "
* "
) M
.
. "
o
o,
SR |
‘
.
K
.'
(ST
P
@

.
«
S
Y
e‘
N
h\
.
.

<
»®

n
.

VISIUNIYY nuius

A procedure can only be reriamed as a procedure. Either of a function or operator can be renarmed
as either of a function or operator; for renaming as an operator, the subprogram specification given
In the renaming declaration Is subject to the rules given in section 8.7 for operator declarations.
Enumeration literals can be renamed as functions; similarly, attributes defined as functions (such
as Succ and PRED) can be renamed as tunctions. An entry can only be renamed as a procedure;
the new name is only allowed to appear in contexts that allow a procedure name. An entry of a
family can be ranamed, but an entry famlly cannot be renamed as a whole.

Examples:
daclare
L ¢ PERSON renames LEFTMOST_PERSON; -- ses 3.8.9
begin
LAGE := LAGE + 1;
end;
FULL : exception renames TABLE_MANAGER TABLE_FULL: «- see 7.5
package T™ renumes TABLE_MANAGER;

function REAL.PLUS({LEFT, RIGHT : REAL) return REAL ronames “+";
function INT.PLUS (LEFT, RIGHT : INTEGER) return INTEGER renames “+";

function ROQUGE retum COLOR renames RED; .- see 36,1

function ROT return COLOR rersmes RED;

function ROSSO return COLOR rerames ROUGE;

function NEXT(X : COLOR) raturn COLQR renames COLOR'SUCC; -- soe 3.8.5
Example of a renaming declarution with naw parametar names:

function "+ (XY : 'VECTOR) retum REAL renumes DOT_PRODUCT; -- see 6.1
Example of a renarmiig declaration with » new default expressivn:

function MINIMUMIL ' LINK =« HEAD) return CELL renames MIN.CELL; -- seo 6.1
Notes:

Renaming inay be used ta resolve nama conflicts and to act as a shorthand. Renaming with a dif-
ferent identifiar or oparator symbiol doss not hida the old name; the naw name and the old name
need not be visible at the same oints, The attributes POS and VAL connot be renamed since the
corrasponding specifications cannot be written; the same holds for the predefined multiplying
oparatora with a universal_fixed rosul\.

Calla with the new name of a renamed entry are procedure call statements and are not allowad at
places where the syntax requires an entry call statement in conditional and timed entry calls;
similarly, the COUNT attribute is not avaliak:le for the naw name.

A task object that |s declared by an object deciaration can be renamed as an object. However, a
single task cannot be renamed since tho ocorresponding task type is anonymous. For slmilar
reasons, an object of an anonymous array type canrot be renamed. No syntactic form exists for
renaming a genaric unit,

A subtype can be used to achieve the sffact of renaming a type (including a task type) as in

subtype MODE s TEXT..JO.FILE_MQOE :

8-9 Renaming Deciarations 8.5

ANSI/MIL-STD-1815A Ada Reference Manua

References: allow 1.6, attribute 4.1.4, base type 3.3, conditlonal entry call 8.7.2, constant 3.2.1, constrained subtype
3.3, constraint 3.3, declaration 3.1, default expression 8.1, depend on a discriminant 3.7.1, discriminant 3.7.1,
elaboration 3,1 3.9, antry 9.5, entry call 9.5, entry call statement 9.5, entry decleration £.8, entry family 9.6, anumera-
tion literal 3.56.1, avaluation of a name 4.1, exception 11, formal parameter 6.1 ur.ction 8.5, identifler 2.3, legal 1.6,
mode 6.1, name 4,1, object 3.2, object declaration 3.2, operator 6.7, operator declarction 8.7, operator symbol 6.1,
packaga 7, parametar 8.2, paramster specification 8.1, procadure 6.1, procadure cal! statament 8.4, rosarved word
2.9, subcompunsnt 3.3, subpragram 8, subprogram call 6.4, subprograrn declaration 8.1, subprogram specification
8.1, subtype 3.3.2, task ohjact 9.2, timed antry call 9.7.3, type 3.3, types mark 4.3.2, variable 3.2.1, visibility 8.3

8.8 The Package Standard

The predefined types (for example the types BOOLEAN , CHARACTER and INTEGER) are the types
that are declared In a predefined package called STANDARD ; this package also inclucles the
declarations of their predefined operations. The package STANDARD Is deacribed in Annex C,
Apart from the predefined numeric types, the spacification of the package STANDARD nust be the
same for all implamentations of the language.

The package STANDARD forms a declarative region which encloses every library unit and
consequently the main program; the declaration of every library unit is assumed to ocour
immaediately within this package. The implicit declarations of library units are assumed to be
ordered in such a way that the scope of a given library unit includes any compllation unit that men-
tions the given library unit in a8 with clause. However, the only library units that are visible within a
given compilation unit are as follows: they include the Iibrary units named by all with clauses that
apply to the given unit, and moreovaer, if the given unit |s a secondary unit of some library unit, they
include this library unit,

Notes:

If all block statements of a program are named, then the name of each program unit can always be
written as an expanded name starting with STANDARD (unieas this package is itsoif hidden),

If a type is declared In the visibly part of a library package, thon It is u consequence of the visibility
rules that a basic operation (such as assignment) for this typa is directly visible at plaves where the
type itself is not visible (whether by selection or directly), However this operation cun only be
appliad to oparands that are visible and the declaration of those operands requliios the visibility of
either the type or one of its subtypes.

Referencas: appiicable with clause 10.1,1, block nama B.8, blook statument 6.6, declaration 3.1, declarative raglon
8.1, expanded namo 4.1.3, hiding 8.3, identifler 2.3, lmplicit declaration 3.1, library unit 10.1, loop statemant 8.5,
moin program 10.1, must 1,8, name 4.1, cocur immadiately within 8.1, operatnr 6.7, package 7, program unit 6,
wacondary unit 10,1, subtype 3.3, type 3.3, vislbllity 8.3, with clause 10.1.1

8.7 The Contaxt of Qverioad Resolution

Overivading is defined for subprgrams, enumeration literals, operntors, and single entrivs, and
also for tha operations that are iniiorent In several basic operations such as assignment,
membarship tests, allocators, the literal null, aggregates, and string literals,

8.7 The Context of Overload Resolution 8-10

A I“
[AN
'

. iy

Visibllity Ruies

For overloaded entities, overload resolution datarmines the actual meaning that an accurrence of 2 3
an identifier has, whenevar the visibility rules heve determined that mors than one meaning is ' .
acceptable at the place of this occurrance; overload resolution likewise determines the actual
meaning of an occurrsnce of an oparator or gome bagic opsration.

At such a place all visible declarytions are consideread. The occurrence Is only legal if thare Is 1
exactly one intarpretation of each constituent of the Innermost complete context; a complete con-
text is one of the following:

® A declaration.)
® A stytement. R
i ® A representation clause, , . .

' When considering possible interpretations of a complets context, the only rules censiderad are the '
syntax ruley, the scope and visibllity rules, and the ruloa of the form described heiow.

| {n) Any rule that requires a namae or expreasion to have a certain typs, o to have the aame type as (
' another name or expression,

{b) Any rule that requires the typa of & name or expresaion to be a type of a certain class, similsr. ’ .8
v, any rule that raquires & certain type to be a discrote, integer, real, universal, character, .
boninan, or rionlimited typs.

{c) Any rule that requires a protix to be appropriate for a certain type, 10 L

. (d} Any rule that speciiiss a certain type as the result type of a basiu operation, and nny rule that "
| spacifies that this type Is of a certain class,

(a) The rules that raquira the type of an aggrogate or string litera! to be doterminuble solely from "

the anclosing complete contuxt (see 4.3 and 4.2). Similarly, the rulec that require tha type of R

| the prafix of an attribute, the type of the expression of a case statement, or the type of the Do
‘ operand uf a typa converslon, to be detérminabis iIndependently of the context (vee 4.1.4, 6.4, e

" 4.8, and 8.4.1),

. (fi The rulea gliver in section 6.8, for the rasolution of overioaded subprogram calls; i section 1"

' 4.3, for the Impllcit converslana of univorss) expressions; in section 3.8.1, for the Intv reta- '

] tion of digcrate rariges with bounds having a universai type: and In section 4,1.3, for the

: Interpratetion of ¢n expanded name whose prafix denotes a sul:program r an accept stote- -
ment,

Subsprogram names uic 1 as pragma arguments follow a differsnt rule: the oragma can apply to " S
- seversal overioaded subprograms, as explained in section 6.3.2 for the nragma INLINE, in section Co
l 11.7 for the pragma SUPPRESS, and In sectior: 13.9 for the pragma INTERFAGE - OR

Sirnilarly, the simple namas given in uontext clausos (ase 10.1,1) und Ir addross clauses (see 13.5) "
follow differont rules.

8-11 The Context of Overload Resolution 8.7

N 19
]

.. 20
-

N

- 21
v

”,

't

‘.

; 22
!

~

s 23
X

4

) 24

»a

ANSIMIL-STD-1815A Ada Reference Manual

Notes:

If there is only one possible interpretation, the identifier denotes the corresponding entity.
However, this does not mean that the occurrence Is necessarily legal since other requirements
axist which are not considered for overload resolution; for example, the fact that an expression is
static, the parameter modes, whether an object i3 constant, conformance rules, forcing occur-
rences for a representation clause, order of elaboration, and so on.

Similarly, subtypes are not considered for overload resolution (the violation of a constraint does
not make a program lliegal but raises an exception during program execution).

A loop parameter specification is a declaration, and hence a complete context.

Rulas that require certain constructs to have the same parameter and result type profile fall under
the category (a); the same holds for rules that require conformance of two constructs since con-
formance requires that corresponding names be given the same meaning by the visibility and
overloading rules.

References: aggregate 4.3, ailocator 4.8, assignment 5.2, basic operation 3.3.3, case s.atement 5.4, class of type
3.3, declaration 3.1, entry 9.5, enumeration literal 3.5.1, exception 11, expression 4.4, fornial part 8,1, identifier 2.3,
legal 1.6, literal 4.2, loop parameter specification 5.5, membership test 4,6.2, name 4.1, null literal 3.8, operation
3.3.3, operator 4.5, overloading 8.6, pragma 2.8, representation clause 13.1, statement 5, static expression 4.9, static
subtype 4.9, subprograrn 8, subtype 3.3, type conversion 4.8, visibllity 8.3

Rules of the form (a): address clause 13.5, assignment 6.2, cholce 3.7.3 4.3.2 5.4, component association 4.3.1
4.3.2, conformance rules 9.5, default expression 3.7 3.7.1 6.1 12.1.1, delay statement 9.6, discrete rangs 3.6.1 5.5
9.5, disciiminant constraint 3.7.2, enumeration representation clause 13.3, generlc parameter association 12.3.1,
index constraint 3.8.1, indox expression 4.1,1 4,1.2 9.6, initial value 3.2.1, membership test 4.6.2, paramater assocla-
tion 8.4.1, parameter and resuit type profile 8.5 12.3.8, qualified expression 4.7, range constraint 3.6, renaming of an
object 8.5, result exprassion 5.8

Rules of the form (b): abort statemant 9.10, assignment 5.2, case axpression 5.4, condition 6.3 6.5 6.7 8,7.1,
discrete range 3.6.1 5.5 9.5, fixed point typs declaration 3.5.9, floating point type declaration 3.6.7, intager type
ceclaration 3.5.4, langth clause 13.4, membaership test 4.4, number declaratic' 3.2.2, record representation clause
13.4, selectad component 4.1.3, short-circuit control form 4.4, val attribute 3.6.56

Rules of the form [c): indexed component 4.1.1, selected component 4.1.3, slice 4.1.2

Rules of the form (d): aggregate 4.3, allocator 4.8, membership test 4.4, null literal 4.2, numeric literal 2.4, short-
clrcuit control 1orm 4.4, string literal 4.2

8.7 The Context of Qverload Resolution 8-12

" " y N "tk PR IR Y] [DI S VY W - v P L
D i A A e T L A 2 e Ak e a A e bune A et s At tene e T D 7 S 2 b

oty
. v

atz'a

9. Tasks

The execution of a program that does not contain a task is defined in terms of a sequential execu-
tion of its actions, according to the rules described in other chapters of this manual. These actions
can be considered to be executed by a single /ogical processor.

Tasks are entities whose executions proceed /n parallel in the following sense. Each task can ba
considered to be executed by & logical processor of its own. Different tasks (different logical
processors) procoed indepandently, except at points where they synchronize.

Some tasks have antrfes. An entry of a task can be called by other tasks. A task accepts a call of
one of its entries by executing an accept statement for the antry. Synchronization Is achieved by
rendezvous between a task issuing an entry csll and a task accepting the call. Some entries have
parameters; entry calls and accept statements for such entries are the principal means of com-
municating values between tasks.

The propertias of each task are defined by a corresponding task unit which consists of a task
specification and a task body. Task units are one of the four forms of program unit of which
programs can be composed. The other forms are suhprograms, packages and generic units. The
properties of task units, tasks, and entries, and the statements that affect the interaction between
tasks (that is, entry call statements, accept statuments, delay statements, select statements, and
abort statements) are described In this chapter.

Note:

Parallel tasks (parallel logical processcrs) may be implemented on multicomputers, multiproces-
sors, or with interleaved execution on a single phys/ce/ processor. On the other hand, whenever an
implementation can detect that the same effect can be guaranteed if parts of the actions of a piven
task are executed by different physical processors acting In parallel, it may choose to execute them
in this way; in such a case, several physical processors Implement a single logical processor.

References: abort statement 9,10, accept statement 8.5, delay statement 9.€. antry 9.5, entry call statament 9.5,

generic unit 12, package 7, parameter in an antry call 8.5, program unit 8, rendezvous 9.5, sulect statemant 8.7, sub-
program B, task body 9.1, task specification 9.1

9.1 Task Spaecifications and Task Bodies

A task unit conslists of a task specification and a task body. A task specification that starts with the
reserved words task type decldaras a task type. The value of an object of a task typre designates a
task having the entrias, If any, that are declared in the task specification: these entries are also cal-
led entries of this object. The execution of the task is defined by the corresponding task body.

9-1 Task Specifications and Task Bodies 9.1

et NI

ANSI/MIL-STD-1815A Ada Reference Manual

A task specification without the resarved word type defines a single task, A task declaration with
this form ot specification is equivalent to the daclaration of an anonymous task type immediately
followed by the declaration of an abject of the task type, and the task unit identifler names the
object. In the remainder of this chapter, explanations are given in terms of task type declarations;
the corresponding explanations for single task declarations follow from the stated equivalence.

task_declaration := task_specification;

task_specification =
task [(typa] identifier (is
|entry_declaration|
{reprasantation_clause}
end [task_simple_.name]]

task_body =

task body task_simple_name is
[declarative_part]

bagin
seaquence_of_statemants

| exception
exception_handler
| exveption_handier])

end [task_simple_nama);

The simple name at the start of a task body must repeat the task unit identifier. Similarly if a simpla
name appears at the and of the task specification or body, it must repeat the task unit identifier.
Within a task body, the name of the corresponding task unit can also be used to refar to the task
object that dasignates the task currently executing the bndy; furthermore, the use of this name as a
type mark is not allowsd within the task unit itself,

For the alaboration of a task specificat on, entry declurations and representation clauses, if any, are
elahorated in the order given. Such reprasantation clauses only apply to the entries declared in the
task specification (see 13.5).

The elaboration of a task body has no other effect than to establish that the body can from then on
be used for the execution of tasks designated by objects of tha corresponding tesk type.

The execution of a task body Is invoked by the activation of a taok object of the corresponding type
(see 9.3). The optional excaption handlers at the and of a task body handle axceptions ralsed dur-
ing the execution of the sequence of statements of the task body (see 11.4).

Examples of speclfications of task types:

task type RESOURCE Is
entry SEIZE;
oentry RELEASE;

ond RESOURCE;

tusk typs KEYBOARD_DRIVER is
entry READ (C : out CHARACTER});
entry WRITE(C : in CHARACTER):
end KEYBOARD_DRIVER;

9.1 Task Specifications and Task Bodles 9-2

Tasks

Examples of specffications of single tasks:

task PRODUCER_CONSUMER s
entry READ (V : out ITEM)
antry WRITE(E : In ITEM);

ond;

task CONTROLLER is
antry REQUEST(LEVELKD : ITEM); - @8 family of entries
end CONTROLLER;

task USER; -- has no entries
Example of task spacification and corrasponding body:

\ask PROTECTED_ARRAY s

-~ INDEX and iTEM wurs global types

entry READ (N : in INDEX; V : out ITEM):
entry WRITE(N : in INDEX; E : in ITEM);
and;

task body PROTECTED_ARRAY is
TABLE : array(INDEX) of ITEM = (INDEX => NULL_ITEM};
begin
loop
nulect
accept READ (N : in INDEX: V : out ITEM) do
V = TABLE(N):
end READ;
or
accept WRITE(N : in INDEX; E : in ITEM) do
TABLE(N) = E;
end WRITE;
end select;
and loop;
oand PROTECTED_ARRAY;

Note:

A task specification specifies the interface of tasks of the task type with other tasks of the saine or
of different types, and also with the main program,

References: declaration 3.1, declorative part 3.9, elaboration 3.9, entry 8.5, entry declaration 9.5, exception handl~r
11.2, identifier 2.3, main program 10.1, object 3.2, abject declaration 3.2.1, representation clause 13.1, reserve.
word 2.9, sequence of statements 5.1, simple name 4.1, type 3.3, type declaration 3.3.1

9.2 Task Types and Task Objects

A task type is a limited type (gea 7.4.4). Hence neither assignment nor the predefined comparison
for equality and inequality are defined for objects of task types; moreover, the mode out is not
allowed for a formal parameter whose type is a task type.

9-3 Task Types and Task Objects 9.2

ANSHMIL-STD-18154 Ade Refsrance Manual

A task object is an object whose typeis .o .o - ., swlue of a task object designates a task
that has the entries of the corresponding vwa . - =, o whise execution is gpecified by the car-
responding task body. If a task object is the w.,,. ., » : subucimponent of the object, declared by

an object daclaration, then the valug cf the t.i4k obje.* & deninet hy the elaboration of the object
declaration, If a task object is the objact, or & suhr.ocmponent of the ohject, created by the evalue-
tion of an allocator, then the value of the task object is defined by the &aluation of the allocator.
For all paramater modes, if an actual parameter designaies a task, the asscciated formal
parameater designates the sama task; the sama holds far a subt."mponent of an actual parameter
and tha corresponding subcomponent of the associatod formal parameter; finally, the same holds
for generic paramstars.

Examplas:

CONTROL : RESOURCE;

TELETYPE : KEYBOARD_DRIVER;

POOL : array(1 .. 10) of KEYBOARD._DRIVER;

-- see also examples of declarations of single tasks in 8.1

Example of access type designating task objects:

typs KEYBOARD Is access KEYBOARD_DRIVER;
TERMINAL : KEYBOARD := new KEYBOARD_DRIVER;

Notes:

Since a task type is a limited type, it can appear as the definition of a limited private type in a
private part, and as a generic actual parameter associated with a formal parameter whose type Is a
limited type. On the other hand, the type of a generic formal parameter of mode in must not be a
limited type and hence cannot be a task type.

Task objects behave as constants (a tusk oblect always designates the same task) since their
values are implicitly defined either at declaration or allocation, or by a paramater association, and
since no assignment s avallable. Howevor the reserved word constant (s not allowed In the
declaration of a task objact since this would require an explicit initialization, A task object that is a
formal paramater of mode In Is a constant (as is any formal parameter of this mode).

If an application needs to store and exchange task identities, it can do 8o by defining an access
type designating the corresponding task objects and by using access values for identification pur-
poses (see above example). Assignment I8 available for such an access type as for any access

type.

Subtype declarations are allowed for task types as for other types, but there are no constraints
applicable to task types.

Referencas. access type 3.8, actual parametsr 6.4.1, allocator 4.8, assignment 8.2, component declaration 3.7,
composite type 3.3, cunstant 3.2.1, constant declaration 3.2.1, constraint 3.3, designate 3.8 9.1, alaboration 3.9,
entry 9.5, aquality opaerator 4.6.2, formal parametar 8.2, formal parameter mode 8.2, generic Actual paramater 12.3,
gena/ic assoclation 12.3, generic formal paramater 12.1, generic formal parameter mode 12.1.1, generic unit 12, Ine-
quality operator 4,5.2, initiallzation 3.2.1, limited type 7.4.4, object 3.2, object declaration 3.2.1, paramater associa-
tion 6.4, private part 7.2, private type 7.4, reservad word 2.9, subcomponent 3.3, subprogram 8, subtype declaration
3.3.2. task hbody 9.1, type 3.3

9.2 Task Types and Task Objects 9-4

Tasks
9.3 Task Execution - Task Actlvation

A task bocdy defines the exacution of any task that is designated by a task object of the cor-
responding task type. The initial part of this execution is called the activation of the task ohject,
and also that of the designated task; it consists of the elaboration of the declarative part, if any, of
the task body. The axacution of diffarent tasks, in particular their activation, proceeds in purallel.

If an object declaration that declares a task object occurs immadiately within a declarative part,
then the activatlon of the task gbject starts after the elaboration of tha declarative part (that s,
after pagsing the reservad word begin following the declarative part); similarly if such a daclara-
tion occurs immadiately within a packags specification, the activation starts after the elaboration
of the declarative part of the package body. The same holds for the activation of a task object that
is o subcomponent of un object declared immediately within a declarative part or package
specification, The first statement following the declarative part is executed anly after conglusion of
the activation of these task objects.

Should an exception be raised by the activation of one of these tasks, that task bacomes & com-
pleted task (see 9.4); other tasks are not directly affacted. Should one of these tasks thus become
completad during its activation, the exception TASKING_ERROR |s ralsed upon conclusion of the
activation of all of these tasks (whether successfully or not); the excaeption is raised at a place that
is immediately bafore the first statement following the declarative part (immediately after the
reserved word begin). Should several of these tasks thus become completed during their activa-
tion, the exception TASKING_ERROR Is raised only once.

Should an exception be raised by the elaboration of a declarative part or package specification,
then any task that is created (directly or indirectly) by this elaboration and that is not yet activated
becomes terminated and is thersfore never activated (see section 9.4 for the definition of o ter-
minated task).

For the above rules, in any package body without statements, a null statement is assumed. For any
package without a package body, an implicit package body containing a single null statement is
assumed. |f a package without a package bady Is declared Immediately within some program unit
or block statement, the implicit package body occurs at the end of the declarative part of the
program unit or block statement; [f there are several such packages, the order of the implicit
packago bodies is undefined.

A task object that is the object, or a subcomponent of the object, created by the avaluation of an
allocator |s activated by this evaluation. The activation starts after any initialization for the object
created by the allocator; if several subcomponents are task objects, they are activated in paraliel,
The access value designating such an object is returned by the allocator only after the conclusion
of these activations,

Should an exception be raised by the activation of one of thesa tasks, that task becomes a com-
pleted task; other tasks are not directly affected. Should one of these tasks thus become com-
plated during its activation, the exception TASKING_ERROR Is raised upon conclusion of the
activation of all of these tasks (whether successfully or not); the exception is ralsed at the place
where the allocator Is evaluated. Should several of these tagsks thus become completed during
their activation, the excaeption TASKING..ERROR I8 raised only once.

Should an exception be raised by the initiallzation of the object rreated by an allocator (hence

before the start of any actlvation), any task desigrated by a subcomponent of this object becomes
terminated and s thersfore never activated.

Task Execution - Task Activation 9.3

[

- W W

R A SR e

N ST
o

ANSI/MIL-STD-1815A Ada Raference Manual

Example:
procedure P |s
A, B : RESOURCE: -- elaborate the task objects A, B
Cc : RESOURCE; - welaborate the task object C
begin
-~ the tazks A, B, C aro activated in parallel before the first statement
end;
Notes:

An entry of 3 task can be called befors tie task has been activated. If several tasks are activated in
parellel, the exezution of any of these tasks need not await the end of the activation of the other
tasks. A task mav bacnme completed during ita activation either because of an exception or
because it ia aborted (4ee 9.10)

References: allocator 4.8, completed tesk 8.4, denlarstive part 3.9, slaboration 3.8, entry 9.5, exception 11, haridling
an exception 11.4, package body 7.1, paralial execution 9, statement 6, subcomponent 3.3, task body 9.1, task object
9.2, task termination 9.4, task type 9.1, toskinyg_arror exception 11.1

9.4 Task Dependence - Termination of Tasks

Each task depends on at {sast one master. A master is a construct that s either a task, a currently
executing block statemant or subprogram, or a library package (a packuge declared within another
program unit is not a master). The dependsnce on a rmaster is a direct dependence in the following
two cases:

(a) The task designated by a task ubject that is the object, or a subcomponent of the object,
created by the asvaluation of an allocator depends on the master that elaborates the cor-
responding access type definition,

(b) The task designated by any other task object depends on the master whose exacution creates
the task object.

Furthermore, If a task deponds on a given master that is a block statement executed by another
master, then the task depends also on this other master, in an indirect manner; the same holds If
the given master is a subprogram called by another master, and if the given master is a task that
depends (directly or Indlractly) on another master. Dependences exist for objects of a private type
whose full declaration is in tarms of a task type.

A task is said to have completed its execution when it has finished the execution of the sequence
of statements that appears after the reserved word begin in the corresponding body. Similarly a
block or & subprogram is said to have completed its execution when it has finished the execution of
the corresponding sequence of statements. For a block statement, the execution is also said to be
complated when it reaches an exit, raturn, or goto statement transferring control out of the block.
For a procedure, the execution is alao said to be completed when a corresponding return state-
ment is reached. For a function, the execution is aiso said to be completed after the evaluation of
the rasult expression of a raturn statement. Finally the execution of a task, block statement, or sub-
program is completed if an exception is raised by the execution of its sequence of statements and
there is no corresponding handler, or, if there is one, when it has finished the execution of the cor-
responding handler,

9.4 Task Dependence - Termination of Tasks 9-8

e
AR
‘e
. " p "
i .
o
L
f
w:.l'-—.
B
L o
S
N -
-
'.. -'
e A
" p
v
A
e
e
W
r g .
Myepdy
’ .
. i
bl .
-
«

Tasks

If a task has no dependent task, its termination takes place when It has completed its execution. 6
After its termination, a task is said to be term/inated. |f a task has dependent tasks, its termination

takes place when the execution of tha task is completad and all dependent tasks are terminated. A o
| block atatement or subprogram body whose execution is completed is not left until all of its depen- R)
dent tasks are terminated. AT

Termination of a task otherwise takea place if and only if its exacution has reached an open ter-) _
minate alternative in a select statement (see 9.7.1), and the following conditions are satisfied: .
- e Tne task depends on some master whose execution is complaeted (hence not a library 2 M g
o package). ‘
pi IR
! o Each task that depends on the master considerad is sither already terminated or similarly 9 N S
. waiting on an open terminate alternative of a sslect statement, RERIURS.
1 . L
When both conditions are satisfied, the task considered becomes terminated, together with all 0 ."’" e
» tasks that deperd on the niaster conslidered.
L
: Example: "
} declare
- type GLOBAL is acceas RESOURCE; - wee 9.1 “ ‘*
y A, B : RESOURCE;
X G : GLOBAL;
) begin o
" -- activation of A and ©
§ declare
P:. type LOCAL is access RESOURCE: Lo
; X ¢ GLOBAL :!= new RESQURCE: - activation of X.all T
L ! LOCAL := new RESOURCE: -- activation of L.all o
3 C : RESOURCE; S
b begin
p.' -~ activation of C
% G = X; -- both G and X designate the same task object
‘ oncll':. - awalt termination of C and L.all (but not Y.all) "o
1 cmlil,: -- await terminetion of A, B, and G.all !
| Notes:
' The rules given for tarmination imply that oll tasks that depend (directly or Indirectly) on a given 12
2 master and that are not already terminated, can bg terminated (collectively) if and only if sach of
;- them is waiting on an open terminate altarnstive of & velect statement and the execution of the
. given master is comploted.
','-f The usual rulas apply to the main program. Consagquently, termination of the meain program aweita 1
: termination of any dependent task even If the corresponding task type is declared In a library
4 package. On the other hand, termination of the main pragram does not await termination of tasks
o that depend on library packages; the language does not dsfine whether such tasks are required to
terminate.
For an access type derived from another access type, the corresponding access type detinition is u

that of the parent type; the dependence is on the master that elaborates the ultimate parent access
type definition,

:‘ 9-7 Task Dependence - Termination of Tasks 8.4

nl

‘ .ul.h;\.a.."‘.h-ui ‘,—.'-uu.kn;!._h;,a':-'yﬂ‘.n. P T R N N R R Y E XY WP S R RN e P ST

_—

A

Y
P
talala—a’,

19

i

ANSI/MIL-STD-1815A Ada Reference Manual

A renaming declaration defines a new name for an existing entity and hence creates no further
dependencs.

References: access typs 3.8, allocator 4.8, block statement 5.8, declaration 3.1, designate 3.8 8.1, exception 11,
exception handier 11,2, exit statement 6.7, function 8.5, goto stetement 6.9, library unit 10.1, main program 10.1,
object 3.2, open alternative 9.7.1, package 7, program unit 8, renaming declaration 8.5, return statement 5.8, sslec-
tive wait 9.7.1, sequence of stutements 5.1, statement 8, subcomponent 3.3, subprogram body 8.3, subprogram call
6.4, task body 9.1, task objuct 9.2, terminate alternative 8.7,1

9.6 Entries, Entry Calls, and Acoept Statements

Entry calls and accept statements are the primary means of synchronization of tasks, and of com-
municating values between tasks. An entry declaration is similar to a subprogram declaration and
is only allowad In a task specification. The actions to bs performed when an entry is called are
specified by corresponding accept statements.

entry._deciaration 1=
antry (dentifier [(discrete_range)] [formal_part);

entry_call_statement = entry.name [actual_parameter_par);

accept._statement iim
acoept entry_simple_name [(entry_index)] [formai.part] (do
sequence_of_statements
ond [entry.simple_name)];

entry_index !i= exprassion

An entry declaration that includes a discrete range (see 3.8.1) declares a family of distinct entries
having the same formal part {if any); that is, one such entry for each value of the discrete range.
The term s/ngle entry is used in the definition of any rule that applies to any entry other than one of
a family, The task designated by an object of a task type has (or ownas) the entries declared in the
spacification of the task typs.

Within the body of a task, each of its single entries or entry families can be named by the cor-
responding simpls name. The name of an entry of a family takes the form of an indexed compo-
nent, the family simple name being followed by the index in parentheses: the type of this Index
must be the same a3 that of the discrete range i the corresponding entry family declaration, Out-
side the body of a task an entry name has the form of a selected component, whose prefix denotes
the task object, and whose selector is the simple name of one of its single entries or entry families.

A single antry overloads & subprogram, an enurneration literal, or another single entry if they have
the same identifier. Ovarloading Is not defined for entry families. A single entry or an entry of an
entry family can he renamed as a procedure as explained in section 8.5.

The parameter modes defined for parameters of the formal part of an entry declaration are the
same as for a subprogram declaration and have the same meaning (see 6.2). The syntax ot an
entry call statement s similar to that of a procedure call statement, and the rules for paramaeter
associations are the same as for subprogram calls (see 6.4.1 and 6.4.2).

9.5 Entries, Entry Calls, and Accept Statements 9-8

»,.q!

-

. . »--
2 572 4

.

SR P
PSP A N]

Tasks

An accept statement spacifies the actions to be performed at a call of & named entry (it can be an
entry of a family). The formal part of an accept statement must conform to the formal pert given in
the declaration of the single entry or antry family named by the accept statemerit (see section 6.3.1
for the conformance rules). If a simple riame appears st the end of an accept statement, it must
repeat that given at the start.

An accept statement for an entry of a given task is only allowed within the corresponding task.
body; excluding within the body of any program unit that is, itself, inner to the task body; and
excluding within another accept statemant for either tha same single entry or an entry of the same
family. (One consequence of this rule is that a task can exscute accept statements only for its own
entries.) A task body can contaln more than one accept statement for the same entry.

For the elaboration of an entry declaration, the discrete range, if any, is evaluated and the formal
part, if any, is then elaborated as for a subprogram declaration.

Execution of an accept statement starts with the evaluation of the entry Index (In the case of an
entry of a family). Execution of an entry call statement atarts with the evaluation of the entry name;
this is followed by any evaluations required for actual parameters in the same manner as for a sub-

program call (see 8.4), Further execution of an accept statsment and of a corresponding entry call
statoment are synchronized.

It & given entry is called by only one task, there are two possibliities:

@ |f the calling task issuea an entry call statement before a corresponding accept statement s
reached by the task owning the entry, the exscution of the calling task is suspended.

o |f a task reaches an accept statement prior to any call of that entry, the exacution of the task is
suspended until such a call is recelved.

When an entry has been called and a corresponding accept statement has been reached, the
sequence of statements, If any, of the accept statement Is executed by the called task (while the
calling task remains suspended). This interaction s called a rendezvous. Thereafter, the calling
task and the task owning the entry continue their execution in parallel.

If several tasks call the same entry before a corresponding accept statement Is reachad, the calls
are queuad: there is one queue asacciated with sach entry. Each execution of an accept stste-
ment removes one call from the queus. The calls are processed in the order of arrival.

An attempt to call an entry of a task that has completed its execution raises the exception
TASKING_ERROR at the point of the call, in the calling task; similarly, this exception Is raised at the

. point of the call if the called task complates its execution before accepting the call (sse also 9.10

for the cass when the called task becomes abnormal). The exception CONSTRAINT_ERROR s
raised If the index of an entry of a family is not within the specified discrete range.

Examplas of entry declarations:
entry READ(V : out ITEM);
ontry SEIZE;
entry REQUEST(LEVELND : ITEM); - @& family of entries

Examples of entry calls.

CONTROL.AELEASE; -~ a4n 8.2 and 8.1
PRODUCER..CONSUMER.WRITE(E); - see 8.1
POOL(B).READ(NEXT_.CHAR): - se8 9.2 and 9.1
CONTROLLER.REQUEST(LOW)(SOME_ITEM); - ape 9.1

v-9 Entries, Entry Calls, and Accept Statements 9.5

14

’ Tt .) e . N . et At L . . A ' e
e s ta PRIV TSI VI L VLA YT Y5 Ve ST U TRy ULA0 VR AU VRO WA VLAY TR TR0 W0 S VI WIS AT W VS 1 UL DR AT NRAY WL i SR RS I SRR SIS SR B .

“

N - V.. ..‘ " N ’ T .'- .‘. Is .vv
e e e a .‘.Q‘,' —— "

i

‘-1.‘ b

PSR S

s ——

. F Tl
iL

A SR
e L

H - Coa T - B s
I3 LTt -, z o
: s R .. -2 ..
. s RIS L. o
.- b z - a2
N . e
. - - o e -

- -,

PR

14
N T
.. e

PR |

0

2t

7

2

ANSI/MIL-STD-1815A Ada Reference Manual

Examples of accept statements.

accept SEIZE;

accept READ(V : out ITEM) do
V = LOCAL.ITEM;
end READ;

accept REQUEST(LOWID : ITEM) do
end REQUEST;

Notes:

The formal part glven In an accept statement |s not elaborated; it is only used to identify tha cor-
responding antry.

An accept statement can call subprograms that isaue antry calls. An accept statement need not
have a sequence of staternents even |f the corresponding entry has paramaters. Equally, it can
have a sequence of statemeants even If the corresponding entry has no paramaters. The sequence
of statements of an accept statament san include return atataments. A task can call its own entries
but it will, of course, deadiock., The langusge permits conditional and timed antry calls (see 9.7.2
and 9.7.3). The language rules snsure that a task can only be in ono entry queus at a given time,

If the bounds of the discrete range of an entry family are Integer literals, the index {in an entry
name or accept statement) must be of the predefined type INTEGER (see 3.8.1).

Reaforencas: sbnormal task 9,10, actual parameter part 8.4, completed task 9.4, conditional entry cell 8.7.2,
conformance rules 8.3.1, constraint_error excaption 11,1, designate 8.1, discrete range 3.8.1, elaboration 3.1 3.9,
enumeration literal 3.5.1, svaluation 4.8, expression 4.4, formal part 8.1, idantifier 2.3, Indexed compunant 41,1,
integer type 3.8.4, name 4.1, object 3.2, overloading 6,8 8.7, parallel execution 8, prefix 4.1, procedure 8, procedure
call 6.4, renaming dectaration 8.8, raturrs statement 8.8, scope 8.2, selucted component 41,3, selector 4.1.3,
sequence of statemants 8.1, simple expression 4.4, simple name 4.1, subprogram 6, aubprogram body 6.3, sub-
program daclaration 8,1, task 8, task body 8.1, task specification 9,1, tasking_srror exception 11.1, timed entry oall
9.7.3

9.8 Dslay Statemants, Duration, and Time

The exacution of a delay atateinent evaluater the simple exprassion, and suspands further execu-
tion of the task that executes the cdelay statement, for st least the duration spacified by the
resulting value,

delay_statement := delay simple._expression;

The simple expression must be of the predefined fixed point typs DURATION; its value is
expregsed in seconds: a delay statement with a negative value Is equivalent to a delay statemeant
with a zero value,

Any implementation of the type DIJRATION must aliow representation of durations (both positive
and nagative) up to at least 86400 seconds (one day); the smallest representable duration,
DURATION'SMALL must not be greater than twenty milllseconds (whenever possible, a value not
greater than fifty microseconds should be chosen). Note that DURATION'SMALL need not
corraspond ta thae baslc clock cycle, the namad number SYSTEM.TICK (see 13.7).

9.6 Delay Statements, Duration, and Time 9-10

or

Tasks

The definition of the type TIME Is provided in the predefined library package CALENDAR. The 5
function CLOCK returns the current value of TIME at the timae it Is called. The functions YEAR,
MONTH, DAY and SECONDS return the corresponding values for a given value cf the type TIME;
the procedurs SPLIT raturng all four corresponding values. Conversely, the function TiME_OF
combines a year numbnar, a month number, a day number, and a duration, Into a value of type

TIME. The operators "+" and "-" for addition and subtraction cf times and durations, and tha
ralational operators for times, have the conventional meaning.

The exception TIME_ERRQR & ralsed by the function TIME..CF if the actua! paramaters do not form 6 '
a proper date. This exception is also raised by the operators “+" and "-" if, for the given operands, :
g thesw operators cannrot roturn a dats whose year number is in the range of the corresponding sub- oo
i type, or if the operator “-" cannot return a result that is In the range of thy type DURATION,

R package CALENDAR b 7
type TIME is private;

subtype YEAR_NUMBER s INTEGER ravige 1901 ., 2088; b
subtype MONTH_NUMBER Ju INTEGER rangs ' . 12! RS
subtype DAY_NUMBER Is INTEGER rangs 1 . 31:
subtype DAY_DURATION s DURATION range 0.0 .. B6_400.0;

function CLOCK return TIME;

" function YEAR (DATE : TIME) retum YFAR_NUMBER; b
¥ function MONTH (DATE : TIME) retum MONTH_NUMBER;

N function DAY (DATE : TIME) retun DAY.NUMBER;
X function SECONDS (DATE : TIME) return DAY.DURATION;

procedure SPLIT (DATE tin TIME; RN
YEAR : out YEAR_NUMBER: AT
R MONTH : out MONTH_NUMBER; R
DAY ! out DAY_NUMBER: RIS
SECONDS : out DAY_DURATION); JERT

"\ funotion TIME_OF(YEAR ¢ YEAR_NUMBER; AN
MONTH : MONTH..NUMBER; ST

< DAY : DAY_NUMBER; I
SECONDS : DAY_DURATION = 0.0! retum TIME;

function "+" (LEFT : TIME,; RIGHT : DURATION} return TIME,
funetion "+" {LEFT : DURATION; RIGHT : TIME) return TIME;
funotion "-* (LEFT : TIME, RIGHT : DURATION} retumm TIME; . .
. funotion " {LEFT : TIME; RIGHT : TIME) retum DURATION: e

G function ”é" {LEFT, RIGHT : TIME) return BOOLEAN; ot

funation "{=" (LEFT, RIGHT : TIME) return BOOLEAN; O
function ">" {LEFT, RIGHT : TIME) return BOOLEAN; o
funotion “>==" [(LEFT, RIGHT : TIME) return BOOLEAN;

TIME_.ERROR : exoeption; -- can be rained by TIME_OF, "+", and "-"
private

-~ implemantatlon-dependent
end;

- 9-11 Delay Statements, Duration, and Time 9.6

ANSIIMIL-STD-1815A Ada Referance Manuat

o ’ Examples: ‘
- delay 3.0; -- delay 3.0 seconds g
declare S
A use CALENDAR: S ¢
- INTERVAL is a global constant of typs DURATION ho
NEXT.TIME : TIME := CLOCK + INTERVAL: L
begin
loop
delay NEXT_TIME - CLOCK: ALY
-+ some actions ®
v NEXT_TIME = NEXT..TIME + INTERVAL; N
i end loop: R,
3‘: end; R
& Notas: .
| v The socond example causes the loop to be repeated svery INTERVAL seconuds on average. This '
interval betwesn two successive iterations is only approximate. Howaever, there will be no
3 cumulative drift as long as the duration of each iteration is (sufficiently) less than INTERVAL..
al) Referenres; adding operator 4.5, duration C, fixed polr¢ typs 3.5.2, function call 6.4, library unit 10.1, operator 4.8, -j"" '..":
. packuge 7, private typs 7.4, rvlutional operator 4,5, simple expressioi: 4.4, statement 5, task B, type 3.3 PR |
o .
- 8.7 Saelect Statements |
. r:~-- | ?
N ' There are three furms of selact statements. One form provides a seloctive wait for one or more
) sltornatives, The other two provide conditional and timed antry calls, s '
ff 2 telect_ataterant i galective_wait . .
2\ | conditional_.untry_call | timed_entry_call :
A - by
- 3 Referencas: sslactive walt 8.7.1, conditional entry call 8.7.2, timed entry cell 8.7.3 g
v 9.7.1 Selactive Waits o

1 This form of the select statamant aliows a combination of waiting for, and setecting from, one ot
more alternatives. The selection can depend on conditions associatad with each alternative of the
selective vait.

.“ "
e w0 g wman]

9.7.1 Selective Waits 9-12

R el

¢ o GEEEE. -

- =

e s s e L .

AR . oo - b . .

.
v
‘.
{
s
\
A

Tasks

selective_wait =
solect
solact_alternative
| or
select_altarnative|
{ else
sequance_of__stateamenta]
end select;

select..alternative =
| when condition =>]
selective_wait_alternative

selnctive_wait_alternativo :i= accept.alternative
| delay.siternative | terminata_aitarnative

accept.altarnativa = accopt_statemant [sequence_of_statements]
dolay..altarnative :lw delay_statement [sequenceo.of.statements]
terminata_alternative = terminmte;

A selectivo walt inust contain at |east one accept a'ternative. In addition a selective walt can con-
tain c¢ither a terminate alternative (only one), or one or more delay alternatives, or an eige part;
these thres pussibilities are mutually exclusive,

A select alternative Is sald to be vpen If it does not stait with when and a condition, or if the cond!:
tion is TRUE. It is sald to be c/osad otherwise.

For the execution of a selective wait, any condiciona specified atter when ara evaluated in some
order that is not defined by the language: open alternatives are thus determined. For an open
delay alternative, the delay expression Is also evaluated. Similarly, for an open accept alternative
for an entry of a fainily, the entry index is also evaluated. Seluction and execution of one open
alternative, or of the elve part, then completes the execution of the selectiva walt; the rulas for thig
solaction ars described bslow.

Open nccept alternatives are first considered. Selection of one such alternative takes place
immadiateiy if a corresponding rendezvous Is possible, thot Is, if there !s a corresponding entry call
issued by another task end walting to be accepted. If several altsrnatives can thur be selectad,
one of them Is selected arbitrarlly (that Is, the language does not define which ons). When such an
alternative |s selected, the corresponding accept statemant and possible subsequent statemants
are executed. |If no rendezvous |s immediately poasible ana there Is no alse part, the task waits
untll an open selective wait alternative can be selected.

Selection of the other forms of alte native or of an else part is performed as follows:

@& An open delay ulternative will be selected if no accept alternative can be selected before the
specified delay has elapsed (immadiately, for a negative o1 zero cdelay in the absence of
queued entry calla); any subsequent stataments of the alternative ure then executed. |f several
delay altarnatives can thus be selected (that s, If they have the same delay), one of tham Is
selected arbitrarily.

8 The siso part |s selected and its statementas are executed If no accept alternative can be
immediately selected, in particular, if all alternatives are closed.

e An open tarminate altarnative is selected If the conditions stated in section 9.4 are satisfied.

It Is a congaquenca of other rules that a terminata altarnative cannot be selected whila there |s
a queued entry vall for any entry of the task.

8-13 Selective Waits 9.7.1

ANSI/MIL-STD-1815A Ada Reference Manual

|
' 1 The exception PROGRAM_ERROR (s ralsed If all alternatives are closed and there is no else part.
12 Examples of a select statement.
ﬂ select
N accept DRIVER_AWAKE..SIGNAL;
. or .
. delay 30.0+SECONDS; ;
STOP_THE_TRAIN; .
end select; -
' a Example of a task body with a select statement:
task body RESOURCE s
. BUSY : BOOLEAN := FALSE;
. begin
. loop
l select
- when not BUSY =>
accept SEIZE do
- BUSY := TRUE;
o end;
\.E or
o accept RELEASE do
§ BUSY := FALSE;
4 end;
5 or
" terminate;
g end select; E
O end loop;
. end RESOURCE;
Notes:
" A selective wait is allowed to have several open delay alternatives, A selective wait is allowed to
have sevaeral open accept alternatives for the same entry.
I 5 Referances: accapt statemant 9.5, condition 6.3, declaration 3.1, delay expreasion 9.6, dslay statement 9.8, duration
9.8, entry 9.5, antry call 9.5, sntry index 5.8, program_arror exception 11.1, queued entry call 8.5, rendezvous 9.5, '-‘_'1
L select statement 9.7, sequence of statements 5.1, task 9 o
- o
! -
1
' 9.7.2 Conditional Entry Calls S
S ! A conditional entry call issues an entry call that is then canceled if a rendezvous is not immediately
possible. o
| N J
2 conditional_entry_call = sk
select o
entry_call_statement o)
| sequence_of_statements) ‘
olge o
, sequence_of_statements !
4 end selact; .
3 9.7.2 Conditional Entry Calis 9-14 Lo

A SO L PPN A NP S I At o il Bt e iicients an ol d S e sea D amn b a R st Bk e s BBt n o0 a s o a e ok e et Ta e Aa s At ALAM At E o ba Y a Pa e i e i me 4 ae. A

Tasks o

't‘

For the execution of a corditional entry call, the entry name Is first evaluated. This Is followed by 3 R
any evaluations required for actual parameters as in the case of a subprogram call (see 6.4). R
The entry call is canceled if the execution of the called task has not reached a point where it is ‘ i M
. ready to accept the call (that Is, either an accept statement for the corresponding entry, or a select 9|
statement with an open accept alternative for the entry), or if there are prior queued entry calls for L
v this entry. If the called task has reached u select statement, the entry call is canceled if an accept o
R alternative for this entry is not salected.

‘:‘\

o If the entry call is canceled, the statements of the else part are executed. Otherwise, the rendez- 5 c
. vous takes place; and the optional sequence of statements after the entry call is then executed. ﬂ:
1 The execution of a conditional entry call raisas the exception TASKING_ERROR Iif the called task b

- has already completed Its execution (see also 9.10 for the case when the called task becomes

N abnormal),

i Example: ,

procedure SPIN(R : RESOURCE) is

bagin
loop
select

. R.SEIZE;
| return;
K alse
“l null; -- busy walting
o end select;
end loop;
j:: end;
'. References: abnormal task 9.10, accept statement 9.5, actual parameter part 5.4, completed task 9.4, entry call ¥

g statemant 9.5, entry family 9,5, entry Index 9.6, evaluation 4 5, expression 4.4, open aiternative 9.7.1, queund entry
cali 9.5, rendezvous 9.5, seluct statement 9.7, sequence of statements 5.1, task 9, tasking..error axcaption 11.1

9.7.3 Timed Entry Calls

;‘,\'
'y
e A timed entry call issues an entry call that is canceled 't a rendezvous is not started withir 1 '
o delay.
i
W | timed_entry_call = 2
N sslect
entry_call_statement
[sequence..of_statements]
or
- delay_alternative
4 ond select;
e
:! 9-16 Timed Entry Calls 9.7.3

- 1 1 . L} . Pt L N = Tl . . - " o . - N - B . . - B . .
Bancted fomate 0l alivi el Tl - I, VPO UL - DU T P SPUN TR TN FPRUR JPRUE TPUE WOUR VP U SO Y AP TS0 S SIS U DU S A PO T AT ST I0 SO TURD S AR VI S S SO S 1 LU S

ANSI/MIL-STD-18154 Ada Reference Manual

For the execution of a timed entry call, the entry name is first evaluated. Tiiis is followed by any
evaluations requirad for actual parametars as in the case of a8 subprogram call (see 6.4). The
expression stating the delay is then evaluated, and the entry call Is finally issued.

If a rendezvous can he started within the specified duration (or immediately, as for a conditional
entry call, for a negative or zero delay), it is performed and the optional sequence of statements
dfter the entry call is then executed. Otherwise, the entry call is canceled when the specified dura-
tion has expirad, and tha optional sequence of statements of the delay alternative is exacuted.

The exacution of a timed entry call raises the exception TASKING_ERROR if the called task
completes its execution before accepting the call (see also 9.10 for the case when the called task
becomes abnormal).

Examgle;

seloct

CONTROLLER.REQUEST(MEDIUMNSOME_ITEM);
or

delay 45.0;

-- controller too busy, try something else
and seluct;

References: abnormal task 9.10, accept statemnent 8.5, actual parametor part 8.4, completed task 9.4, conditiona!
antry coll 9.7.2, delay expression 9.6, delay statament 8.8, duration 9.8, entry vall statement 9.5, entry family 9.5,
antry index 9.5, avaluatior: 4.5, expression 4.4, rendezvous 9.6, sequence of stutamants 8.1, task 9, tasking_error
axception 1.1

0.8 Prioritias

]
Each tagk may (but need not) have a priority, which Is & value of the subtype PRIORITY. (of tho type
INTEGER) declarad in the praclafined library package SYSTEM (see 13.7). A lower value indicatas a
lower dagree of urgency, the range of pricrities is implamentation-defined, A priority is associated
with v task if a pragma

pragma PRIORITY (stat/c_.axprossion);

appears in the corresponding task specification; the priority is given by the value of the expression.
A priority Is nssociated with vhe main program if such a pragme appears in its outermost
declarative part, At most une such pragima cai appear within a givert task specification or for a
subprogram that is a fibrary unlt, and thess ars the only allowed places for this pragma. A pragma
PRIORITY has no affect if It occurs In a subprogram othaer than the main program.

The soucification of a priority Is an indication given to aasist the implementation in the allocation of
processing resources to parallel tasks when there zie maore tasks eligible for axecution than can be
supported simultarieously by the avallable proceasing resources. The effect of priorities on
scheduling is definad by the following rule:

It two tasks with diffarent priorities are hoth eligible for execution and could sensibly be
exacuted using the same physical processors and the same other processing resources, then it
cannot be the case that the task with the lower priority is executing while the task with the
higher priority is not.

9.8 Prioritios 9-16

Tasks

For tasks of the same priority, the scheduling order is not defined by the language. For tasks
without explicit priority, the scheduling rules are not defined, except when such tasks are engaged
in a rendezvous. If the priorities of both tasks engaged In a rendezvous are defined, the rendazvous
is executed with the higher of the two priorities. if only one of the two priorities is defined, the
rendezvous is exccuted with at least that priority. If neither is defined, the priority of the rendez-
vous is undefined.

Notes:

The priority of a task is static and therefore fixed. However, the priority during a rendezvous is not
necessarily static since It also depends on the priority of the task calling the entry. Priorities should
be used only to indicate relative degrees of urgency; they should not be used for task synchroniza-
tion.

References: declarative part 3.9, entry call statement 9.6, integer type 3.5.4, main program 10.1, package system
13.7, pragma 2.8, rendezvous 9.6, static expression 4.9, subtype 3.3, task 9, task specification 9.1

9.9 Task and Entry Attributes

For a task object or value T the following attributes are defined:

T'CALLABLE Yields the value FALSE when the exacution of the task designated by T is
elther completed or terminated, or when the task is abnormal. Yields the
value TRUE otherwise. The value of this attribute is of the predefined type
BOQLEAN.

T'TERMINATED Yields the value TRUE if the task designated by T Is terminated. Ylelds the
value FALSE otherwise. The value ot this attribute is of the predefined type
BOOLEAN.

In addition, the representation attributes STORAGE._SIZE, SIZE, and ADDRESS are defined for a
task object T or a task type T (see 13.7.2).

The attribute COUNT Is defined for an entry E of a task unit T. The entry can be either a singie
entry or an entry of a family (in either case the name of the single entry or entry family can be
elther a simple or an expanded name), This attribute Is only allowed within the body o T, but
excluding within any program unit that Is, itself, inner to the body of T.

E'COUMT Yields the number of entry calls presently queuad on the entry E (if the
attribute is evaluated by the execution of an accoapt staternent for the entry
E, the count does not include the calling task). The value of this attribute Is
of tha type universal_iiiteger.

Note:

Algorithms Interrogating the attribute E'COUNT should take precautions to allow for the increase
of the value of this attribute for incoming entry calls, and its decrease, for example with timed entry
calls,

Reforences: abnormal task 9.10, accept statement 9.5, attribute 4.1.4, hoolean type 3.5.3, completed task 9.4,
designate 9.1, antry 9.6, false boolean value 3.6.3, queue of entry calls 9.6, storage unit 13.7, task 9, task object 9.2
task type 9.1, terminated task 9.4, timed entry call 8.7.3, true boolean value 3.5.3, unlversal_integer type 3.56.4

9-17 Task and Entry Attributes 9.9

r~

e z

K

ANSI/MIL-STD-1816A Ada Reference Manual
9.10 Abort Statements

An abort statement causes one or more tasks to become abnormal, thus preventing any further
rendezvous with such tasks.

abort_statement != abort task_namo |, task_nama|;

The determination of the type of each task name uses the fact that the type of the name is a task
type.

For the execution of an abort statement, the given task names are evaluated in some order that is
not defined by the language. Each named task then becomes abnormal unless it is already ter-
minated; similarly, any task that depends on a named task becomes abnormal unless It is already
terminated.

Any abnormal task whose exacution is suspended at an accept statemant, a select statament, or a
delay statement bacomes complated; any abnormal task whose execution is suspended at an entry
call, and that is not yet in a corresponding rendezvous, bacomes completed and is removed from
the entry queue; any abnormal task that has not yet started its activation becomes completed (and
hence also terminated). This completes the execution of the abort statement,

The completion of any other abnormal task need not happen before complstion of the abort state-
ment. It must happen no later then when the abnormal task reaches a synchronization point that is
one of the following: the end of its activation; a point where it causes the activation of another
task; an entry call; the start or the end of an accept statement; a salect statement; a delay state-
ment; an exception handler; or an abort statsment. If a task that calls an entry becomes abnor-

mal while in a rendezvous, its termination does not take place before the completion of the rendez-
vous (see 11.5).

The call of an entry of an abnormal task raises the exception TASKING.ERROR at the place of the
call. Similarly, the exception TASKING_ERROR |s raised for any task that has callad an entry of an
abnormal task, If the entry call is still queued or if tha rendezvous is not yet finished (whether the
entry call Is an entry call statement, or a conditional or timed entry call); the exception is raised no
later than the completion of the abnormal task. The value of the attribute CALLABLE is FALSE for
any task that is abnorma! (or completed).

If the abnormal completion of a task takes place while the task updates a variable, then the value
of this variable Is undefined.

Example:

abort USER, TERMINAL .all, POOL(3);

Notes:

An abort statement should be used only in axtremely severe situations requiring unconditional tar-
mination. A task Is allowed to abort any task, including itself,

Reterences: abnarmal In randezvous 11,6, accept statement 9.6, activation 9.3, attribute 4.1.4, callable (predefined
attribute) 9.9, conditional entry call 9.7.2, delay statement 9.8, dependent task 9.4, entry call statement 9.5, avalua-
tion of a name 4.1, axception handler 11.2, false boolean value 3.6.3, name 4.1, queue cf entry calls 9.6, rendezvous
9.5, select statemant 9,7, statement 6, task 9, tasking_error exception 11.1, terminated task 8.4, timed entry call 8.7.3

8.10 Abort Statements 9-18

4 Tasks

9.11 Shared Variables

] The normal means of communicating values between tasks is by antry calls and accept state- !
.- ments.

s

. If two tasks read or update a sharaed variable (that is, a variabls accessible by both), then neither of 2

a therm may assume anything about the order in which the other performs its operations, except at

the points where they synchronize. Two tasks are synchronized at the start and at the end of thelr
rendezvous. At the start and at the end of Its activation, a task is synchronized with the task that
causes this activation. A task that has completed its execution s synchronized with any other task.

‘ For the actions performed by a program that uses shared varlables, the following assumptions can 3
.- always be made:

{ ¢ |f between two synchronization points of a task, this task reads a shared variable whose type .

X is a scalar or access type, then the variable is not updated by any other task at any time

between these two points.

e If batween two synchronization points of a task, this task updates a shared variable whosse s
type is u scalar or access type, then the variable is neither read nor updated by any other task
at any time between these two points.

N The execution of the program Is arronsous if any of these assumptions Is violated, 8
: if & given task reada the value of a shared varlable, the above assumptions allow an implementa- 1
% tion to maintain local coples of the value (for example, in registers or in some other form of tem-

. porary storage); and for as long as the given task neither reaches a synchronization point nor

updates the value of the shared variable, the above assumptions imply that, for the given task,
reading @ local copy is equivalent to reading the shared variable itself.

"y Similarly, If a given task updates the value of a shared variable, the above assumptions allow an]
! implementation to maintain a local copy of the value, and to defer the effective store of the local

copy into tha shared variabla until a synchronization point, provided that svery further read or
update of the variable by the given task ia treated as a read or update of the local copy. On the
other hand, an implementation is not aliowed to introduce a stors, unless this store would also be

executed in the canonical order (ses 11.8), :."‘.:'."*:;"3

: I"-l The pragma SHARED can be used to specify that every read or update of a variable is a 9 J

' synchronization point for that varlable; that is, the above assumptions always hold for the given
.- variable (but not nacessarlly for other variables). The form of this pragma is as follows: e

T.:: pragma SHARED(variable_simple_name);)

This pragma |s allowed only for a variable daclared by an object declaration and whose type is a 10 S 3

; scalar or accesa type; the variable declaration and the pragma must both occur (in this order) ' {

S immediately within the same declarative part or package specification; the pragma must appear ..;..Q..,

" before any occurrence of the name of the variable, other than In an address clause. ']

{

An implemsntation must restrict the objects for which the pragma SHARED is allowed to objects 1
for which each of direct reading and direct updating is implemented as an indivisible operation.

e e
‘ References: accapt staternent 9.5, activation 8.3, assignment 8.2, canonical order 11.8, declarative part 3.9, entry 12 L. ..tt,{

call statement 9.5, erronsous 1,6, global 8.1, package specification 7.1, pragma 2.8, read a value 8.2, rendezvous 8.5,
simple name 3.1 4,1, task 9, typs 3.3, update a value 6.2, variable 3.2.1

9-19 Shared Variables 9.11]

Bttt B - 4 B - e A s e b e D T O S R VTP P

ANSI/MIL-STD-1815A Ada Reference Manual

9.12 Exampls of Tasking

The foliowing example defines a buffering task to smooth variations between the speed of output
of a producing task and the speed of input of some consuming task. For instance, the producing
task may contain the statements

loop
-- produce the naxt character CHAR
BUFFER.WRITE(CHAR);
exit when CHAR = ASCILEOT;

end loop;

and the consuming task may contaln the statements

loop
BUFFER.READ(CHAR);
-- consume the character CHAR
exit when CHAR = ASCILEOT;
end loop;

The buffering task contains an internal poo! of characters processed in a round-robin fashion. The
pool has two indices, an IN_INDEX denoting the space for the next input character and en
OUT_INDEX denoting the space for the next output character.

task BUFFER is
entry READ (C : out CHARACTER):

entry WRITE(C : iIn CHARACTER);
end;

task body BUFFER Is
POOL_SIZE : constant INTEGER = 100;

POOL ! array(1 .. POOL_SIZE) of CHARACTER;
COUNT ! INTEGER range 0 .. POOL_SIZE = 0;
INLINDEX, OUT.INDEX : INTEGER rangs 1 .. POOL_SIZE = 1;
begin
loop
seleat

whan COUNT < POOL_SIZE x>
accept WRITE(C : In CHARACTER) do
POOL(INLINDEX} = C;

end;
INLINDEX == IN_INDEX mod POOL_SIZE + 1:
COUNT = COUNT + 1;

or when COUNT > 0 =>
accept READ(C : out CHARACTER) do
C = POOL(OUT.INDEX);
ond;
OUT_INDEX := OUT_INDEX mod POOL_SIZE + 1;
COUNT 1= COUNT - {;
or
tarminate;
oend select;
end loop!
end BUFFER:

9.12 Example of Tasking 9-20

o
s
L ol
. "
L -
Llm e
IR
St
“‘.
B
MESRNAC
ALY
o Wt
o a
.
T
'<>"l-.“!
o A
Y
B
\
.
BRI
PN
S
et
e
: N
0 Sty '
{ .
pe o

W W " o
T ta e ala . .

L e o R
Telal. 1 TATRLCL

aei-a

g -4

10. Program Structure and Compilation lscues

The overall structure of programs and the facilities for separate compilation are described In this
chapter. A program is a collection of one or more compilation units submitted to a compller in one
or more compilations. Each complilation unit specifiles the saparate compilation of a construct
which can be a subprogram declaration or body, a package declaration or body, a generic declara-
tion or body, or a generic instantiation, Alternatively this construct cen be a subunit, in which case

it includes the body of a subprogram, peckage, tasl: unit, or generic unit declared within another
compliation unit.

References: compilation 10.1, compllation unit 10.1, generic body 12.2, generic desclaration 12.1, generic
instantiation 12.3, packago body 7.1, package declaration 7.1, subprogram body 6.3, subprogram declaration 8.1,
subunit 10.2, task body 9.1, task unit 9

10.7 Compilation Units - Library Units

The text of a program can be submitted to the compller In one or more compilations, I h com-
pilation is a succession of compliation units,

compilation = |compilation_unit)

compilation.unit =
context. clause library.unit | context_clause secondary.unit

library.unit 1=
subprogram._declaration | package_declaration
| generic_daclaration generic_instantiation
| subprogram_body

secondary..unit i:= library_unit_body | subunit
library_unit_body = subprogram_body | package_body

The compllation units of a program are sald to belong to a program library. A compilation unit
defines either a library unit or a secondary unit. A secondary unit is either the separately complied
proper body of a library unit, or a subunit of another compllation unit. The designator of a
separately complled subprogrem (whether a library unit or a subunit) must be an Identifiar. Within
a program library the simple names of all library units n: st be distinct identifiers.

The effect of compiling 8 librery unit is to define (or redefine) this unit as one that bslongs to the
program library. For the visibllity rules, each library unit acts as a declaration that occurs
Immediately within the package STANDARD ,

The effect of compiling a secondary unit is to define the body of a library unit, or in the case of a

subunit, to define the proper body of a program unit that Is daclared within anuther compllation
unit.

10-1 Compilation Units - Library Units 10.1

Wl .A" - -" . t. -A- . .-V . N N : . AT T |.
g A g b B e B e s e Doy s e B e e L'e A kg enir e T Prm et e e e e e VS

o
PR
et
R
[RUSRAD
'@
. -
v . ‘
.)
D . e
e
——
v .-x.
' i
Y v
"o
\ .
Pon. . o S9N
[
. 2y
.
L
f
B
l.‘
[IS N
r-
o
.
'
Rl
-
.
-
- T
"
L
"
.
oo
. Y
+ '
'. -]
.
.
. .
Rt
. s
T
.
- .
L
PR
@
'

ANSI/MIL-STD-18164 Ada Reference Manual

s A subprogram body given in a compllation unit is interpreted as a secondary unit if the program
library already contains a library unit that Is a subprogram with the same name; It is otherwise
S interprated both as a library unit and as the corresponding library unit body (that is, as a secondary

unit).
{ 7 The compilation units of @ compilatiun are compiled in the given order. A pragma that applies to
. the whole of a compilation must appear before the first compilation unit of that compillation. - o
s A subprogram that is a library unit can be used as & main program in the usual sense, Each main

» program acts as if called by some environment task; the means by which this execution is initiated R

1 are not prescribed by the language definition. An Implementation may Impose certain require- R,
' ments on tha paramaters and on the result, if any, of a main program (these requirements must be “@

. stated in Appendix F). In any case, every implementation is raquired to allow, at least, main R
. programs that are parameterless procedures, and eavery main program must be a subprogram that TR

5 is @ library unit,

Notes:

0 A simple program may consist of a single compilation unit, A compilation need not have any com- o
pllation units; for example, its text can consist of pragmas. BN

) The designator of a library function cannot be an operator symbol, but a renaming declaration is o
; allowed to rename a library function as an operator. Two library subprograms must have distinct DR
simple names and hence cannot overioad each other. However, renaming declarations are G e
allowed to define overloaded namas for such subprograms, and a lonally declared subprogram is B
. allowed tv overload a library subprogram. The expandac name STANDERD 1 sun one used for a R
¥, library unit L (unless the name STANDARD Is hidaun) since library units act as declarations that R
‘ occur immadiately within the package STANDARD .

" References: allow 1.6, context clauss 10.1.1, declaration 3.1, dusignator 6.1, environment 10.4, generlc declaration
e 12.1, generic instantiation 12,3, hiding 8.3, identifier 2.3, Iibrary unit 10,5, local deciaration B.1, must 1.8, riame 4.1,
L, oocur immediately within 8.1, operator 4.5, operstor symbol 8.1, overloading 6.8 8.7, package body 7.1, package
' decluration 7,1, parameter of & subprogram 6.2, pragme 2.0, procedure 8.1, program unit 8, proper body 3.9, renam- we
Ing declaration 8.6, simple namas 4.1, standard package 8.8, subprogram 8, subprogram body 8.3, subprogram U
duclaration 6.1, subunit 10.2, task 9, visibliity 8.3 :

- 10.1.1 Context Clauses - With Clauses

1 A context clause Is used to spscify the library units whose names are needsd within a compllation
unit,

AT -

2 context_clause := [with_clause [use_clause]|

with_clause ::== with un/t_simple_name |, unit.simple_namael;

L R

The names that appear In a context clause must be the simple names of library units. The simple

s name of any library unit is allowed within a with clause. The only names allowed in a use clause of Sp——
a context clause are the simple names of library packages mentioned by pravious with clauses of ‘

the context clause. A asimple name declared by a renaming declaration is not allowed in & context

clause,

w

4 The with clauses and use clauses of the context clause of a library init apply to this library unit and
also to the secondary unit that defines the corresponding body (whether such a clause Is repeated Lo
or not for this unit). Similarly, the with clauses and use clauses of the context clause of a complla- :
tion unit apply to this unlt and also to Its subunits, If any.

10.1.1 Context Clausas - With Clauses 10-2

PO S
PR TR

R S

P ol .?z I
Bt D)

A }"" =

- =
-

TE -,
P Ll

"‘.“-—<
%

-
b

-
x

2 .0

TIVEIEINT UMWV @ W ww i iipeitemesiwey 1 DW= we

if a library unit is named by a with clausas that applies to a compllation unit, then this library unitis
diractly visible within the compllation unit, except where hidden; the library unit is visible as if
declared immadiately within the package STANDARD {see 8.8),

Dependerces among compilation units are defined by with clauses; that is, a8 compilation unit that
mentions other library units in its with clauses depends on those library units, These dependences
batween units are taken into account for the determination of the allowed order of compilation
(and recompilation) of compilation units, as oxplained in section 10.3, and for the determination of
the allowed order of elaboration of compilation units, as explained In section 10.5,

Notes:

A library unit named by a with clause of a compilation unit is visible (except where hidden) within
the compilation unit and hence can bo used as a corresponding program unit, Thus within the
corapilation unit, the name of a library package can be given in use clauses and can be used to
formy expanded names; a library subprogram can be called; and instances of a library generic unit
can be declared,

The rules given for with clauses are such that the same effect is obtained whether the name of a
library unit is montioned once or more than once by the applicable with clauses, or aven within a
given with ciause,

Example 1 : A main program:

The foliowing is an example of a main program consisting of a single compllation unit: & procedure
for printing the real roots of a quadratic equation. The pradefined package TEXT_IO and a user-
defined package REAL_OPERATIONS (containing the definition of the type REAL and of the
packuges REAL.IO and REAL_FUNCTIONS) are assumed to be already prasent in the program
fibrary., Such packages may bo used by other main programs.

with TEXT.IO, REAL_OPERATIONS; use REAL_OPERATIONS;
procedure QUADRATIC_EQUATION s
A B, C, D : REAL;

use REAL.IO, -= gchlevea direct visibility of GET and PUT for REAL
TEXT..I0, - achievas direct visibility of PUT for strings and of NEW_LINE
REAL_FUNCTIONS; -- achieves direct visibllity of SQRT
begin

GET(A); GET(B); GET(C);

D = Bx2 - 4,04A4C;

if D < 00 then
PUT{("Imaginary Roots.");

olse
PUT("Real Roots : X1 = ");
PUT((-B - SQRT(DN/A2.0«A)); PUT(" X2 = *);
PUT((-B + SQRT(D)/2.0:A)):

ond if;

NEW_LINE;

end GUADRATIC_EQUATION;

Notes on the example:

The with clausea ot 8 compilation unit nesd only mention the names of those library subprograms
and packages whose vioibility is actually neceasary within the unit. They need rnot (and should not)
rnention other library units that are used in turh by some of the units named in the with clausaes,
uniess these other library units are also used directly by the current compliiation unit. For example,
the body of the package REAL_OPERATIONS may need slementary aperations provided by other
packages. The lattur packages should not be named by the with clause of QUADRATIC_EQUATION
since these elementary operations are not directly called within its body.

10-3 Context Clauses - With Clauses 10.1.1

e A
o e ¥,

oL I

T e

ANSI/MIL-STD-1815A Ada Reference Manual

References: aliow 1.8, compliation unit 10.1, direct visibllity 8.3, elaboration 3.9, generic body 12.2, gensric unit
12.1, hiding 8.3, instance 12.3, library unit 10,1, main program 10,1, must 1.6, name 4.1, package 7, package body
7.1, package daclaration 7.1, procedurs 8.1, program unit 8, seconduary unit 10.1, simple name 4.1, standard
pradefined package 8.8, subprogram body 6.3, subprogram declaration 6.1, subunit 10.2, type 3.3, use clause 8.4,
visibllity 8.3

10.1.2 Examples of Compilation Units

A compilation unit can be split into a number of compilation units. For example, consider the fol-
lowing program,

procedure PROCEGSOR s

SMALL : constant = 20
TOTAL ! INTRGERR = O;

packege STOCK Is
LIMIT : constant :: 1000;
TABLE : artay (1 .. LIMIT) of INTEGER;
procedure RESTARAT:

end STOCK;

packnge body STOCK s
procedure RESTART s
begin

for N in 1 ., LIMIT ioop
TABLE(N) == N;
ond loop;
and;

tiegin
RESTART:

end STOCK;

procedurea UPDATE(X : INTEGER) Is
use STOCK;

begin
TABLE(X) 1= TABLE(X) + SMALL!
end UPDATE;
begin
STOCK.RESTART; - rolnitializes TABLE
omll“ PROCESSOR;

The following three compllution units dofine & program with an effect equivalent to the above
example (the broken !inas betwasn compllation units serve to remind the reader that these units
need not be contiguous texts).

10.1.2 Examplas of Compllation Units 10-4

4
D,
ot
N
-t deiee
@
o
-
[N
b N
i NG
.
S
v
[
Sla
R
iy 1‘ -
' It
.
} " '

Program Structure and Compliation |ssues

Example 2 : Sevaral compilation units:

package STOCK s
LIMIT : constent := 1000;
TABLE : array {1 .. LIMIT) of INTEGER;
procedure RESTART;

end STOCK;

package body STOCK s
procedure RESTART s
begin

for N in 1 .. LIMIT loop
TABLE(N) := N;
end loop;
ond;

begin
RESTART;

end STOCK;

with STOCK;
prooedurs PROCESSOR s

SMALL : constant = 20;
TOTAL . INTEGER = O;

procedure UPDATE(X : INTEGER) ls
use STOCK;
begin

TABLE(X) = TABLE(X) + SMALL;

end UPDATE:
begin

STOCK.RESTART; - relnitializes TABLE
end PROCESSOR:

Note that In the latter varsion, the package STOCK has no visibility of outer identifiers other than
the predefined identifiers (of the puckage STANDARD). In particular, STOCK does not use any
identifler declared in PROCESSOR such as SMALL or TOTAL; otherwise STOCK rould not have
been extracted from PROCESSOR In the above manner. The procedure PROCESSOR, on the ather
hand, depands on STOCK and mentions this package In a with clause. This permits the inner
occurrences of STOCK In the expanded name STOCK .RESTART and in the use clause.

These three compliation units can be submitted in one or more compllations. For example, it Is
possible to submit the package specification and the package body together and in this order in a
single compilation,

Referances: compiliation unit 10.1, declaration 3.1, identifier 2.3, package 7, package budy 7.1, packagn specification
7.1, program 10, atandard package 8.6, use clause 8.4, visiblity 8.3, with clauss 10.1.%

10-6 Examplos of Compliationr Unlts 10.1.2

-~

o~ PPy ~4 g
A A A
DR R IR

LEY

_‘ I’ .' a2

P arty

"
~F P
S A

S .

A S
e e e e e s

o)

PRT R IgN

ANSI//MIL-STD-1815A4 Aca Reference Manual

10.2 Subunits of Compilation Units
A subunit is used for the separaty compiiation of the proper body of a program unit declared within RN
another compilation unit. This method of splitting a program permits hierarchical program -
development. e
body_stuh =
subprogram_speaification is wsparate;
| package body package_simple_name is separate;
| task body task_simple_name is separate;
subunit = "9
separate (porent_unit_name) proper_hody
A body stub Is only allowed as ths body of a program unit (a subprogram, a packago, a task un't, or
a generic unit) if the body stub occurs immediately within either the specification of a iibrary U
paclage or the declarative part of anothar compiiation unit, '
it the body of a program unit is a body stub, a separately compiled subunit containing the sor- NI
responding proper body is required. In the case of a subprog.am, the subprogram specifications RN
piven in the proper body and in the body atub must conform (see 6.3.1). e
Each subunit mentions the name of Ita parent unit, that is, tha compilation unit where the cor- NN
rasponding body stub Is glven. If the parent unit |s a library unit, it is called the ancestor library unit, .

If the parent unit is itself a subunit, the parent unit name must be given In full as an expanded
rname, starting with the slmple name of the ancestor library unit. The simple names of all subunits
that have the same ancestor library unit must be diatinct identifiers.

Visibility withiii the proper body of a subunit s the viaibility that would be obtairied at the place of S
the correapondirig body stub (within the parent unit) if the with clauses and use clauses of the aub- o

unit were appanded to the context clause of the parent unit, |f the parent unit !s itsslf a subunit,

then the same rule is used to define the visibliity within the propsr body of the parent unit,

The effact of the elaboration of a body stub is to slaborate the proper body of the subunit,

Notas:

Two subunits of differant library units In the same program library need not have distinct iden-
tifiers. In any case, thelr full expanded names «re distinct, aince the simple names of library units
are distinct and aince the simple names of all subunits that have a given library unit as ancestor
unit are also distinct. By means of renaming declarations, overloaded subprogram names that
rename (distinct) aubunits can be Introduced.

A library unit that is named by the with clause of a subunit can be hidden by a declaration (with the
same identifier) given in the proper body of the subunit, Moreover, such a library unit can sven he
hidden by a declaration given within a parent unit since a library unit aots as If declared in
STANDARD: this however does not affect the Interpretation of the with clauses themaslves, since
only names of library units can appedr In with clauses. R)

10.2 Subunits of Compilation Units 10-8

AT ¥ NS WOy AL

-, T -
rle LT,

S ate s

« e "

R P

3
1

Program Structure and Compliation lssues

References.: compilation unit 10,1, conform 6.3.1, context clause 10.1.1, declaration 3.1, declarative part 3.9, direct
visibility 8.3, slaboration 3.9, expanded name 4.1.3, generic body 12.2, generic unit 12, hidden declaration 8.3, iden-
tifier 2.3, library unit 10.1, local declaration 8.1, name 4.1, accur Immadiately within 8.1, overloading 8.3, package 7,
package body 7.1, package specification 7.1, program 10, program unit 8, proper body 3.9, renaming declaration 8.5,
separate compilation 10.1, simple name 4.1, subprogram 8, subprogram body 6.3, subprogram spacification 8.1, task
9, tank body 9.1, task unit 8.1, use clauss 8.4, visibllity 8.3, with clauss 10.1.1

10.2.1 Examples of Subunite

The procedure TOP is first written as a compllation unit without subunits,

with TEXT_IO;
procedure TOP e

type REAL ls digits 10;
R, § ! REAL := 1.0;

package FACILITY is
Pl : constant = 3.14189_26836;
funation E (X : REAL) retum REAL;
provedurs G (Y, 2 : REAL)

end FACILITY;

package body FACILITY ks
-- gome local declarations followed by

funation F(X : REAL) retumn REAL I
begin
- gequence of statements of F

end F;

procedure G(Y, Z : REAL) e

-~ local procedurss using TEXT.IO
bual.n

.- sequence of statemerits of G

om'!" G
end FACILITY;

procedure TRANSFORM(U : in out REAL) ls
use FACILITY:
begin
U = F{U):
end TRANSFORM;
begin - TOP
TRANSFORM(R):

FACILITY.G(R, S):
end TOF;

10-7 Examples of Subunits 10.2.1

ANSI/MIL-STD-1815A Ada Reference . ‘anual L -'.
o '-. v
3 The body of the package FACILITY and that of the procedure TRANSFORM can be made into]
separate subunits of TOP. Similarly, the body of the procedure G can be made into a subunit of X
FACILITY as follows, : ,
. Example 3: R
5 procedurs TOP is Ve
type REAL is digits 10; S

R, S : REAL := 1.0;

package FACHITY is - .
P' : constant := 3.14159_2€6536; o
function F (X : REAL) return REAL; .
procedure G (Y, Z : REAL);

end FACILITY;

package bndy FACILITY is separate; -- stub of FACILITY ;.., :
procedure TRANSFORM(U : in out REAL) is suparate; -- stub of TRANSFORM . N
begin -- TOP
TRANSFORMI(R): B
FACILITY.G(R, Sk S
end TOP; s
L8
6 separate (TOP)
procedure TRANSFORM(U : in out REAL) ia
use FACILITY; RARR N
begin v
U = FU); der e
end TRANSFORM:
7 saparate (TOP) Y 1
package body FACILITY s W
-~ some local declarations followed by RO |
function F(X : REAL) return REAL is
tegin I
-- geauence of statements of F ' T
enc‘l” F: :
nrocecure G(Y, 7 : REAL) is separate; -~ gtub of G
end FACILITY:;
%
» 3
-4 e I
“-

10.2.1 Examples of Subunits 10-8

"y

Program Structure and Compilation lssues

with TEXT_IO;
separate (TOP.FACILITY) « full nams of FACILITY
procedure G(Y. Z : REAL) is
-~ local prucedures using TEXT.IO
begin
- sequence of statem¢ 8 of G

end G;

In the above example TRANSFORM and FACILITY are subunits of TOP, and G is a subunit of
FACILITY. The visibility in the split version Is the same as in the Initial version except for nne
change: since TEXT_|O is cnly used within G, the corresponding with clause is writteir tor G
instead of for TOP. Apart from this change, the same idaentifiers are visible at corresponding
program points In the two versions. For example, all of the following are (directly) visibie within
the proper body of the subunit G: the procedure TOP, the type REAL, the variables R and S, the
package FACILITY and the contained named number Pl &nd subprograms F and G.

References: body stub 10.2, compliation unit 10.1, identifiar 2.3, local declaration 8.1, named number 3.2, package
7, package body 7.1, procedure 8, procedure body 6.3, proper body 3.9, subprogram 8, type 3.3, varlab's 3.2.1,
visibility 8.3, with clause 10.1.1

10.3 Ouder of Compilation

The rules defining the order in which units can be complled are direct consequences of the visibility
rules and, in particular, of the fact that any library unit that is menticned by the context clause of a
compilation unit is visible in the compllation unit.

A compilation unit must be complled after all library units named by its context clause. A secon-
dary unit that is a subprogram or package body must be compiled after the corresponding fibrary
unit. Any subunit of a parent compllation unit must be compiled after the parent compilation unit.

If any error is detected while attempting to complle a compllation unit, then the attempted cem-
pilation is rejected and It has no effect whatsoever on the program libiary; the same hclds for
recompilations {(no compilation unit can become obsclete because of such a recompllation).

The order in which the compllation units of a program are compiled must be consistent with the
partial ordering defined by the above rules.

Similar rules apply for recomplilations. A compilation unit is potentially affected by a change in any
iibrary unit named by its context clause. A secondary unit is potentially affected by a change in the
corresponding library unit. The subunits of a parent compilation unit are potentially affacted by a
change of the parent compilation unit. If a compilation unit is successfully recompiled, the com-
pilation units potentially affected by this change are obsolete and must be recompiled unless they
are no longer needed. An implementation may be able to reduce the compilation costs if it can
deduce that some of the potentially affected units are not actually affected by the change.

10-9 Order of Compllation 10.3

o e . . e N . . ‘ '
b i e ot i <t b S stk e s b e A b S e s s S B el e e ml. e O SO S VAP, QL S TR SR)

. P S S S S S N .

ANSI/MIL-STD-1815A Ada Reference Manual

The subunits of a unit zan be recompiled without affecting the unit itself. Similarly, changes in a
subprogram or package body do not affect nther compiiation units (apart from the subunits of the
body) since these compliation units only have access to the subprogram or package specification.
An implementation is only allowed to deviate from this rule for inline Inclusions, for certain com-
piler optimizations, and for certain implamentations of generic program units, as described below.

o I a pragma INLINE Is applied to a subprogram declaration given in a package specification,
inline inclusion will only be achieved if the package body Is compiled before units calling the
subprogram. |n such a case, inline inclusion crestes a dependencs of the calling unit on the
package body, and the compiler must recognize this dependence when deciding on the need
for recompilation. If a calling unit is compiled before the package body, the pragma may be
ignored by the compiler for such calls (a warning that inline inclusion was not achleved may
be issued). Similar considerations apply to a separately compiled subprogram for which an
INLINE pragma Is specified,

® For optimization purposes, an implemeantation may compile several units of & given compila-
tion in a way that creates further dependences among these compilation units, The compller
must then take these dependences into account when deciding on the need for recompila-
tions.

¢ Animplementation may recjuire that a generic declaration and the corresponding proper body
be part of the same compilation, whether the genaric unit is itself separately compiled or Is
loca: to anoiher compilation unit, An implemaentation may also raquire that subunits of a
generic unit be part of the same compilation,

Examples of Compllation Order:

{a) Inexample 1 (see 10.1.1): The procedure QUADRATIC_EQUATION must be compiled after the
library packages TEXT_IO and REAL.OPERATIONS since they appear in its with clause.

(b} In example 2 (ses 10.1.2): The package body STOCK must be compiled after the
corresponding package spacification,

{¢) Inexample 2 (ses 10.1.2): The spacification of the package STOCK must be compiled befora
the procedure PROCESSOR. On the other hand, the procedure PROCESSOR can be compiled
elther before or after the package body STOCK.

{d} In example 3 (ses 10.2.1): The procedure G must be compiled after the package TEXT..ID
since this package is named by the with clause of G. On the other hand, TEXT_IC can be
compiled either vefore or after TOP.

(e) In example 3 (see 10.2,1); The subunits TRANSFCRM and FACILITY must be compiled after
the main program TOP. Similarly, the subunit G must be compiled after its perent unit
FACILITY.

Notes:

For libtniry packages, it follows from the recompllation rules that a package body is made obsolete
by the recompllation of the corresponding specification. If the new package specification is such
that a package body Is not required (that is, If the package specification does not contain the
declaration of a program unit), then the recompilation of a body for this package Is not required. In
any case, the obsolete package body must not be used and can therefore be deleted from the
program llbrary,

10.3 Order of Compilation 10-10

e “ LT . -
o N N T T R w e TR yw

Program Structure and Compilation Issues

References: compilation 10.1, compilation unit 10,1, context clause 10.1.1, elaboration 3.9, generic body 12.2,
generic declaration 12.1, generic unit 12, library unit 10.1, local declaiation 8.1, name 4.1, package 7, package body
7.1, package specificatior 7.1, parent unit 10,2, pragma inline 6.3.2, procedure 8.1, procedura body 6.3, proper body
3.9, secondary unit 10.1, subprogram body 8.3, subprogram declaration 6.1. subprogram specification 8.1, subunit
10.2, type 3.3, variabla 3.2.1, visibllity 8.3, with clause 10.1.1

10.4 The Program Library

Compilers are required to eriforce the language rules in the same manner for a program consisting
of several compilation units (and subunits) as for a program submitted as a single compilation.
Consequently, a library file containing information on the compilation units of the program library
must be maintained by the compiler or complling environment. This information may include sym-
bol tables and other information pertaining to the order of previous compilations.

A normal submission to the compiler consists of the compllation unit(s) and the library file. The
latter is used for checks and is updated for each complilation unit successfully compiled.

Notes:

A single program library Is implied for the compilation units of a compilation. The possible
existence of different program libraries and the means by which they are named are not concerns
of the language definition; they are concerns of the programming environment.

There should be commands for creating the program Iibrary of a given program or of a given family
of programs. These commands may permit the reuse of units of other program libraries, Finally,
there should be commands for interrogating the status of the units of a program library. The form
of these commands is not specifieu by the language definition.

References: compilation unit 10,1, context clause 10.1.1, order of compilation 10.3, program 10.1, program library
10.1, subunit 10.2. use clause 8.4, with clause 10.1.1

10.6 Elaboration of Library Units

Bafore the execution of a maln program, all library units needed by the main program are
elaborated, as well as the corresponding library unit bodies, if eny. The library units needed by the
main program are: those named by with clauses applicable to the main program, to its body, and
to Its subunits; those namad by with clauses applicable to these library units thamselves, to the
corresponding library unit bodies, and to thelr subunits; and sv on, in a transitive manner.

The elaboration of these library units and of the corresponding library unit bodies is performed in
an order consistent with the partial ordering defined by the with clauses (see 10.3). In addition, a
library unit mentioned by the context clause of a subunit must bs elaborated before the body of the

.ancestor library unit of the subunit.

An order of elaboration that is consistant with this partial ordering does not always ensure that
each library unit body is slaboratod before any other compllatior: unit whose elaboration neces-
sitates that the library unit body be already elaborated. If the prior elaboration of library unit
bodies is neaded, this can be requested by a pragma ELABORATE. The form of this pragma is as
follows:

pragma ELABORATE (//brary._unit_simple_name |, /fbrary_unit_simple_name});

10-11 Elaboration of Library Units 10.5

. ANSI/MIL-STD-1815A Ada Reference Manual

. 4 These pragmas are only allowed immaediately after the context clause of a compilation unit (before
the subsequent library unit or secondary unit). Each argument of such a pragma must be the sim-
ple name of a library unit mentioned by the context clause, ard this library unit must have a library
unit body. Such a pragra specifies that the library unit body must be elaborated before the given
compilation unit, If the given compilation unit is a subunit, the library unit body must be
elaborated before the body of the ancestor library unit of the subunit.

5 The progrem is illegal if no consistent order can be found (that Is, if a circularity exists). The
elaboration of the compilation units of the program Is performed in some order that is otherwise
N not defined by the language.

8 References: allow 1.6, argument of a pragma 2.8, compilation unit 10.1, context clause 10.1.1, dependence between
: compilation units 10.3, elaberation 2.9. llegal 1.6, in sume urder 1.6, library unit 10,1, name 4.1, main program 10.1,
» pragma 2.8, seccndary unit 10,1, separate compllation 10.1, simple name 4.1, subunit 10.2, with clause 10.1.1

-T 10.6 Program Optimization

' Optimization of the elaboration of declarations and the execution of statements may be performed
by compllers. in particular, a compller may be able to optimize a piugram by avaluating certain
expressions, in addition to those that are static expressions. Should one of these expressions,

b whether static or not, be such that an exception would be raised by its evaluation, then the code In

that path of the program can be repleaced by code to raise the exception; the same holds for excep-

tions raised by the evaluation of names and simple expressions. (See also saction 11.8.)

? A compller may find that some statements or subprograms will never be executad, for example, If
their execution depends on a condition known to be FALSE. The corresponding object machine

code can then be omitted. This rule permits the effect of conditional compilation within the
‘ language.

Note:

3 An expression whose evaluation is known to raise an exception need not represent an error If it
Ry occurs in a statement or subprogrem that is nevar executed. The compiler may warn the program
mer of a potentlal error,

ol 4 References: condition 5.3, daclaration 3.1, elaboration 3.9, evaluation 4.5, exception 11, expression 4.4, false
::_‘-: boolean value 3.6.3, program 10, raising of exceptions 11.3, staterment 5, static expression 4.9, subprogram 8

10.6 Program Optimization 10-12

y

i e ot o et £ s e e g o e 18t Wit 2 et bt Rt At 4 et 5

11. Exceptions

This chapter definas the facilities for dealing with errors or other exceptional situations that arise
during program execution. Such a situation Is called an exception. To raise an exception Is to
abandon normal program execution so as to draw attention to the fact that the corresponding
situation has arisen, Executing some actions, in response to the arising of an exception, Is called
handling the exception,

An exception declaration declares a name for an exception. An exception can be raised by a raise
statement, or it can be raised by another statement or nperation that propagates the exception,
When an axception arises, control can be transferred to & user-provided exception handler at the
end of a block statement or at the end of the body of a subprogram, package, or task unit.

Refarences: block statement 5.8, error situation 1.6, exception handler 11.2, name 4,1, package body 7.1,
propagation of an exception 11.4.1 11.4.2, raise statement 11,3, subprogram body 8.3, task body 9.1

11.1 Exception Declarations

An exception daclaration daclares a name for an exception. The name of an exception can only be
used in raise statements, exception handlers, and renaming declarations.

exception_doclaration ::= Identifier_list : excaption;

An excaption declaration with several identifiers is equivalent to a sequence of single exception
declarations, ag explained In section 3.2, Each single exception declaration declares a nama for a
different exception. In particular, if a generic unit includes an exception declaration, the exception
dec'arations Iimplicitly generatad by different instantlations of the generic unit refer to distinct
exceptions (but all have the same |dentifier). The particular exception denoted by an exception
name is determined at compllation time and is the same regardiess of how many times the excep-
tion declaration Is elaborated. Hence, If an exception declaration occurs in & recursive subprograrn,
the exception name denotea the same excepticn for ali invocations of the recursive subprogram,

The following exceptions are predefined in the language; they are raised when the s''uations
described are detected.

CONSTRAINT_ERROR This erception s raised In any of the following situations: upon an
attempt to violate a range constraint, an index constraint, or a dis-
criminant consatraint; upon an atteampt to use a record component that
does not exist for the current discriminant values; and upon an
attempt to use a selocted component, an indexed componant, a slice,
or an attribute, of an object designated by an access value, If the
object does noi exist because the access value Is null,

11 Excaption Declarations 11.1

P

a‘a & 20s A

gl o

TIM

ANSI/MIL-STD-1815A Ada Reference Manual

NUMERIC_ERROR This exception is raised by the execution of a predefined numeric operation
that cannot deliver a correct result (within the declarad accuracy for real
types); this includes the case where an implementation uses a predefined
numeric opsration for the execution, evaluation, or elaboration of some
construct. The rules given in section 4.6.7 define the cases in which an
implementation Is not required to raise this exception when such an error
situation arises; see also section 11.6.

PROGRAM_ERROR This exception is raised upon an attempt to call a subprogram, to activate a
task, or to elaborate a generic instantiation, if the body of the cor-
responding unit has not yet bcen elaborated. This exception is also raised if
the end of a function is reached (see 6.5); or during the execution of a
selective wait that has no else part, if this execution dsterminen that all
alternatives are closed (see 9.7.1). Finally, depending on the implementa-
tion, this exception may be raised upon an attempt to execute an action
that is orroneous, and for incorract order dependences (see 1.8).

STORAGE.ERROR This exception is raised in any of the following situstions: when the dyna-
mic storage allocated to a task Is exceedad; during the evaluation of an
allocator, if the space available for the collection of allocated objects is
exhausted; or during the elaboration of a declarative item, or during the
execution of a subprogram call, if storage ia not sufficient,

TASKING_ERROR This exception Is ralsed when exceptions arise during intertask communi-
cation (se¢ 9 and 11.5),

Note:

The situations described above can arise without raising the corresponding exceptions, If the
pragma SUPPRESS has been used to give permission to omit the corresponding checks (see 11.7).

Examples of user-defined exception deciarations:

SINGULAR : exception;
ERROR ! exception;
OVERFLOW, UNDERFLOW : exception;

References. access vaiue 3.8, volisction 3.8, declaration 3.1, exception 11, excaption handler 11.2, generic body
12,2, generic instantiation 12.3, generlc unit 12, dentifler 2.3, implicit declaration 12.3, Instantiation 12.3, name 4,1,
object 3.2, raise statement 11.3, real type 3.5.8, record component 3.7, return statement 5.8, subprogram 6, sub-
program budy 6.3, task 9, task body 9.1

Constraint_arror exception contexts: aggregate 4.3.1 4.3.2, aliocator 4.8, assignment statement 5.2 5.2.1,
constraint 3.3.2, discrete type attribute 3.5.5, discriminant constraint 3.7.2, elaboration of a generic formal parameter
123.112.3.2 12.3.4 12.3.5, entry Index 9.5, exponsntlating operator 4,8.8, Index constraint 3.6,1, Indexed compo-
nent 4.1.1, logical operstor 4.5.1, null access value 3.8, object declaration 3.2.1, paremeter association 8.4.1,
qualified expression 4.7, range constraint 3.5, nelected component 4.1.3, slice 4.1.2, subtype indication 3.3.2, type
conversion 4.8

Numeric_error exception contexts: discrete type attribute 3.5.5, impliclt conversion 3.6.4 3.5.8 4.8, numerlc
operation 3.6.6 3.5.8 3.5.10, operator of a numaeric type 4.6 4.5,7

Program_error exception contexts: collection 3.8, elaboration 3.8, alaboration chack 3.9 7.3 8.3 12.2, erroneous
1.8, incorract order depandence 1.8, laaving a function 8.5, selective wait 9.7.1

11.1 Exception Declarations ' 11-2

H

IR P PE

Exceptions

Storage._error exception contexts: allocator 4.8

Tasking error axception contexts: sbort statemsnt B.10, entry call 9.5 9.7.2 8.7.3, sxveptions during task
communication 118, tagk activation 9.3

11.2 Exception Handlers

The response to one or more exceptions is specified by an exception handier.

exception_handler =
when excsption_cholce !| exception_choice} =>
sequence_of _statements

exception_cholce i:= exception_name | others

An exception handler occurs in & construct that is either a block statement or the body of & sub-
program, package, task unit, or generic unit. Such a construct will bs called a frame in this
chapter. In each cuse the ayntax of a frame that has exception handlers includes the following
part:
begin
sequence_of_statements
exception
axception_handler
| axception_handler|
end

The exceptions denoted by the exception names given as exception cholces of a frame must all be
distinct. The exception choice others is only allowed for the last exception handler of a frame and
as its only exception cholce; it stands for all exceptions not listed in previous handlers of the frame,
including exceptions whose namas are not visible at the place of the exception handler.

The exception handlers of a frame handle exceptions that are raised by the execution of the
sequence of statements of the frame. The exceptions handled by a given exception handler are
those named by the corresponding exception choices.

Example:

begin
-- sequence of statements
exception
when SINGULAR | NUMERIC_ERROR =>
PUT(" MATRIX IS SINGULAR ")
when others =>
PUT(" FATAL ERROR ");
raive ERROR;
ond;

Notes:

Tha same kinds of statement are allowed in the sequence of atatements of each exception handler
as are allowed in the sequence of statements of tha frame. For exarnple, a return statement is
allowed in a handler within a function body.

Exception Handlers 11.2

ANSI/MIL-STD-1815A Ada Reference Manual

References: block statement 6.8, declarative part 3.8, exception 11, exception handling 11.4, function hody 6.3,
generic body 12.2, geneilc unit 12,1, name 4,1, package body 7.1, raise statament 11.3, raturn statement 5.8,
sequence of statemants 6.1, statement 5, subprogram body 6.3, task body 9.1, task unit 9 9.1, visibllity 8.3

11.3 Raise Statements

A raise statement raises an exception.

raise_statement := rales [exception.namel;

For the exscution of a raise statement with an exception name, the named exception Is raised. A
raise statement without an exception name is only allowed within an exception handler (but not
within the sequence of statements of a subprogram, package, task unit, or generic unit, enclosed
by the handler); It raises again the exception that caused transfer to the innermost enclosing
handler.

Examples:
talse SINGULAR;
raise NUMERIC_ERROR; -- expligitly ralsing a predefined exception
raise! -~ only within an exception handier

References. exception 11, generic unit 12, name 4.1, package 7, sequence of statements 5.1, subprogram 8, task
unit 9

11.4 Exception Handling

When an exception I8 raised, normal program execution is abandoned and control s transferred to
an exception handier. The selection of this handler depends on whether the oxception is raised
during the execution of statements or during the elaboration of declarations.

References: daclaration 3.1, elaboration 3.1 3.9, exception 11, exception handler 11.2, ralsing of sxceptions 11.3,
statement 5

11.4.1 Exceptions Raised During the Execution of Statements

The handling of an exception raised by the execution of a sequence of statements depends on
whather the Innarmost frame or accept statement that encloses the sequence of statements s a
frame or an accept statement, The case where an accept statement is Innarmost s described In
section 11.5. The case where a frame is Innermost Is presented here.

11.4.1 Exceptions Ralsed During the Execution of Statements 11-4

Exceptions

Ditferant actions take place, daperding on whether or not this frame has a handier for the excep- 2
tion, and on whather the excepticn is raised in the sequence of statements of the frame or in that
of an exception handler,

If an exception is raised in the sequence of stataments of a frame that has a handler for the excep- 3
tion, execution of the saquence of statements of the frame is abandoned and control is transferred

to the exception handler. The execution of the sequence of statements of the handler completes

the execution of the frame (or its elaboration if the frame is a package body).

If an exception Is raised In the ssquence of statements of a frame that does not have a handler for 4
the exception, execution of this saquence of statemsnts is abandoned. The next action depends on
the nature of the frame:

(a) For a subprogram body, the same exception is raised again at the peint of call of the sub- 5
program, unless the subprogram is the main program itself, in which case execution of the
main program Is abandoned.

(b) For a block statement, the same exception is raised agaln immediately after the block state- s
meunt (that Is, within the innermost enclosing frame or accept statement).

\¢c) For a package body that is a declarative item, the same exception is raisad again Immediately 1
after this declarative item (within the enclosing declarative part). If the package body Is that of
a subunit, the exception is raised again at the place of the corresponding body stub. |f the
package is a llbrary unit, execution of the main program is abandoned.

(d) For & task bouy, the task becoines completed. 0

An exception that is raised again (as in the abovs cases (a), (b), and (c}) is said to be propagated, 9
sither by the execution of the subprogram, the execution of the block statement, or the slaboration

of tha package body. Noc propagation takes place in the case of a task body. If the frame Is a sub-
program or a block statement and If it has dependent tasks, the propagation of un excaption takes

place only aftar termination of the dependent tasks.

Finally, if an exception is raised in the sequence of statemants of an exception handler, execution 1o
of this sequence of statemunts |s abandoned. Subsequent actions (including propagation, if any)
are as in the cases (a) to {d) above, depending on the nature of the frame.

Example: 1
function FACTORIAL (N : POSITIVE) return FLOAT s
hegin
if N = 1 then
raturn 1.0;
alse
returmn FLLOAT(N} « FACTORIAL(N-1);
ond If:
exception

when NUMERIC_ERROR => return FLOAT'SAFE_LARGE;
end FACTORIAL;

If the multiplication raises NUMERIC_ERROR, then FLOAT'SAFE_LARGE is returned by the handler, ?
This value will cause further NUMERIC_ERROR exceptions to be ralsed by the evaluation of the
exprassaion In each of the remaining invocations of the function, so that for large values of N the
function will ultimately return the value FLOAT'SAFE_LARGE .

11-6 Exceptions Ralsed During the Execution of Statements 11.4.1

.
"

13

ANSI/MIL-STD-1815A Ada Refersnce Manual

Example:
procedure P is
ERROR : exception;
procedure R;

procedure Q s
begin
R;
-- arror situation (2)
exception
when ERROR => .- handler E2
omli" Q:

procedure R s

begin

um‘!‘ I R:
begin

Q;

-- error situation (3)

-- arror situation (1)

oxc;;ptlon

when ERROR => handler E1

i

onc'!" P
The following situations can arise:

{1) If the axception ERROR is ralsed In the sequence of statements of the outer procedure P, the
handler E1 provided within P is usad to complete the exsoution of P,

(2) If the exception ERROR s raised in the sequence of statemants of Q, the handler E2 provided
within Q Is ussed to complate the execution of Q. Control will be returned to the point of call of
Q upon completion of the handler,

(3) If the exception ERAROR (s raised in the body of R, called by Q, the execution of R is abandoned
and the sama exception is ralsed in the body of Q. The handler E2 is then used to complete
the execution of Q, as in situation (2),

Note that in the third situation, the exception raised in R results in (indirectly) transterring control
to a handler that is part of Q and hence not enclosed by R. Note also that if a handler were
provided within R for the exception cholce others, situation (3) would cause exacution of this
handler, rather than direct termination of R.

Lastly, if ERROR had baen declared in R, rather than in P, the handlers E1 and E2 could not provide
an explicit handler for ERROR since this identifier would not be visible within the bodies of P and
Q. In situation (3), the exception could however be handied in Q by providing a handler for the
exception cholce others.

11.4.1 Exceptions Ralzed During the Execution of Statements 11-6

Exceptions

Notes:

The language doss not define what happens when the execution of the main program is at.an- 20
doned after an unhandied exception.

b, The predefined exceptions are those that can be propagated by the basic operations and the 2 S
L predefined operators, ...’:_:::3

The case of a frame that Is a genaeric unit is already covered by the rules for subprogram and 2 K
. package bodies, since the sequence of statements of such a frame Is not executed but Is the DRI

template for the corresponding sequances of statements of the subprograms or packages obtainad e,
by generic instantiation, s

Referencas: accept statomant 9.5, basic operstion 3.3.3, biuck statement 5.8, body stub 10.2, completion 9.4, 2
declarative item 3.9, declarative part 3.9, dependent task 9.4, slaboration 3.1 3.9, exception 11, axcepticn handler
11.2, frame 11.2, generic instantiation 12.3, generic unit 12, library unit 10.1, main program 10.1, numeric_error
1 exception 11,1, package 7, package body 7.1, predefined operator 4.6, procedure 6.1, ssquenca of statements §.1, N
statement 5, subprogram 8, subprogram body 6.3, subprogram cail 8.4, subunit 10.2, task 9, task body 8.1 - o

- 11.4.2 Exceptions Ralsed During the Elaboration of Declarations P '-'5.'-.‘

a If an exception is raised curing the slaboration of the declarative part of a given frame, this 1
% elaboration is abandoned. The next action depends on the nature of the frame:

! (n) For a subprogram body, the same exception Is ralsed again at the point of call of the sub- 2
program, uniess the subprogram ls the main program itself, in which case exscution of the g
main program is abandoned.

(b) For a block statement, the same exception is raised again Immaediately atter the block state- 3
ment.

{c) For a package body that Is a declarative item, the same exception is raised again Iimmaediately .
after this declarative item, in the encloaing declarative part. If the package body is that of a
subunit, the exception is raised again at the place of the correaponding body stub. If the
package is a library unit, execution of the main program s abandoned.

(d) For a task body, the task becomes completed, and the exception TASKING_ERROR is raised at s
the point of activation of the task, as explained In section 9.3,

. Similarly, if an exception is ralsed during the elaboration of either 8 package declaration or a task a
X daclaration, this elaboration is abandoned; the next action depends on the nature of the declara-
tion,

(e) For a package declaration or a task declaration, that is a declaratlve {tem, the exception Is 7
ralsed again immediately after the declarotive item In the enclosing declarative part or

package specification. For the declaration of a library package, the execution of the main

2 program |s abandoned.

: An exception that Is raised again {as in the above cases (a), (b), (c) and (e)) Is sald to be 8
' propagated, sithar by the execution of tha subprogram or block statement, or by the elgboration of . -8
| tho package declaratlon, task declaration, or perkage body. S

i" 11-7 Excaptions Raisad During the Elaboration of Daclarations 11.4.2 v @

- - T by . . ‘. " N . " vt) 1 T at ot AL b
A a i A T @ i s AT 1 A R Bl Su b, s matle [P T L T Ny P TS T N RAC SO I N UK RV T, S TR U SN ST A A

“-'-..‘,’ 4
ettt

T -a=8 -
Pl

ANSI/MIL-STD -1815A Ada Reference Manual

Exarnple of an excaption in the declarative part of a block statement (case (b)):

procedure P s
boain
declure

N : INTEGER = F: -- the function F rnay raise ERROR
begin

oxc;ptlon
when ERROR =>
end;

- handler E1

oxc';ptlon
when ERROR =>
end P;

- handler E2

-~ |f the exception ERROR Is ralsed in the declaration of N, it is handled by E2

Reaferences: activation 9.3, block statement 8.8, body stub 10.2, completsd task 8.4, declarative Item 3.9, deciarative
part 3.9, slaboration 3.1 3.9, exception 11, frame 11.2, library unit 10.1, main program 10.1, packege body 7.1,
peckage declaration 7.1, package specification 7.1, subprogram 8, subprogram body 8.3, subprogram call 8.4, subunit
10.2, task 9, task body 9.1, task declaration 8.1, tasking_error sxception 11,1

11.5 Exceptions Raised During Task Communication

An exception can be propagated to a task communicating, or attempting to communicate, with
anothsar task. An excaption can also be propagated to a caliing task If the exception is ralsed during
8 rendezvous,

When u task calls an entry of anothar task, the exception TASKING_ERROR Is raised in the calling
task, at the place of the call, if the called task is completed befors accepting the entry call or is
already completed at the time of the call.

A rendezvous can be completed abnormally in two cases:

(a} When an exception is ralsed within an accept statement, but not handled within an inner
frame. In this case, the execution of the accept statement is abandoned and the same excep-
tion is raised agaln immediately after the accept statement within the caliad task; the excep-
tion is also propagated to the culling task at the point of the entry call,

(b) When the task containing the accept statement ls complatad abnormally as the result of an
abort statement. In this case, the exception TASKING_ERROR Is raised in the calling task st
the point of the entry call,

On the other hand, If a task issuing an entry oall becumes abnormal (as the result of an ahort
statement) no exception le raised in the called tawsk, If the randezvous has not yet started, the " ntry
cell is cancslled. If the rendezvous Is in progreas, it completes normally, and theed task is
unaffected,

11.5 Excaptions Raisad During Task Communication 11-8B

amtliie

- w -

. Y. "
R B
R =

Exceptions

References: abnormal task 9.10, abort statement 9.10, accept stetemunt 8.6, complated task 9.4, entry cail 9.5,
excaption 11, frame 11.2, rendezvous 9.5, task 9, task termination 9.4, tasking_error axception 11.1

11.6 Exceptions and Optimization

The purpose of this section is to specify the conditions under which an ‘mplementat'on is allowed
to perform certain acticns either earlier or later than specified by other rules of the languags.

In general, when the language rules specify an order for cartain actions (the canonical order), an
implementation may only use an alternative order If it can guarantee that the effect of the program
Is not changed by the reordering. In particular, no exception should arise for the execution of the
reordered program If none arlses for the execution of the program In the canonical order. When,
on the other hand, the order of certain actions is not defined by the language, any order can be
used by the implementation. (For example, the arguments of a predefined operator can be evalua-
ted In any order since the rules given in section 4.5 do hot require a specific order of evaluation.)

Additional freedom is left to an Implementation for reordaring actions involving predefined opara-
tions that are either predefinad operators or basic operations other than assignments. This
freadom s left, as defined below, even In the case whers the axecution of these predefined opera-
tions may propagate a (predefined) exception:

(8) For the purpose of establishing whether the same effect is obtained by the execution of cer-
tain actions in the canonical and In an aiternative order, It can be assumaed that none of the
predefined uperations invoked by these aations propagates a (predefined) exception, provided
that the two following requirements are met by the alternative order: first, an oporation must
not be invoked in the alternative order If it s not invoked in the canonical order; second, for
each oparation, the innermost enclosing frame or accept statement must be the same in the
alternative order as in the canonical ordar, and the same axception handlers must apply.

{b) WIthin an expression, the assoclation of operators with operands Is specified by the syntax,
However, for a sequence of predefined operators of the same precedence level (and In the
absance of parentheses imposing a specific association), any association of operators with
operands Is allowed |f It satlsflas the following requ’ ament: an Integer result must be equal to
that given by the canonical left-to-right order; a real result must belong to the rosult model
interval defined tor the canonical left-to-right order (see 4.6.7). Such a reordering is allowed
even If it may rarnove an exception, or Introduce a further predefined exception.

Similarly, additlonal freadom Is left to an Implementation for the evaluation of numeric simple
exprasalons, For the avaluation of a predefined oparation, an implamentation |s allowed to use the
operation of a type that has a range wider than that of the base type of the operands, provided that
this delivers the exact result (or a result within the declared accuracy, in the case of a real type),
aven if some Intermediate results lie outside the range of the base type. The exception
NUMERIC_ERROR nead not be raised In such a case. in particular, if the numaeric expression is an
operand of a predefined relational operator, the exception NUMERIC_ERROR nead not bie ralsed by
the avaluation of the relation, provided that the correct BOOLEAN result is obtalned.

A predufined operation need not be invoked at all, if its only possible effact is to propagate a prede-
fined exception. Simllarly, a predefined operation need not by invoked if the removal of subsequent
operations by the above rule renders this invoocation insffective.

11-9 Exceptions and Optimization 11.6

ANSI/MIL-STD-1815A Ada Reference Manual

Notes:

Rule (b) applies to predefined operators but not to the short-circuit control forms.

The expression SPEED < 300_000.0 can be replaced by TRUE if the value 300_000.0 lies outside
the base type of SPEED, even though the implicit conversion of the numeric literal would raise the
exception NUMERIC_ERROR.

Example:

doclare
N : INTEGER;
begin
N = O; - {1
for Jin 1 .. 10 loop .
N = N + Jx#A(K); -~ A and K are global variables
end loop;
PUT(N);
excaption
when others ==> PUT("Some error arose”); PUT(N):
end;

The evaluation of A(K) may be performed before the loop, and possibly immediately before the
assignment statement (1) even If this evaluation can raise an exception. Consequently, within the
exception handler, the value of N Ig either the undefined initlal value or & value later assigned. On
the other hand, the evaluation of A(K) cannot be moved before begin since an exception would
then be handled by a different handler. For this reason, the initialization of N in the declaration
itself would exclude the possibility of having an undefined initial value of N in the handler.

References: accept statement 9.5, accuracy of real operations 4.5.7, assignment 8.2, base type 3.3, basic operation
3.3.3, conversion 4.6, error situation 11, axception 11, exception handler 11.2, frame 11.2, numeric_error exception
11.1, predefined operator 4.5, pradefined subprogram B.8, propagation of an exception 11.4, real type 3.5.6,
undefined value 3.2.1

11.7 Suppressing Checks

The presaence of a SUPPRESS pragma gives permission to an implementation to omit certain 'in-
time checks. The form of this pragma Is as follows:

pragma SUPPRESS (identifier [, [ON =>] name]);

The identifier is that of the check that can be omitted. The name (if present) must be either a sim-
ple name or an expanded name and it must derote either an object, a type or subtype, a task unit,
or a genaric unit; alternatively the name can be a subprogram name, in which case it can stand for
several visible overloaded subprograms.

11.7 Suppressing Checks 11-10

i@ -

Exceptions

A pragma SUPPRESS Is only allowed immediately within a declarative part or immediately within a
& package specification. In the latter case, the only allowed form is with a name that denotes an
entity (or several overloaded subprograms) declared immediately within the package specification.

S The permission to omit the given check extends from the place of the pragma to the end of the

! declarative region associated with the innermost enclosing block statement or program unit. For a

. pragma given in a package specification, the permission extends to the end of the scope of the

R named entity.

." y agg L A;..g_h-_..;;q LAE._

If the pragma includes a name, the permission to omit the given check is further restricted: It is 4
given only for operations on the named object or on all objects of the base type of a named type or

. subtype; for calls of a named subprogram; for activations of tasks of the named task type; or for

- instantiations of the glven generic unit.

The following checks correspond to situations in which the exception CONSTRAINT_ERROR may 5
be raised; for these chacks, the name (if present) must denote either an object or a type.

i ACCESS_CHECK When accessing a selected component, an indaxed component, a 6
- slice, or an attribute, of an object designated by an access value,
check that the access value is not null.

DISCRIMINANT._CHECK Check that a discriminant of a composite value has the value imposed 7
by a discriminant constraint, Also, when accessing a record compo-
nent, check that it exists for the current discriminant values.

INDEX_CHECK Check that the bounds of an array value are equal to the cor- 1y
responding bounds of an index constraint. Aiso, when accessing a
component of an array object, check for each dimension that the given
index value belongs to the range defined by the bounds of the array

' object. Aiso, when accessing a slice of an array object, check that the

. given discrete range is compatible with the range dofined by the

bounds of ths array object.

SRRISRE B XAPATI R

\ LENGTH_CHECK Check that there is a matching component far each component of an 9
" array, in the case of array assignments, type conversions, and logical
' operators for arrays of boolean components.

RANGE_CHECK Check that a value satisfies a range constraint. Also, for the elabora- 10

tion of a subtype indication, check that the constraint (if present) is

compatible with the type mark. Also, for an aggregate, check that an

Index or discriminant value belongs to the corresponding subtype.

. Finally, check for any constraint checks performed by a generic instan-
&] tlation.

The following checks correspond to situations in which the exception NUMERIC_ERROR Is raised. "
The only allowed names in the corresponding pragmas are names of numeric types.

DIVISION_CHECK Check that the second operand is not zero for the operations /, rem 2
9 and mod.

OVERFLOW_CHECK Check that the result of a numeric operation does not overflow. a
f'«:I The following check corresponds to situations in which the exception PROGRAM_ERROR Is raised. 4

The only aliowed names Iin the corresponding pragmas are narnes danoting task units, generic
) units, or subprograms.

- ELABORATION_CHECK When eithar a subprogram Is called, a task activation is accomplisher, 15
or a generic instantiation is eluborated, check that the body of the cor-
. responding unit has already been elaborated.

11-11 Suppressing Checks 11.7 B

- . L . U T - . . .o N .
LT VT VAT WY SIS WA WL O, a St low. L NI W AP) HPRG TSN W UL I W . VN0 WA AT . WPVR PR WA LAPNIL IR P WD SN 10 W I IV TN GIDURE YRR VPN DT SOTSY VRERY UURY S S S Y -

A
- ANSI/MIL-STD-1815A Ada Reference Manual

L: 1 The following check corresponds to situations in which the exception STORAGE_ERROR Is raised.

“ The only allowed names in the corresponding pragmas are names denoting access types, task

S unlits, or subprograms.

" STORAGE_CHECK Check that execution of an allocator does not require more space than is o
avallable for a coliection. Check that the space available for a task or co
subprogram has not been exceeded.

" If an error situation arises in the absence of the corresponding run-time checks, the execution of ST
the program is arroneous (the results are not defined by the language). Lo

Examples:

¥

X e
¢ . S
-
e,

;. pragma SUPPRESS(RANGE_CHECK);

h- pragma SUPPRESS(INDEX_.CHECK, ON => TABLE);

Ny

E\i Notes:

. 2 For certain implementations, it may be impossible or too costly to suppress certairn checks. The

corresponding SUPPRESS pragma can be ignored. Hence, the occurrence of such a pragma within
a given unit does not guarantee that the corresponding exception will not arise; the exceptions
may also be propagated by called units.

WE'!?C("Y'-i?f
ARARA

> -

2 References: access type 3.8, access value 3.8, activation 9.3, aggregate 4.3, allocator 4.8, array 3.6, attribute 4.1.4,
block statement 6.6, collection 3.8, compatible 3.3.2, component of an array 3.8, component of a record 3.7, com-
posite type 3.3, constraint 3.3, constraint_error exception 11.1, decliarative part 3.9, designate 3.8, dimension 3.8,
discrete range 3.8, discriminant 3.7, 1, discriminant constraint 3.7.2, elaboration 3.1 3.9, erroneous 1.8, error situation
11, expanded name 4.1.3, generic body 11.1, generic instantiation 12.3, generic unit 12, identifier 2.3, index 3.8,
index constraint 3.8.1, indexed component 4.1,1, null access value 3.8, numeric operation 3.6.6 3.6.8 3.5.10, numeric

)

T s

5".':- type 3.6, numeric_srror exception 11,1, object 3.2, operation 3.3.3, package body 7.1, package specification 7.1,

b,: pragma 2.8, program_srror exception 11.1, program unit 6, propagation of an sxception 11.4, range constraint 3.5,

‘!::' record typa 3.7, simple name 4.1, slice 4.1.2, subprogram 8, subprogram body 6.3, subprogram call 8.4, subtype 3.3,

L subunit 10,2, task 9, task body 9.1, task type 5.1, task unit 9, type 3.3, type mark 3.3.2

b L]

3

v

u";

3]

%

\"':

! S)
.

b .
{3

K R)
¢

..

[.
-)
I ;
v :
L

Y

11.7 Suppressing Checks 11-12

a

7

I ('
. 3
i
G

¥ =
- e !E
- 1,

S iamr . .

12. Generic Units

A generir unit is a program unit that is aither a generic subprogram or a generic package. A
generic unit ls a template, which is parameterized or not, and from which corresponding
(nongeneric) subprograms or packages can be obtained. The resulting prograrm units are sald to be
instances of the original genarlc unit.

A generic unit is declared by a generic declaration. This form of declaration has a generic formal
part declaring any generic formal parameters, An instance of a generic unit is obtained as the
result of a generic Instantiation with appropriate generic actual parameters for the generlc formal
parameters. An Instance of a genearic subprogram ig a subprogram. An instance of a generic
package is a package.

Generic units are templates, As templatea they do not have the properties that are specific to their
nongeneric counterparts. For example, a generic subprogram can be instantiated but it cannot be
called. In contrast, the instance of a genaric subprogram is a nongeneric subprogram; hence, this
instance can be called but it cannot be used to produce furthar instances.

Refsrences.! declaration 3.1, genaric actual parameter 12,3, goneric declaration 12.1, generic formal parameter 12,1,
generic formal part 12,1, generic instantiation 12.3, generic package 12.1, generic subprogram 12,1, Instance 12.3,
package 7, program unit 6, subprogram 6

12.1 Qeneric Declarations

A ceneric declaration declares a generic unit, which is either a generic subprogram or a generic
package. A generic declaration includes a generic formal part declaring any generic formal
parameters. A generic formal paramater can be an object; alternatively (unlike a parameter of a
subprogram), it can be a type or a subprogram.

generic_declaration !i= generic_specification;

generic_specification :=
generic_formal_part subprogram_specification
| generic_formal_part package._specification

generic_formal_part ::= generic {guneric_parameter_declaration}

generic_parameter_deciaration :=
identifier_list : (In [out]] type_mark [:= expression];
| type identifier ls generic_type._definition;
| private_type_declaration
| with subprogram_specification [ls name];
| with subprogram_spacification [is <>];

generic_type_definition =
(<>) | range <> | digits <> | delta <>
| array_type_definition | access_type_definition

12-1 Generic Declarations 12.1

REL DU

r 3 LI
5 P I

. -

ANSI/MIL-STD-1815A Adas Reference Manual

‘The terms generic formal object (or simply, formal objfect), generic formal type (or simply, formal
type), and generic formal subprogram (or simply, formal subprogram) are used to refer to cor-
responding generic formal parameters,

The only form of subtype indication allowed within a generic formal part is a type mark (that is, the
subtype indication must not include an explicit constraint). The designator of a generic sub-
program must be an identifier.

Outside the spacification and body of a generic unit, the name of this program unit denotes the
generic unit. In contrast, within the declarative region associated with a generic subprogram, the
name of this program unit denotes the subprogram obtained by the current instantiation of the
generic unit. Similarly, within the declarative region associated with a generic package, the name
of this program unit denotes the package obtained by the current instaniation,

The elaboration of a generic declaration has no other effect.

Examples of generic formal parts:

generic -- parameterless
generic
SIZE : NATURAL; -- formal object
generic
LENGTH : INTEGER := 200; -- formal object with & default expression
AREA i INTEGER := LENGTHxLENGTH; -- formal object with & default expression
generic
type ITEM Is private; -- formal type
type INDEX is (<>); -- formal type
typs ROW is array(INDEX range <>) of ITEM; -- formal type
with function “<”(X, Y : ITEM) retum BOOLEAN; -~ formal subprogrem

Examples of generic declarations declaring generic subprograms.

genevic
type ELEM ls private;
procedure EXCHANGE(U, V ! In out ELEM);

generio

type ITEM s private;

with function “»"(U, V : ITEM) return ITEM ls <>;
function SQUARING(X : ITEM) retumn ITEM;

Example of a generic declaration declaring a generic package:

generic -
type ITEM is private;
type VECTOR is array (POSITIVE range <>) of ITEM;
with function SUM(X, Y : ITEM) return ITEM:
package ON_VECTORS Is
function SUM (A, B : VECTOR) retum VECTOR;

function SIGMA (A : VECTOR) returmn ITEM;
LENGTH_ERROR : exception;
end;
12.1 Generic Declarations 12-2

ry .. . B ’. !.‘ [- - » - - a Iy - - -

i O Rs
s 28 Tal s

e

.tJ'— £

-

Generic Units

Notes:

Within a generic subprogram, the name of this program unit acts as the name of a subprogram,
Hence this name can be averloaded, and it can appear in a recursive call of the current instantia-
tion. For the same reason, this name cannot appear after the reserved word new in a (recursive)
generic Instantiation.

An expression that occurs in a generic formal part Is either the default expression for a generic for-
mal object of mode in, or a constituent of an entry name given as default name for a formal sub-
program, or the default expression for a parameter of a formal subprogram. Default expressions for
generic formal objacts and default names for formal subprograms are only evaluated for generic
irstantiations that use such defaults. Default expressions for parameters of formal subprograms
are only evaluated for calls of the formal subprograms that use such defauits. (The usual visibility
rules apply to any nameo used in a default axpression: the denoted entity must therefore be visible
at the place of the exprassion.)

Neither genaric formal parameters nor their attributes are allowed constituerits of static expres-
sions (see 4.9),

References: access type definition 3.8, array type definition 3.8, attribute 4,1.4, constraint 3.3, declaration 3.1,
designator 8.1, elaboration has no other effect 3.1, antity 3.1, expreasion 4.4, function 8.5, generic instantiation 12.3,
identifier 2.3, Identifier list 3.2, Instance 12,3, name 4.1, object 3.2, overloading 6.8 8.7, package specification 7.1,
parameter of a subprogram 8.2, private type definition 7.4, procedure 6.1, reserved word 2.9, static expreasion 4.9,
subprogram 6, subprogram spacification 6.1, subtypa indication 3.3.2, type 3.3, type mark 3.3.2

12.1.1 Generic Formal Objects

The first form of generic parameter declaration doclarax} generic formal objects, The type of a
generic formal object is the base type of the type denated by the type mark given in the generic
parametar declaration, A generic parameter declaration with several identifiers is equivalent to a
sequence of single generic parameter declaratlons, as explainer in section 3.2,

A generic formal object has a mode that is either in or i out. In the absence of an explicit mode
indication in a generic parameter declaration, the mode in is assumed; otherwise the mode is the
one Indicated. If a generic parameter declaration ends with an expression, the expression |s the
default exprassion of the genaric formal parameter. A default expression is only allowed if the
mode is in (whether this mode is indicated explicitly or implicitly). The type of a defauit expression
must be that of the corresponding generic formal parameter.

A generic formal objact of mode In is a constant whose value is a copy of the value supplied as the
matching goneric actual parameter in a generic instantiation, as described in section 12.3, The
type of a generic formal object of mode in must not be a limited type; the subtype of such a generic
formal object Is the subtype denoted by the type mark given in the generic paramater declaration.

A generic formal object of mode in out is & variable and denotes the object supplied as the
matching generic actual parameter in a generic instantiation, as described In section 12,3, Ths
constraints that apply to the generic formal object are those of the corresponding generic actual
parameter.

12-3 Generic Formal Obfeces 12.1,1

Arcaton o b il S
Ll ket

ANSI/MIL-STD-1815A Ada Reference Manual

Note:

The constraints that apply to a genaric formal object of mc.de in out are those of the corresponding
generic actual parameter (not those implled by the type mark that appears in the generic
parameter declaration). Whenever possible (to avoid coritusion) it is recommended that the name
of a base type be used for the declaration of such a ftrm:l ablect, if, however, the base type is
anonymous, it is recommendnd that the subtype nai**3 definad wv the type daclaration for the base
type be used.

References: anonymous type 3.3.1, assignment 5.2, base type 3.3, constan? declaration 3.2, constraint 3.3,
declaration 3.1, generic actual paramstsr 12.3, generic formal object 12,1, generlc \ormal paramater 12.1, ganeric
instantiation 12.3, generic parameter declaration 12.1, identlfier 2.3, limited type 7.4.4, matching generic actual
parameter 12.3, mode 8.1, name 4.1, object 3.2, simple name 4.1, subtype 3.3, type declaration 3.3, type mark 3.3.2,
variable 3.2.1

12.1.2 Genasric Formal Types

A generic parameter declaration that includes a generic type definition or a private type declaration
declares a generic formal type. A generic formal type denotes the subtype supplied as the cor-
responding actual parametsr in a generic instantiation, as described in 12.3(d). Howevar, within a
generic unit, a generic formal type Is considered as being distinct from all other (formal or nonfor-
mal) types. The form of constraint applicable to a formal type in & subtype indication depends on
the class of the type as for a nonformal type.

The only form of discrete range that is allowed within the declaration of a generic formal
(constrained) array type is a type mark.

The discriminant part of a generic formal private type must not include a default expression for a
discriminant, (Consequently, a variable that is declared by an object declaration must be con-
strainad if Its type is a generic formal type with discriminants.)

Within the declaration and body of a generic unit, the operations avalilable for values of a generlc
formal type (apart from any additional operation specified by a generic formal subprogram) are
determined by the generic parameter declaration for the formal type:

(a} For a private type declaration, the avallable operations are those defined in section 7.4.2 (in
particular, assignment, equality, and Insquality are avaliable for a private type unless it is
limited).

(b) For an array type definition, the avallabie operations are those defined in section 3.6.2 (for
example, they Include tha tarmation of indexed components and slices).

{e) For an access type definition, the availai:le operations are those defined in section 3.8.2 (for
example, allocators can ba used).

The four torms of ganeric type definition In which a box appears (that is, the compound delimiter
<>) correspond to the following major forms of acalar type:

{d) Discrate typas: {(<>)

The avallable operations are the operations common to enumeration and integer types; these
are defined In section 3.6.8.

12.1.2 Genaric Foirmal Types 12-4

— stk

" om '
. -
TERTNPN S

]

G |

Generic Units

(e) Integer types: range <> o
The available operations are the operations of integer types defined in section 3.5.5,

(f) Floating point types: digits <> \ 1
The avallable operations are those defined in section 3.5.8.

(g) Fixed paint types: delta <> ' 12

The available operations are those defined in section 3.5.10.

In all of the above cases (a) through (f), each operation implicitly associated with a formal type 1
(that is, other than an operation specified by a formal subprogram)} is implicitly declared at the

place of the daclaration of the formal type. The same holds for a formal fixed point type, except for

the multiplying operators that deliver a result of the type universal_fixed (see 4.5.6), since thase
spacial operators are declared in the package STANDARD .

For an instantiation of the ganerie unit, each of thase operations is the corresponding baslic opera- 1
tion or predefined operator of the matching actual type. For an operator, this rule applies even if
the operator has been radefined for the actual type o for some parent type of the actual type.

Examples of generic formal typas: 15

type ITEM Is private;
type BUFFER(LENGTH : NATURAL) Is limited private;

types ENUM s (<>);

type INT is range <>:
type ANGLE s delta <>
typse MASS Is digita <>;

type TABLE Is array (ENUM) of ITEM:

Exampls of a generfic formal part daclaring a formal integer type: ®
guenaeric
typs RANK is range <>;
FIRST : RANK := RANK'FIRST;
SECOND : RANK := FIRST + 1; -~ the operator "+" of the type RANK
Refsrences: accesn typs definition 3.8, allocator 4.8, orray typs definition 3.6, assignment 5.2, hody of a generic unit 17

12.2, class of typs 3.3, constraint 3.3, declaration 3.1, declaration of a generic unit 12.1, discrete range 3.8, discreta
type 3.5, discriminant part 3,7.1, enumaeration tyoe 3.5.1, squality 4.6.2, fixed point type 3.6.9, floating point type
3.5.7, generic actual type 12.3, generic formal part 12.1, generic formal subprogram 12.1.3, ganarlc formal type 12.1,
gensric parametar dsclaration 12,1, generic type definition 12.1, indexed component 4.1.1, inequality 4.5.2, Inatantia-
tion 12.3, Integer type 3.6.4, limited private type 7.4.4, matching generic actuai type 12.3.2 12.3.3 12.3.4 12.3.5,
multiplying operator 4.5 4.5.5, operation 3.3, operator 4.5, parent type 3.4, private type dafinition 7.4, scalar type 3.5,
siice 4.1.2, standard package 8.8 C, subtyps indication 3.3.2, type mark 3.3.2, universal_fixed 3.6.9

12-5 Generic Formal Types 12.1.2

R

St S A 0 i N Pt ot 1ot e e s O i s e . Ry stk s oo

.
.
".'
kY
N
R
R
AR,
.
@
T,
' .|..
i IR
.
'
porn
%
i._
|'ll . .
L .
R ",
. -
LR
M
‘
A
L3
B
Ta
o
AR
@
- v
f ...

Ly

ANSI/MIL-STD-1815A Ada Reference Manual
12.1.3 Genaric Formal Subprograms

A generic parameter declaration that inbludes a subprogram specificatlon declares a generic for-
mal subprogram.

Two alternative forms of defaults can be specified in the declaration of a generic formal sub-
program. In these forms, the subprogram specification is followed by the reserved word is and
either a box or the name of a subprogram or entry. The matching rules for these defaults are
explained in section 12.3.6.

A generic formal subprogram denotes the subprogram, enumeration litera!, or entry supplied as the
corresponding generic actual parameter in a generic Instantiation, as described in section 12.3(f).

Examples of ganerlc formal subprograms.

with function INCREASE(X : INTEGER) return INTEGER:
with function SUM(X, Y : ITEM) return ITEM;

with function "+"(X, Y : ITEM) return ITEM is <>
with function IMAGE(X : ENUM) return STRING is ENUM'IMAGE:

with procedure UPDATE is DEFAULI_UPDATE:

Notes:

The constraints that apply to a parameter of a formal subprogram are those of the corresponding
parameter in the spacification of the matching actual subprogram (not those implied by the cor-
responding type mark in the specification of the formal subprogram). A similar remark applies to
the result of @ function, Whenever possible (to avold confusion), it Is recommendud that the name
of a base type be used rather than the name of a subtype in any declaration of a formal sub-
program. |f, however, the base type is anonymous, It is recommended that the subtype name
defined by the type duclaration be used.

The type specified for a formal parameter of a generic formal subprogram can be any visible type,
including a generic formal type of the same generic formal part.

Referances: anonymous typs 3.3.1, buse type 3.3, box delimiter 12,1 2, constraint 3.3, designator 8.1, generic actual
parameter 12.3, ganeric formal function 12,1, generic formal subprogram 12.1, generic Instantiation 12.3, generic
parameter declaration 12,1, Identifiar 2.3, matching generic actual subprogram 12.3.6, opmrator symbol 6.1,
parameter of a subprogram 8.2, renaming declaration 8.5, reservad word 2.9, scope 8.2, subprogram 6, subprogram
specification 6.1, subtyps 3.3.2, type 3.3, typs mark 3.3.2

12.2 Ganeric Bodies

The body of a generic subprogram or generic package is a template for the bodies of the cor-
responding subprograms or packages obtained by generic instantiations. The syntax of a generic
body Is identical to that of a nongeneric body.

For each declaration of a generic subprogram, there must be a corresponding body.

12.2 Generic Bodlss 12-8

Generic Unita

The elaboration of a generic body has no other effect than to establish that the body can from then
on be used as the template for obtaining the corrasponding instances.

Example of a goneric procadure body:

procedure EXCHANGE(U, V : in out ELEM) is -- see example In 12.1
T : ELEM; -- the generic formal type

begin
T = WU
U=V

V=T
end EXCHANGE;

Example of a generic function body:

function SQUARING(X : ITEM) return ITEM is -- see example In 12.1
begin

return X«X; - the formal operator "»"
end;

Example of a generic package body:
package body ON_VECTORS is - see example in 12.1

function SUM(A, B : VECTOR) retum VECTOR Il
RESULT : VECTOR‘A'RANGE) -~ the formal type VECTOR
BIAS + conetant INTEGER := B'FIRST - A'FIRST;

begin
it A'LENGTH /= B'LENGTH then
raise LENGTH_ERROR;
ond If;

for N In A'RANGE loop
RESULT(N) = SUM(A(N). B(N + BIAS));
end |009.
return RESULT;
ond;

funation SIGMA(A : VECTOR) return ITEM s
TOTAL : ITEM := A(A'FIRST);

begin
for N In A'FIRST + 1 .. A'LAST loop

TOTAL = SUM{TOTAL, A(N));

end loop;
return TOTAL:

ond;

end;

the formal function SUM

the formal typse ITEM

the forma! function SUM

]
]

References: body 3.9, elaboration 3.8, generio body 12,1, generic instantiation 12.3, generic package 12.1, generic
subprogram 12,1, instance 12.3, package body 7.1, pankage 7, subprogram 6, subprogrem body 6.3

12-7 Geaneric Bodies 12.2

[
oot
Cas’w

r-c & F o
oo 3
e e -

-

v B &

g

ANSI/MIL-OTD-T13TDA Ada Retarence Manual
12.3 Ganeric Instantiation

An instance of & generic unit Is declared by a generic instantiation.

genaric_instantiation =
package identifier is
new generic_package._name [genaric_actual_part|:
| procedure identifiar Is
new genes/c_procedurs_name [generic_actual_part);
| function designator |s
new generic_functlon..name [generic__actual_part);

goneric_actual_part =
(generic_association {, generic_nssociation})

generic_association =
[generic_formal_parameter =>] generic_actual_parameter

ganeric_formal_paramaeter := parameter_simple_nama | operator_symbol

geniric_actual_parameter :i== expression | var/able_name
| subprogram_name | entry_name | type_mark

An explicit generic actual parameter must be supplied for each ganeric formal parameter, unless
the corregponding generic parameter declaration specifies that a defuult can be used. Generic
associations can be either positional or named,in the same manner as parameter assoclations of
subprogram calls (see 6.4}, If two ar more formal subprograms have the same designator, than
named assoclations are not allowed for the corresponding generic parametars.

Each generic actual parameter must match the corresponding generic formal parameter, An
expression can match a formal object of mode In; a variable name can match a formal object of
mode in out; a subprogram narne or an entry name can match a formal subprogram: a type mark
can match a formal typs. The detailed rules defining the allowad matches are given in sentions
12.3.1 to 12.3.68; these are the only allowed matches.

The instance is a copy of the generic unit, apart from the generic formal part; thus the instance of
a generic package is a package, that of a generic procedure is a procedure, and that of a genaric
function is a funation. For each occurrence, within the genaeric unit, of a name thet denotes a given
entity, the following list defines which antity is denoted by the corresponding sccurrence within
the instance.

(a) For a name that denotes the generic unit: The corresponding occurrence denotes the
Instance.

(b} For a name that denotes a generic formal object of mode in;: The corresponding name
denotes a constant whose value Is a copy of the value of the associated generic actual
parameter,

(c) For a name that denotes a genetlc formal object of mode in out: The corresponding name
denotes the variable named by the assnciated generic actual paramaetar.

(d) For a name that denotes a gaeneric formal type: The corresponding name denotes the subtype
named by the assoclated generic actual parameter (the actual subtype),

(e} For a name that denotes a discriminant of a generic formal type: The corresponding name
denotes the corresponding discriminant (there must ba one) of the actual type assoclated with
the generic formal type.

12.3 Generic Instantiation 12-8

Generic Units

. N
RN _JOA

K (f) For a name that denotes a ganeric formal subprogram: The corresponding namae denotes the "
subprogram, enumaration literal, or entry named by the associated generic actual parameter
(the actual subprogram).

R RN

I (g) For a name that denotes a formal parameter of a generic formal subprogram: The cor- 12 -
rasponding name denotes the corresponding formal parameter of the actual subprogram 04

. associated with the formal subprogram. N
: {h) For a name that denotes a local entity declared within the generic unit: The corresponding 1 i \‘
. name denotes tha entity declared by the cnrresponding local declaration within the instance. B
Al Co
o

I () For a name that denotes a global entity declared outside of the generic unit: The cor- " @)
responding name denotes the same global entity. :

’.j Similar rules apply to operators and basic operations: in particular, formal operators follow a rule 1 ‘
g gimilar to rule (f), local operations follow a rule similar to rule (h}, and operations for global types o
. follow & rule similar to rule (I}, In addition, if within the generlc unit a predefined operator or basic el
l operation of a formal type Is used, then within the instance the corresponding occurrence refers to @
y the corresponding predefined operation of the sctual type associated with the formal type. !
The above rules apply aiso to any type mark or (default) expression given within the generic formal © 1;';-'_1-‘

part of the generic unit,]

I For the elaboration of a generic Instantiation, sach expression supplied as an explicit generic actual 1 ., : qu
B parameter is first evaluated, as well as each expression that appears as a constituent of a variable X
g name or entry name supplied as an explicit generic actual parameter; these evaluations proceed Iin i 1
N some order that is not detined by the language. Than, for each omitted genatic assoclation (if any), .]
g the corresponding default expression or default name Is evaluated; such evaluations are per- :i

is elaborated. The elaboration of a generic instantiation may also Involve certain constraint checks -

i formed in the order of the generic parameter declarations. Finally, the implicitly generated instance
as described In |ater subsections.

Recursive generic instantiation s not allowed In the following sense: If a given generic unit)

' includes an Instantlation of a second generic unit, then the Instance generated by this instantiation

must not include an Ingtance of the firat generic unit (whether this instance is generated directly, or Coen
I indiractly by intermadiate Instantiations). -
N Examplas of generic Instantiations (see 12.1): »

. procedure SWAP Is new EXCHANGE(ELEM => INTEGER);

; procedure SWAP is new EXCHANGE(CHARACTER); - SWAP is overloaded

' function SQUARE is new SQUARING (INTEGER); -- "+" of INTEGER used by defauit moeeah

function SQUARE is new SQUARING (ITEM => MATRIX, "+" => MATRIX_PRODUCT);
function SQUARE is new SQUARING (MATRIX, MATRIX_PRODUCT); -- sarma as previous

package INT_VECTORS Is new ON_VECTORS(INTEGER, TABLE, "+");

q Examples of uses of Instant/ated units: 20

SWAP(A, B).
A = SQUARE(A);

T : TABLE{1 . 6) := (10, 20, 30, 40, 50O\

N AT -
- A N
‘ . .) . - [O - -
ts 2 S PO P . P R
. ; . L S L ARt
e’z a & -iala mala £ aesRT ;c‘;__v__;.'_;_.!_- _*_.'4.-_‘_;‘.'_1, Cad o Z

-
-

N : INTEGER := INT_VECTORS.SIGMA(T): -- 150 (ree 12,2 for the body of SIGMA)
use INT_VECTORS;
. M : INTEGER = SIGMA(T); -- 1BO
o 12-9 Generic Instantiation 12.3)
| o

PRI OJET A SNV \UPTRINT TPy N P W W N e oy oy . . s . - 3 . . . ' .
- PP WA WP T AT TR VR W L TS WY W W S ‘i et malaio i a e a eat aa e A b hae et e e . e

22

23

ANSI/MIL-STD-1815A Ada Reference Manual

Notes:

Omission of a generic actual parameter Is only allowed if a corresponding default exists. |f default
expressions or default names (other than simple names) are used, they are evaluated In the order
in which the corresponding generic formal parameters are declared.

If two overloaded subprograms deciared in a generic package specification differ only by the (for-
mal) type of their parameters and results, then there exist legal instantiations for which all calls of
these subprograms from outside the instance are ambiguous. For example:

genaric
type A is (<>);
type B is private;
package G Is
function NEXT(X : A) return A;
function NEXT(X : B) return B;
end;

package P is new G(A => BOOLEAN, B ==> BOOLEAN);
-~ calls of P.NEXT are ambiguous

References: declaration 3.1, designator 8.1, discriminant 3.7.1, elaboration 3.1 3.9, entity 3.1, entry name 9.5,
evaluation 4.5, expression 4.4, generic formal object 12.1, generic formal parameter 12.1, generic formal subprogram
12,1, ge..eric formal type 12.1, generic parameter declaration 12.1, global declaration 8.1, identifler 2,3, Implicit
declaration 3.1, local declaration 8.1, mode In 12.1.1, mode in out 12,1.1, name 4.1, operation 3.3, operator symbol
6.1, overloading 6.8 8.7, package 7, simple name 4.1, subprogram 8, subprogram call 6.4, subprogram name 6.1,
subtype declaration 3.3.2, type mark 3.3.2, variable 3.2.1, visibility 8.3

12.3.1 Matching Rules for Formal Objects

A generic formal parameter of mcde in of a given type is matched by an expression of the same
type. If a generic unit has a generic formal object of mode in, a check Is made that the value of the
expression belongs to the subtype denoted by the type mark, as for an explicit constant declara-
tion (see 3.2.1). The exception CONSTRAINT_ERROR is raised If this check falls.

A generic formal parameter of mode in out of a given type is matched by the name of a varlable of
the same type. The varlable must not be a formal parameter of mode out or a subcomponent
thereof. The name must denote a variable for which renaming is allowed (see 8.5).

Notes:

The type of a generic actual parameter of mode in must not be a limited type. The constraints that
apply to a generic formal parameter of mode in out are those of the corresponding generic actual
parameter {see 12,1.1),

References: constraint 3.3, constraint_srror exception 11.1, expression 4.4, formal paramater 6,1, generic actual
parameter 12.3, generic formal object 12,1.1, generic formal parameter 12.1, generic Instantiation 12,3, generic unit
12.1, limited type 7.4.4, matching generlc actusl parameter 12.3, mode in 12.1.1, mode in out 12.1.1, mode out 6.2,
name 4.1, raising of exceptions 11, satisfy 3.3, subcomponent 3.3, type 3.3, type mark 3.3.2, varlable 3.2.1

12.3.1 Matching Rules for Formal Objects 12-10

- e
&

AL C P

QOeNernec Uinis

12.3.2 Matching Rules for Formal Private Types

A generic formal private type is matched by any type or subtype (the actual subtype) that satisfles
the following conditions:

® If the formal type is not limited, the actual type must not be a limited type. (lf, on the other
hand, the formal type is limited, no such condaition is imposed on the corresponding actual
type, which can be limited or not limited.)

e |If the formal typa has a discriminant part, the actual type must be a type with the same
number of discriminants; the type of a discriminant that appears at a given position In the dis-
criminant part ot the actual type must be the same as the type of the discriminant that
appears at the same position in the discriminant part of the formal type: and the actual sub-
type must be unconstrained. (If, on the other hand, the formal type has no discriminants, the
actual type is allowed to have discriminants.)

Furthermore, consider any occurrence of the name of the forma! type at a place where this name is
used as an unconstrained subtype indication. The actusl subtype must not be an unconstrained
array type or an unconstrained type with discriminants, if any of these occurrences is at a piace
where aither a constraint or default discriminants would be required for an array type or for a type
with discriminants (see 3.8.1 and 3.7.2). The samae restriction applies to occurrences of the name
of a subtype of the formal type, and to occurrences of the name of any type or subtype derived,
directly or indirectly, from the formal type.

If a generic unit has a formal private type with discriminants, the elaboration of a corresponding
generic instantiation checks that the subtype of each discriminant of the actual type is the same as
the subtype of the corresponding discriminant of the formal type. The exception
CONSTRAINT_ERROR Is raised If this check faila.

References: array type 3.8, constraint 3.3, constraint_arror exception 11.1, default expression for a discriminant
3.7.1, derlved type 3.4, discriminant 3.7.1, discriminant part 3.7.1, elaboration 3.9, generic actual typa 12.3, generic
body 12.2, generic formal type 12.1.2, generic Instantiation 12.3, generic specification 12.1, limited type 7.4.4.
matching generic actual paramster 12,3, name 4.1, private typs 7.4, raising of axceptions 11, subtype 3.3, subtype
indication 3.3.2, type 3.3, type wlith discriminants 3.3, unconstrained array type 3.8, unconstrained subtype 3.3

12.3.3 Matching Rules for Formal Scelar Types

A generic formal type defined by (<>) Is matched by any discrete subtype (that is, any enumera-
tion or integer subtype). A generic formal type defined by range <> is matched by any integer
subtype. A generic formal type defined by digits <> Is matched by any floating point subtype. A
generic formal type defined by delta <> is matched by any fixed point subtype. No other matches
are possible for these generlc formal types.

Referances: box delimiter 12.1.2, discrets typs 3.5, enumeration type 2.5.1, fixed point type 3.5.9, floating polint type
3.5.7, generic actual type 12.%, generlc forma! type 12.1.2, generlc type definition 12.1, integer type 3.6.4, matching
generic actual parametar 12,3, scalar typs 3.6

12-11 Matching Rules for Formal Scalar Types 12.3.3

- = e
T3

fe
-_';
NE
W
-
."I
CID
toa
L

Y
X
* .
.
.
*

2

ANSI/MIL-8STD-1815A Ada Reference Manual

12.3.4 Matching Rules for Formal Array Types

A formal array type is matched by an actual array subtype that satisfies the following conditions:

® The formal array type and the actual array type must have the sarme dimensionality; the for-
mal type and the actual subtype must be either both constrained or both unconstrained.

e For each index position, the index type must be the same for the actual array type as for the
formal array type,

e The companent type must be the same for the actual array type as for the formal array type. If
the component type Is other than a scalar type, then the component subtypes must be either
both constrained or both unconstrained.

If a generic unit has a formal array type, the elaboration of a corresponding instantiation checks
that the constraints (if any) on the component type are the same for the actual array type as for the
formal array type, and likewise that for any given index position the index subtypes or the discrete
ranges have the same bounds. The exception CONSTRAINT_ERROR Is raised if this check fails.

Example.

-- given the generic package

generic
type ITEM is private;
type INDEX i (<>); '
type VECTOR is array (INDEX range <>} of ITEM;
type TABLE Is array (INDEX) of ITEM;

package F is

ond:

-~ and the types

type MIX is array (COLOR rangs <>) of BOOLEAN;
type OPTION is array (COLOR) of BOOLEAN;

.- then MIX can match VECTOR and OPTION can match TABLE

package R is new P(ITEM => BOOLEAN, INDEX => COLOR,
VECTOR => MIX, TABLE => OPTION):

-- Note that MIX cannot match TABLE and OPTION cannot match VECTOR
Note:

For the above rules, if any of the Index or component types of the formal array type is itself a formal
type, then within the instance its name denotes the corresponding actual subtype (see 12.3(d)).

Refersnces: arrav type 3.8, array type definition 3.6, component of an array 3.6, constrained array type 3.8,
constraint 3.3, constraint_error exception 11.1, elaboration 3.9, formal type 12.1, generic formai type
12.1.2, generic instantlation 12.3, Index 3.8, index constraint 3.6.1, matching generic actual parameter
12.3, raise statement 11.3, subtype 3.3, unconstrained array type 3.6

12.3.4 Matching Rules for Formal Array Types 12-12

gt tia oy A/t tindn LaXatmtiadstadatin adatmlafebata e iedtn wn ol alaa e e sl Tl e

[N N - .o . .
. L R , . .
E PR
. . y i o4 s
(R IR PR Al T S I D L o a'a o’'s s’2 po_J

-

', .-.‘-.,'.K" -t t‘v‘ -":" .
l:';:i."‘ :;".2:.1.' .}! L'J;..:: ‘

Lt _.i

3 LI
= 'fii’ T .—._'.' - - °
»- 22" a 2" -

Saaaes

DQ.&.:I

.

o

Generic Units

R 12.3.6 Matching Rules for Formal Access Types

. “‘.. ,<'~, ..'-—-'-
P

‘f-f : A formal access type is matched by an actual access subtype If the type of the designated objects !
Ta is the same for the actual type as for the formal type. If the designated type is other than a scalar -

type, then the designated subtypes must be either both constrained or both unconstrained.

-j'-.‘. b L.

o awana

If a generic unit has a formal access typse, the elaboration of a corresponding instantiation checks 2
that any constraints on the designated objects are the same for the actual access subtype as for
the formal access type. The exception CONSTRAINT_ERROR Is raised if this check falls.

x e v o m -
L DS A TN
s - i e
s
u..L- -

Example:

-- the formal types of the generic package 1
v, generic DR
e type NODE is private: Cd
i type LINK is access NODE;)
;.j:;. package P Is " L
PSS T
e end; e
t‘. -~ can be matched by the actual types R
Ny PR
m type CAR; .aq
e type CAR_NAME is access CAR; Ll
1\‘“'\ _ . :i
;:‘;;: type CAR I SR
P record L
PRED, SUCC : CAR_NAME; e
' NUMBER : LICENSE_NUMBER; A
OWNER : PERSON; i
Ry end record; RO
h L
:f';[‘: — In the following generic instantiation e
- package R Is new P(NODE => CAR, LINK => CAR_NAME); Ll
L Note: S
: For the above rules, if the designated type is itself a formal type, then within the instance lts name . -
denotes the corresponding actual subtype (see 12.3(d)).

References: acces. ‘ype 3.8, access type definition 3.8, constraint 3.3, constraint_srror exception 11.1, designate s s :'N

3.8, elaboration 3.9, generic formal type 12.1.2, generic instantiation 12.3, matching generic actual parameter 12.3, '.‘4

object 3.2, raise statement 11,3, value of access type 3.8 :"."‘

C

12-13 Matching Rules for Formal Access Types 12.3.56 C

ITeTE FeTa T
Sh e _Tse

RSN~ § A

el

LR X
)

AT)

“. ...v
TeYE iR 5T

ANSI/MIL-STD-1815A Ada Referance Manual

12.3.6 Matching Rules for Formal Subprograms

A formal subprogram Is matched by an actual subprogram, enumeration literal, or entry if both
have the same parameter and result type profile (see 6.8); in addition, parameter modes must be
identical for formal parameters that are at the same parameter position.

If a generic unit has a default subprogram specified by a name, this name must denote a sub-
program, an enumeration literal, or an entry, that matches the formal subprogram (in the above
sense). The evaluation of the default name takes place during the elaboration of each instantiation
that uses the default, as defined In section 12.3.

If a generic unit has a default subprogram specified by a box, the corresponding actual parameter
can be omitted if a subprogram, enumeration literal, or entry matching the formal subprogram, and
with the same designator as the formal subprogram, is directly visible at the place of the generic
instantiation; this subprogram, enumeration literal, or entry is then used by default (there must be
exactly one subprogram, enumeration literal, or entry satisfying the previous conditions).

Example:

-- given the generic function specification

generic

type ITEM la private;

with function "« (U, V ! ITEM) retum ITEM s <>:
function SOUARING(X : ITEM) retum ITEM;

-- and the function

function MATRIX_PRODUCT(A, B : MATRIX) retum MATRIX;

-~ the following Instantiation Is possible

function SQUARE Is new SQUARING(MATRIX, MATRIX_PRODUCT);

-~ the following instantlations &re equivalent

function SQUARE Is new SQUARING(ITEM => iNTEGER, "»" => "w");

function SQUARE Is new SQUARING(INTEGER, "x");
function SQUARE ls new SQUARING(INTEGER);

Notes:

The matching rules for formal subprograms state requirements that are similar to those applying to
subprogram renaming declarations (see 8.5). In particular, the name of a parameter of the formal
subprogram need not be the same as that of the corresponding parameter of the actual subpro-
gram. similarly, for these parameters, default expressions need not correspond.

A formal subprogram Is matched by an attribute of a type if the attribute is a function with a
matching specification. An enumeration literal of a given type matches a parameterless formal
function whose result type Is the given type.

References: attribute 4,1.4, box delimiter 12.1.2, designator 6.1, entry 9.5, function 6.5, generic actual type 12.3,
generic formal subprogram 12.1,3, generic formal type 12.1.2, generic instantiation 12.3, matching generic actual
parameter 12,3, name 4.1, parameter and result type profile 8.3, subprogram 8, subprogram specification 6.1, sub-
type 3.3, visibility 8.3

12.3.6 Matching Rules for Formal Subprograms 12-14

N

e At

-

s
-
¥
E
3

- . Lt mtitLimmoe e ovos
. s =L T . .
["",'< .. AR
S - - i e Iy RPN =
s «-_:", . s -

L < .. .

AR, PR ..‘.' S

i Lo e ! St
PR B e ;4.4_‘_“;‘4_'..

S I
A‘i_tL_“_JA.A

l-'m.

i

r

U

. [
® e
1Y frn o 4 o &8 a2

Generic Units

12.4 Example of & Generic Package

. The following example provides a possible formulation of stacks by means of a generic package. 1

' { The size of each stack and the type of the stack elements are provided as generic parameters. - ~'
,:f generic 2 - ',";'-'ﬁ :j -
2 SIZE : POSITIVE; AT
i type ITEM (s private;

packagoe STACK is
procedure PUSH(E : In ITEM); DO
- procedure POP (E : out ITEM); “@
> OVERFLOW, UNDERFLOW : exoeption; -
. end STACK;
X packege body STACK is 3
type TABLE Is wray (POSITIVE range <>) of ITEM: el inl
SPACE : TABLE(1 .. SIZE); "

‘] INDEX : NATURAL := O;
procedure PUSHIE : in ITEM) is
“ begin _
. if INDEX >= SIZE then
" ralse OVERFLOW; v e
o end if; i
" INDEX := INDEX + 1; e
& SPACE(INDEX) = E; R
3 end PUSH; -
Y _’l

- K proocedure POP(E : out ITEM) is A
! begin mo
i it INDEX = O then o
o raise UNDERFLOW;
. ond if; :
N E = SPACE(INDEX); e
N INDEX := INDEX - 1; BTN
. end POP; Tt
B end STACK; |
» Iinstances of this generic package can be obtained as follows: 3
R package STACK_INT Is new STACK(SIZE => 200, ITEM => INTEGER)
package STACK_BOOL Is new STACK(100, BOOLEAN); o
N Thereafter, the procedures of the instantiated packages can be called as follows: ‘ B
L S ‘
- STACK_INT.PUSH(N): R
o STACK_BOOL.PUSH(TRUE); :
¢ . of
L S

12-16 Example of a Generic Package 12.4

Y. e A e Tt gt et et e A E o e e e T e o e w w ke e i vahta

ANSI/MIL-STD-1815A Ada Reference Manual

5 Alternatively, a genaric formulation of the type STACK can be given as follows (package body . Y,
: omitted): SURREND
. generic R
' typs ITEM is private; b
' package ON_STACKS s .

type STACK(SIZE : POSITIVE) is limited private;
procedure PUSH (S : In out STACK: E : In ITEM);
procedure POP (S : in out STACK; E : out [TEM);
OVERFLOW, UNDERFLOW : exception;

. . -4 & .a &7 8

private)
type TABLE is array (POSITIVE range <>) of ITEM; ' - of
type STACK(SIZE : POSITIVE) le ‘.

record)

SPACE : TABLE(1 .. SIZE);
INDEX : NATURAL := O;
| end record;
i ond;
s In order to use such a package, an Instantiation must be created and thereafter stacks of the cor-
responding type can be declared:

declare
package STACK_REAL is new ON._STACKS(REAL): use STACK_REAL; R
S : STACK(100); e Tk
begin L

PUSHIS, 2.54);

- A s s . R

end;

- & I =
rs
M

> - B 4+« & T & ¢
¥
[

l .)
'l O“ ']
12.4 Example of a Generic Package 12-18

l PR

[
P T T TR T A TR TR ET A Y,

¥ il it olnd Wttt vl i i st otk ot vk ok o B1m kA5 0M2 ¢

LD = 2

[& i #
- -»'z.-’llal ..'.J‘.J.'i'_ﬂ

13. Representation Clauses and Implsmentation-Depandent Featurns

This chapter describes reprasentation clauses, cartain implementation-dependent fsatures, and
other features that are used in system programming.

13.1 Representation Clauses

Representation clauses specify how the types of the language are to be mappecd onto the undarly-
ing machine. They can be provided to give more efficient representation or to interface with
features that are outside the domain of the language (for example, pariphaeral hardwara).

representation_clause =
type._reprasentation_clause | address_clause

type_representation_clause := |ength_clause
enumeration_representation_clause | record.representation..clause

A type reprasentation clause applies slther to a type or to a first named sudtypo (that is, t0 a sub-
type declared by a type declaration, the base type being therefore anonymous). Such & representa-
tion clause applies to all objects that have this type ot this first named subtypus. At most one
enumeration or racord represantation clause is allowed for a given type: an enumaeration represen-
tation clause Is only allowed for an snumeration type; a record representation clause, only for a
record type. (On the other hand, more than one length clause can be provided for a glven type;
moreover, both a length clause and an enumesration or record rspresentation clause can be
provided.) A length clause Is the only form of representation clause allowed for a type Jorived from
a parent type that has (user-defined) derivable subprograms.

An address clause applies either to an object; 1o a subprogram, package, or task unit; or to an
entry., At most ons address clause is allowed for any of thess entities.

A represantation clause and the declaration of the entity to which the clause applies must both
occur Immediately within the same declarative part, package specification, or task spacification:

the declaration must occur befure the clause. in the absence of a representation clauss for & given
declaration, a default representation of this declaration is determined by the implementation.

Such a default determination occurs no later than the end of the immediately enclosing declarative
part, package spacification, or task specification, For a declaration given in a declarative part, this
default detarmination occurs before any enclosed body.

In the case of a type, certain occurrences of its name imply that the representation of the type
must already have bsen determined, Consequently these cccurrences force the default determina-
tion of any aspect of the reprzasntation not aiready determined by a prior type representation
clause. Thig default determination is also forced by simllar occurrences of the name of a subtypae of
the type, or of the name of any type or subtype that has subcomponents of the type. A forcing
occurrence is any occurrence other than in a type or subtype declaration, a subprogram specifica-
tion, an entry declaration, a deferred constant declaration, a pragma, or a representation clause for
the type itself. In any case, an occurrence within an expression ls always forcing.

13-1 Representation Clauses 13.1

e ad

ANSI/MIL-STD-1816A Ada Referance Manual

A representation ciause for a given antity must not appear after an occurrence of the name of the
entity if this ocourrence forces o default determination of representation for the entity.

Simila: restrictions exist for addrass clauses. For an object, any occurrance of its name (after the
objoct declaration) Is a forcing occurrence. For a subprogram, package, task unit, or entry, any
occurrence of a representation ettribute of such an entity Is a forcing occurrence.

The effect of the alaboration of a reprosentation clause is to define the corresponding aspects of
the representztion.

The Irterpretation of somae of the expressions that appear in representation clauses is
implernentation-dependent, for axampis, axpressions speclfying addresses. An implementation
may lirit its acceptance of reprasentation clauses to thoge that can be handled simply by the
undetlying hardw~are, If a representation clause is accepted by an implementation, the compiler
must guaranve ti-at the net effact of the program is not changed by the presence of the clause,
except for ada:a:s clauses and for parts of the program that interrogate reprasentation attributes,
It a program contains a representation clause that Is not accepted, the program is lllegal. For each
implementation, the aliowed representation clauses, and the conventiciis used for
implementation-depondent exprassions, must be documented in Appendix F of the roference
manual,

Whereas a representation clause is used to impose certain characteristics of the mapping of an
entity onto the underlying machine, pragmas can be used to provide an implen.antation with
criteria for its selection of such a mapping. The pragma PACK specifies that storage minimization
should be the main critarion when selacting the reprassntation of a record or array type. its formis
as follows:

pragma PACK (type_simple_name);

Packing meang that gaps between the storage areas allocated to consecutive components should
be minimized. it nead not howaevaer, affect the mapping of each component onto storage. This
mapping can itself be influenced by a pragma (or controlled by a representation clause) for the
component or component type. The position of a PACK pragma. and the rastrictions on the named
type, are governad by the same rulus as for a representation clause; In particular, the pragma must
appear before any use of a reprasaentation attribute of the packed entity.

The pragma PACK ls the only language-defined representation pragma. Additional representation
pragmas may be provided by an implementation; these must be documented in Appendix F. (In
contrast to representation clauses, a pragma that is not accopted by the implermentation is
ignored.!

Note:
No representation clause Is aliowed for a generic formal type.

References: addresa clause 13.5, allow 1.8, body 3.9, component 3.3, declaration 3.1, declarative part 3.8, default
expression 3.2.1, deforrerl constant declaration 7.4, derivable subprogram 3.4, derived type 3.4, entity 3.1, entry 9.5,
enumeration rapresontation clause 13.3, expression 4.4, generic formal type 12.1.2, illegal 1.8, length clause 13.2,
must 1 6, narne 4.1, object 3.2, occur immediately within 8.1, package 7, package spacification 7.1, parent type 3.4,
pragma 2.8, record represantation clsuse 13.4, representation attribute 13.7.2 13.7.3, subcomponent 3.3, sub-
program 6, subtype 3.3, subtype declaration 3.3.2, task specification 9.1, task unit 9, type 3.3, type declaration 3,3.1

13.1 Reprasentation Clauses 13-2

e TS
I S,

Representation Clauses and Implementation-Dependent Features

13.2 Leangth Clauses

A length clause specifies an amount of storage associated with a typs.

length_clause := for attribute use simple_expression;

The expression must be of some numeric type and is evaluated during the elaboration of the length
clause {unless It Is a static expression). The prefix of the attribute must denote either a type or a
first named subtype. The prefix is called T In what follows. The only allowed attribute designators
in a length clause are SIZE, STORAGE_SIZE, and SMALL. The effact of the length clause depends
on the attribute designator:

()

(b)

(c)

(d)

Size spacification: T'SIZE

The expression must be a static expression of sume integer type. The value of the expression
specifies an upper bound for the number of bits to be allocated to objects of the type or firat
named subtypa T. The size specification must allow for enough storage space to accom-
modate evary allowable value of these objects. A size specification for a composite type may
affact the size of the gaps betwean the storage areas allocated to consecutive components,
On the otier hand, it nead not affaect the size of the storage area allocated to each componant,

The size specification Is only allowed if the constraints on T and on its subcomponents (if any)
are static. in the case of an unconstrained array type, the index subtypes must also be static.

Spacification of collection size: T'STORAGE._SIZE

The prefix T must denote an access type. The expression must be of some intager type (but
need not be static); its value specifies the number of storage units to boe reserved for the col-
lection, that is, the storage space needed to ccntain all objects designated by values of the
access type and by values of other types derived from the access type, diractly or indirectly.
This form of langth clause is not allowed for a type derived from an access type.

Specification of storage for a task activation: T'STORAGE._SIZE

The prefix T must denote a task type. The expression must be of some integer type (but need
not be static); its value specifies the number of storage units to be reserved for an activation
{not the code) of a task of the type.

Spacification of smal/ for a fixed point type: T'SMALL

The prefix T must denote the first named subtype of a fixed point type. The expression must
be a static expression of some real type; its value must not be greater than the delta of the
first named subtype. The effect of the length clause Is to use this value of smal/ for the
representation of values of the fixed point base type. (The length clause thereby also affects
the amount of storage for objects that have this type.)

Notes:

A size specification is allowed for an access, task, or fixed point type, whether or not another form
of length clause Is also given for the type.

13-3 Length Clauses 13.2

-4

v

ANSI/MIL-STD-18156A Ada Referenca Manual

What is considered to be part of the storage reserved for a collection or for an activation of a task
is implementation-dependent. The control afforded by length clauses is therefore relative to the
implementation conventions. For example, the language does not define whether the storage
reserved for an activation of a task includes any storage needed for the collection associated with
an access type daclared within the task body. Neither does it define the method of allocation for
objects denoted by values of an access type. For example, the space allocated could be on a stack;
alternatively, a general dynamic aliocation scheme or fixed storage could be used.

The objects allocated in a coliection need not have the same size if the designated type Is an
unconstrained array type or an unconstrained type with discriminants. Nate also that the allocator
itself may require some space for internal tables and links. Hence a length clause for the collection
of an access type Joes not always give precise control over the maximum number of allocated
objects.

Examples:
-- assumad declarations:

type MEDIUM Is range O .. 65000;
type SHORT Is delta 0.01 range -1000 .. 100.0;
type DEGREE Is deita 0.1 range -380.0 . 3860.0;

BYTE : constant := B;
PAGE : constant := 2000;

-- length clauses:

for COLOR'SIZE use 1«BYTE; -- see 3.5.1
for MEDIUM'SIZE use 2«BYTE;
for SHORT'SIZE use 15;

for CAR_NAME'STORAGE_SIZE use -- approximately 2000 oars
20004((CAR'SIZE/SYSTEM.STORAGE_UNIT) + 1);

for KEYBOARD_DRIVER'STORAGE_SIZE use 1«PAGE;
for DEGREE'SMALL use 380.0/2x«(SYSTEM.STORAGE_UNIT - 1):
Notes on the examples:

In th) length clause for SHORT, fiftaen bits is the minimum necessary, since the type definition
requires SHORT'SMALL = 2.0xx(-7) and SHORT'MANTISSA = 14. The length clause for DEGREE
forces the model numbers to exactly span the range of the type.

References’ access type 3.8, allocator 4.8, allow 1.6, array type 3.8, attribute 4.1.4, collection 3.8, composits type
3.3, constraint 3.3, delta of a fixed point type 3.8.9, derivad type 3.4, designate 3.8, elaboration 3.9, entity 3.1,
evaluation 4.5, expression 4.4, first named subtyps 13.1, fixed point type 3.5.9, index subtype 3.8, integer type 3.6.4,
must 1.8, numeric type 3.8, object 3.2, reul type 3.5.8, record type 3.7, small of a fixed point type 3.6.10, static con-
straint 4.9, static expression 4.9, static subtype 4.9, storage unit 13,7, subcomponent 3.3, system package 13.7, task
9, task activation 9.3, task specification 9.1, task type 8.2, type 3.3, unconstrained array type 3.6

13.2 Length Clauses 13.4

C

- mia ama -

Sl

.}J;J " -« -
L DUV

P ol 2

IR At RSO

Representation Clauses and Implementation-Dependent Features
13.3 Enumeration Representation Clausus

An enumeration representation clause spacifies the internal codes for the literals of the enumera-
tion type that is named in the clause.

enumeration_rgpresentation_clause = for type.simplo_name use aggregate;

The aggregate used to specify this mapping is written as a one-dimensional aggregate, for which
the index subtype Is the enumeration type and the component type Is universal_integer.

All literals of the enumeration type must be provided with distinct integer codes, and all cholces
and component values given in the aggregate must be static. The integer codes specified for the
enumeration type must satisfy the predefined ordering relation of the type.

Example;

type MIX_CODE is (ADD, SUB, MUL, LDA, STA, STZ);

for MIX_CODE use
(ADD => 1, SUB => 2, MUL => 3, LDA => 8, STA => 24, 8TZ => 33)

Notes:

The attributes SUCC, PRED, and POS eare defined even for snumeration types with a
noncontiguous repregentation; thelr definition corresponds to the (logical) type declaration and Is
not affected by the enumeration representation clause. In the example, because of the need to
avoid the omitted values, these functions are likely to be less efficiently Implemented than they
could be In the absance of a representation clause. Similar considerations apply when such types
are usad for indexing.

Referances: aggragate 4.3, array aggregate 4.3.2, array type 3.8, attribute of an snumeration type 3.6.B, cholce
3.7.3, componant 3.3, enumeration literal 3.5.1, enumaration type 3.5.1, function 6.8, Index 3.8, index subtype 3.8,
literal 4.2, ordering relation of an enumeration typs 3.5.1, representation clause 13.1, simply nama 4.1, static exprea-
sion 4.9, type 3.3, type declaration 3.3.1, universal_integer type 3.5.4

13.4 Record Representation Clauses

A record rapresentation clause specifies the storage representation of records, that is, the order,
position, and size of record components (including discriminants, If any).

record..representation_clause =
for type_simple_name use
record [alignment_clause]
{component_clause|
end record;

alignment.clause := at mod stat/c_simple_expression;

componant_clause ;=
component_name at stat/c_simple_expression range stat/c_rango:

13-6 Record Representation Clauses 13.4

.....

ol -‘-.A"—."._" e

«

& .

§
.

] - s
st e

sz et .
e T T T TS
B e g

‘x

]

o et Wt e Mt IV PN <
VR W N I P A I LT I TV S S S PR V) T Y W Vo ST A T G S P T T

ANSI/MIL-STD-1815A Ada Reference Manual

The simple expression given after the reserved words at mod in an alignment clause, or after the
resarved word at in a component clause, must be a static expression of some integer type. If the
bounds of the range of a component clause are defined by simple expressions, then each bound of
the range must be defined by a static expression of some integer type, but the two bounds need
not have the same integer type,

An alilgnment clause forces each record of the given type to be allocated at a starting address that
is a multiple of the value of the given expression (that s, the address modulo the expression must
be zero). An implementation may place restrictions on the allowable alignments.

A component clause specifies the storage place of 8 component, relative to the start of the record.
The integer defined by the static expression of a component clause Is a relative address expressed
in storage units. The range defines the bit positions of the storage place, relative to the storage
unit. The first storage unit of a record is numbered zero. The first bit of a storage unlt is numbered
zero, The ordering of bits in a storage unit is machine-depsndent and may extend to adjacent
storage units. (For a specific machine, the size in bits of a atorage unit is given by the
configuration-depondent named number SYSTEM .STORAGE_UNIT.) Whether a component Is
allowed to overlap a storage boundary, and If so, how, I8 implemeantation-defined.

At most ons component clause Is allowed for each componant of the record type, including for
each disariminant (component clauses may be given for some, all, or none of the components). |f
no component clause Is given for a component, then the choice of the storage place for the com-
ponent (s laft to the compiler. |f component clauses are given for all components, the record
representation clause completely specifios the repressntation of the record type and must be
obayad exactly by the complier,

Storage places within a record variant must not overlap, but overlap of the storage for diatinct
variants |s allowed. Each component clause must allow for enough storage space to accom-
modate every allowable value of the component, A component clause is only allowed for a compo-
nent if any constraint on this component or on any of its aubcomponants is static.

An Implomentation may generate names that denote implementation-dependent componenta (for
example, one contalning the offset of another component), Such Implementation-dependsnt
names can be used In record representation clauses (these names need not be simple names; for
example, thay could be implementation-dependant attributes).

Example:
WORD : constant := 4; -- storage unit is byte, 4 bytes per word

type STATE is (A, M, W, P);
type MODE is (FIX, DEC, EXP, SIGNIF);

type BYTE_MASK s arvay (O .. 7) of BOOLEAN:
type STATE_MASK |s array (STATE) of BOOLEAN;
type MODE_MASK s array (MODE) of BOOLEAN:

type PROGRAM_STATUS_WORD s

record

SYSTEM_MASK : BYTE_MASK;
PROTECTION_KEY : INTEGER range O . 3;
MACHINE_STATE : STATE_.MASK;
INTERRUPT_CAUSE : INTERRUPTION_CODE;
ILC ! INTEGER range O .. 3;
cC : INTEGER range O .. 3;
PROGRAM_MASK : MODE_MASK;
INST_ADDRESS : ADDRESS;

oend record;

13.4 Record Repressntation Clauses 13-6

M3

T

L O O Y

. TR

Lo UL,

SO, JN

1
{
|

e
“
e
LT
Ve
\‘-.1
s
S,

- ed 2T - -,

RUNICIS .U e e PO

o ..")"_v.'_‘- p

+

!..‘_4'_ o dod "l! P

Representation Clauses and Implementation-Dependent Features

for FROGRAM_STATUS_WORD use
record at mod 8;
SYSTEM_MASK at OWWORD range 0 .. 7;
PROTECTION_KEY at O«xWORD range 10 .. 11; -- bits 8, 9 unused
MACHINE_STATE at O«WORD range 12 . 15;
INTERRUPT_CAUSE at OxWORD range 16 .. 31;

ILC st 1«WORD range 0 .. 1; -- gecond word
cC at 1+WORD range 2 S H
PROGRAM_MASK at 1xWORD range 4 . 7;
INST_ADDRESS at 1*WORD ranpe 8 . 31

end record;
for PROGRAM_STATUS.WORD'SIZE use B+«SYSTEM.STORAGE_UNIT;

Note on the example:

The record representation clause defines the record layout. The length clause guarantees that
exactly eight storage units are used.

References. sliow 1.6, attrlbute 4,1.4, constant 3.2.1, constraint 3.3, discriminant 3.7.1, integer type 3.5.4, must
1.8, named number 3.2, range 3.5, record component 3.7, record type 3.7, simple exprassion 4.4, simple name 4.1,
static constraint 4.9, static expression 4.9, storage unit 13.7, subcomponent 3.3, system package 13.7, variant 3,.7.3

13.6 Address Clauses

An address clause specifies a required address in storage for un entity,
address_clauss = for simple._.name use at simple_expression;

The expression given after the reserved word at must be of the type ADDRESS defined In the
package SYSTEM (see 13.7); this package must be named by a with clause that applies to the
compilation unit in which the address clause occurs. The conventions that define the interpretation
of a value of the type ADDRESS &s an address, as an interrupt level, or whatever it may be, are
implementation-dependent. The allowed nature of the simple name and the meaning of the cor-
rasponding address are as follows:!

(a) Namae of an object: the addreas is that required for the object (variable or constant),

(b) Name of a subprogram, package, or task unit: the address is that required for the machine
code associated with the body of the program unit.

(c) Name of a single entry: tho address specitias a hardware interrupt to which the single entry is
to be linked.

If the simple name is that of a single task, the address clause is understood to refer to the task unit
and not to the task object. In all cases, the address clause is only legal if exactly one declaration
with this identitier occurs earlier, immadiately within the same declarative part, package specifica-
tion, or task specification. A name declared by a ranaming declaration is not allowed as the simple
name.

Address clauses should not be used to achleve overlays of objects or overlays of program units.
Nor should a glven interrupt be linked to more than one entry. Any program using address clauses
to achieve such effects Is erroneous,

13.7 Address Clauses 13.5

0

i

PR " e - *
T.oe .
I ‘.~ P . -
Ve hAosaaza-s i Soi P

~ ANSI/MIL-STD-1815A Ada Reference Manual

9 Example:

for CONTROL use at 16#0020#; -- assuming that SYSTEM.ADDRESS is an Integer type
- Notes:

10 The above rules imply that if two subprograms overload each other and are visible at a given point,

= an address clause for any of them Is not iegal at this point. Similarly if a task specification declares
entries that overload each other, they cannot be interrupt entries. The syntax does not allow an
' address clause for a library unit. An implementation niay provide pragmas for the specification of
program overlays.

X " References. addrass predefined type 13.7, apply 10.1,1, complilation unit 10.1, conatant 3.2.1, entity 3.1, entry 9.5,
o erroneous 1.8, expression 4.4, library unlt 10.1, name 4.1, object 3.2, packege 7, pragma 2.8, program unit 8, .
X resarved word 2.9, simple expreasion 4.4, simple nams 4.1, subprogram 6, subprogram body 8.3, system package e

13.7, task body 9.1, task object 9.2, task unit 9, type 3.3, variable 3.2.1, with clause 10.1.1 :

- 13.5.1 Interrupts
1

1 An address clause given for an entry associates the entry with some device that m 1y cause an
interrupt; such an antry is referrad to in this section as an /interrupt entry. If control information is
supplied upon an interrupt, it is passed to an associated Interrupt entry as vne or more parameters
of mode in; oniy parameters of this mode are allowed.

4 2 An interrupt acts as an entry call issued by a hardware task whose priority is higher than the
- priority of the main program, and also higher than the priority of any user-defined task (that is, any
task whose typa is declared by a task unit in the program). The entry call may be an ordinary entry
call, a timed entry call, or a conditional entry call, depending un the kind of interrupt and on the
implementation.

3 If a select statement contains both a terminate alternative and an accept alternative for an inter- b
rupt entry, then an implementation may impcsa further requirements for the selection of the ter- e
minate alternative In addition to those given in section 9.4,

4 Example:

hy task INTERRUPT_HANDLER is _

. entry DONE; -
for DONE use at 16#40#%; -- assuming that SYSTEM.ADDRESS is an integer type
end INTERRUPT_HANDLER;

Notes:

5 Interrupt entry calls need only have the sermantics described above; thay may be implemented by - ".':...
i having the hardware directly execute the appropriate accept statements. L

8 Queued intarrupts correspond to ordinary entry calls. Interrupts that are lost If not immediately
processed correspond to conditional entry calls. It is a consequence of the priority rules that an .
accept statement executed in response to an interrupt takes precedence over ordinary, user- S
defined tasks, and can be executed without first invoking a scheduling action. CR S

‘ 13.5.1 Interrupts 13-8 .
2 [

Representation Clauses and Implementation-Dependent Features

One of the possible effects of an address clause for an interrupt sntry is to specify the priority of
the interrupt {diractly or Indirectly). Direct calls to an interrupt entry are allowed.

References: accept alternatly . 9.7.1, accepi statement 9.5, address predefined type 13.7, allow 1.6, conditional
entry call 9,7.2, antry 9.5, entry call 9.5. mode 6.1, parameter of a subprogram 6.2, priority of a task 9.8, select alter-
native ©.7.1, selact statement 9.7, systemn package 13.7, task 9, terminate alternative 9.7.1, timed entry call 9.7.3

13.6 Change of Representation

At most one rapresentation clause Is allowed for a givan type and a given aspect of its representa-
tion. Hence, If an alternative representation Is needed, it is necessary to declare a second type,
derived from the first, and to specify a different representatior for the second typa.

Example:

-~ PACKED_DESCRIPTOR and DESCRIPTOR are two different typas
-« with Identical characteristics, apart from their representation

type DESCRIPTOR s
record
-- components of a descriptor
end record;

type PACKED_DESCRIPTOR is new DESCRIPTOR;
for PACKED_DESCRIPTOR use

record

-- component clauses for some or for all components
end record;

Change of representation can now be accomplished by assignment with explicit type conversions:

D : DESCRIPTOR;

P PACKED _DESCRIPTOR;
P = PACKED_DESCRIPTOR(D); - pack D
D = DESCRIPTOR{P); - unpeck P

References: assignment 6.2, derived type 3.4, typa 3.3, type conversion 4.8, type declaration 3.1, represantation
clause 13.1

13.7 The Package System

For each implementation there is a predefined (ibrary package called SYSTEM which inclutles the
definitions of certain configuration-dapendent characteristics. The specification ot the package
SYSTEM Is implementation-dapendent and must be given in Appendix F. The visible part of this
package must contain at least the following declarations.

13-9 The Pavkage System 13.7

3

T ey ey T Y

¢ . .m 3=s s

e B —— .

ANSI/NiIL-STD-1815A Ada Reference Manual

package SYSTEM is
type ADDRESS Is /mplementation_defined,
type NAME is /mplementation_defined_enumeration_type;
SYSTEM_NAME : constant NAME = /mplementation_defined,

STORAGE_UNIT : constant .= /mplementation_defined,
MEMORY_SIZE : constant = /mplementation.defined,

-- S8y am-Dependent Named Numbers:

MIN_INT : constant = /mplementation._defined.;
MAX_INT . constant = /mplementation_dsfined,;
MAX_DIGITS ! constant = /mplementation_defined,
MAX_MANTISSA : constant = /mplementation._defined,
FINE_DELTA . constant = /mplementation_defined,
TICK : constant = /mplementation_defined;

-- Other System-Dependent Declarations

subtype PRIORITY Is INTEGER range /mplementation_defined,

emy ' SYSTEM,

The type ADDRESS Is the type of the addresses provided in address clauses; it Is also the type of
the result delivered by the attrloute ADDRESS. Values of the enumeration type NAME are the
namus of alternative machine configurations handled by the implementation; one of these is the
constant SYSTEM_NAME. The named number STORAGE_UNIT is the number of bits per storage
unit; the named number MEMORY.SIZE is the number of avallable storage units in the
configuration; these named numbers are of the type universal_integer.

An alternative form of the package SYSTEM, with given values for any of SYSTEM_NAME,
STORAGE_UNIT, and MEMORY_SIZE, can be abtained by means of the corresponding pragimas.
These pragmas ars only allowed at the start of 8 compilation, before the first compilation unit (if

any) of the compilation.
pragma SYSTEM_NAME (anumeration_literal);

The effect of the above pragma Is to use the enumeration literal with the specified identifier for the
definition of the constant SYSTEM_NAME. This pragma is only allowed if the specified identifier
corresponds to one of the literals of the type NAME.

pragma STORAGE_UNIT (numeric_literal);

The effect of the above pragma is to use the value of the specified numeric literal for the definition
of the named numbser STORAGE_UNIT.

pragma MEMORY_SIZE (numeric_literal);

The effect of the above pragma is to use the value of the specified numaric literal for the definition
of the named number MEMORY_SIZE.

13.7 The Package System 13-10

‘..‘.‘-'1"w‘.l.~' M - -
L N R N T T TS T T o v AV R I T R T YA UL o S

Represantation Clauses and Implementation-Depsndent Features

The compllation of any of these pragmas causes an implicit recompilation of the package SYSTEM.
Consequently any compilation unit that names SYSTEM In its context clause becomes obsolete
after this implicit recompilation. An implementation may impose further limitations on the use of
these pragmas. For exampie, an implementation may allow them only at the start of the first comn-
pilation, when creating a new program llbrary.

Note:

It is a consequence of the visibllity rules that a declaration given in the package SYSTEM is not

visible in a compilation unit unless this package is mentioned by a with clause that apglies (directly
or indirectly) to the compilation unit.

References. address clause 13.5, apply 10.1.1, attribute 4.1.4, compilation unit 10.1, daclaration 3.1, enumeration
literal 3,5.1, enumeration type 3.5.1, identifler 2.3, library unit 10,1, must 1.6, named number 3.2, number declaration

3.2.2, numeric literal 2.4, package 7, package specification 7.1, pragma 2,8, program library 10,1, type 3.3, visibllity
8.3, visible part 7.2, with clause 10.1.1

13.7.1 System-Dependent Named Numbers

Within the package SYSTEM, the following named numbers are declared. The numbaers
FINE_DELTA and TICK are of the type un/versal_real; the others are of the type universal_intager.
MINLINT The smallest (most negative) value of all predefined integer types.
MAXCINT The largest (most positive) value of all predefined integer types.

MAX_DIGITS The largest value allowed for the number of significant decimal digits in a
floating point constraint.

MAX_MANTISSA The largest possible number of binary digits in the mantissa of model numbers
of a fixed point subtype.

FINE_DELTA The smallest deita allowed In a fixed point constraint that has the range con-
Stfalnt '1-0 " 1»0.

TICK The basic clock period, In seconds.

Referencas: allow 1.8, daita of a fixed point constraint 3.5.9, fixed point constraint 3.5.9, floating polnt constraint
3.6.7, integer type 3.8.4, model number 3.8.6, namad number 3.2, package 7, range constraint 3.5, system package
13.7, type 3.3, universal_integer type 3.5.4, universal_real type 3.6.6

13-11 System-Dependent Na...ad Numbers 13.7.1

LIRS T

- Sa e

-
.

P DRI SO, SO

ANSI/MIL-STD-1815A Ada Refersnce Manual

TR

4
:‘_.-‘ 13.7.2 Representation Attributes)
a2
3
% 1 The values of certain implementation-dependent characteristics can be obtained by Interrogating
;‘l appropriate representation attributes. These attributes are described below.

2 For any object, program unit, label, or entry X:

3 X'ADDRESS Yields the address of the first of the storage units allocated to X, For a sub-
program, package, task unit or label, this value refers to the machine code
assoclated with the corresponding body or statement, For an entry for which e
an address clause has been given, the value refers to the corresponding e
hardware interrupt. The value of this attribute is of the type ADDRESS defined C
in the package SYSTEM.

P %

Mgy O 2 N

PR AR
- R

L o o

4 For any type or subtype X, or for any objact X:

5 X'SIZE Applled to an objact, yields the number of bits allocated to hold the object. 4
Applied to a type or subtype, ylelds the minimum number of bits that Is -
needed by the Implementation to hold any pcssible object of this type or sub-
type. The value of this attribute is of the type un/versal_integer.

,,-,
- —‘
St R

e 1
Elr at)

. For the above two represeritation attributes, If the prefix is the name of a function, the attribute is TR
understood to be an attribute of the function (not of the result of calling the function). Similarly, it - |
tne type of the prefix is an access type, the attribute is understood to be an attribute o the prefix .
(not of the designated object: attributes of the latter can be written with a prefix ending with the
reserved word all).

LIRS ¢

1 For any component C of a record object R:

0 R.C'POSITION Yields the oifset, from the start of the first storage unit occupied by the racord, -
e of the first of the storage units occupied by C. This offset is measured In W
storage units, The value of this attribute is of the type universal._integer. e

' v R.C'FIRST..BIT Yields tha offset, from the atart of the first of the storage units occupled by C, oo
of the first bit occupled by C. This offset is measured in bits, The value of this PR |
attribute is of the type universal_integyer.

D 10 R.C'LAST_BIT Yields the offget, from the start of the first of the storage units occupled by C,
~ of the last bit occuplied by C. This offset is measured in bits. The value of this
" attribute is of the type universal_integer.

1 For any access type or subtype T:

1 T'STORAGE_SIZE Yields the total number of storage units reserved for the collection assoclated
with the base type of T. The value of this attribute is of the type univer-
sal_integer,

" For any task type or task object T:
" T'STORAGE_SIZE VYlelds the number of storage units reserved for each activation of a task of the

type T or for the activation of the task object T. The value of this attribute is of
the type universal_integer.

e 13.7.2 Representation Attributes 13-12

rnepresentation Ljauges ana impliemantatuon-wepenaent reatures

Notes:

For a task object X, the attribute X'SIZE gives the number of bits used to hold the object X, 15

whereas X'STORAGE_SIZE gives the number of storage units allocated for the activation of the N
. task designated by X. For a formal parameter X, If parameter passing is achieved by copy, then the R
{ attribute X’ADDRESS vields the address of the local copy; if parameter passing is by reference,

then the address is that of the actual paramater.

Calatata sl a Y

Referencas. accoss subtype 3.8, accass typa 3.8, activation 9.3, actual parameter 8.2, address clause 13.5, address 16

predefined type 13.7, attribute 4.1.4, base type 3.3, collection 3.8, component 3.3, entry 9.5, formal paramoter 6.1 S
8.2, label 6.1, object 3.2, package 7, package body 7.1, parameter passing 8.2, program unit 8, record object 3.7, PN 11‘
statement 5, storage unit 13,7, subprogram 6, subprogram body 8.3, subtype 3.3, syatam predetined package 13.7, {)
task 9, task body 9.1, task object 9.2, task type 9.2, task unit 9, type 3.3, universal_integer type 3.5.4 -]

! 13.7.3 Representation Attributes of Real Types

For evary real type or subtype T, the following machine-dependent attributes are defined, which 1
are not related to the model numbers. Programs using these attributee may thereby exploit
properties that go beyond the minimal properties assoclated with the numeric type (see section
4,6.7 for the rules defining the accuracy of oparations with real operands). Precautions must o
therefore he taken when using these machine-depsndent attributes if portabllity is to be ensured. L

For both floating point and fixed point types: 2

NI i «

T'MACHINE_ROUNDS Yields the value TRUE If every predefined arithmetic operation on 3
values of the base type of T aither returns an exact result or performs .
. rounding; vyields the valuo FALSE otherwise. The value of this .
attribute Is of the pradefined type BOOLEAN. b
R
\

T'MACHINE_OVERFLOWS Yields the value TRUE If every predefined operation on values of the . Mo
- base type of T either provides a correct result, or raises the exception
» NUMERIC_ERROR In overflow situations (see 4.5.7); vields the

value FALSE otherwise. The value of this attribute is of the
P predefined type BOOLEAN.

- For floating point types, the following attributes provide characteristics of the underlying machine 5
representation, in terms of the canonical form defined In section 3.6.7:

T'MACHINE_RADIX Yields the valus of the radix used by the machine representation of 8
the base type of T. The value of this attribute is of the type un/ver- Bt
sal.integer.

C W

T'MACHINE_MANTISSA vlelds the number of digits in the mant/ssa for the machine 1
raprasentation of the base type of T (the digits are extended digits in
the range O to T"MACHINE_RADIX -1). The value of this attribute is of
the type universa/_integer. S

R+ AN PN

T'MACHINE_EMAX Yields the largest value of exponent for the machine representation 8
of the base type of T. The value of this attribute Is of the type un/ver-
sal_integer.

1 T'MACHINE_EMIN Yields the smallest (most negative) value of exponent for the) '~-_--~-«-m"~ .

machine representation of the base type of T. The value of this
attribute is of the type universal_integer.

13-13 Representation Attributes of Real Types 13.7.3

RNt

ST

- 7

B A

- - Tt S F T

KT g

ANSIIMIL-STD-1815A Ada Reference Manual

Note:

For many machines the largest machine representable number of type F is almost
(FFMACHINE_RADI!X)+»(F'MACHINE_EMAX),

and the smallest positive representable number is

F'MACHINE_RADIX = (FMACHINE_EMIN - 1)

References: arithmetic operator 4.6, att:ibute 4.1.4, base type 3.3, boolean predetined type 3.5.3, faise boolean
value 3.5.3, fixed point typs 3.6.9, floating point type 3.56.7, model number 3.5.6, numaeric type 3.5, numeric_error
exception 11.1, predefined operation 3.3.3, radix 3.6.7, real type 3.5.8, subtype 3.3, true boolean value 3.56.3, type
3.3, universal_integer type 3.8.4

13.8 Machine Code insertions

A machine code insertion can be achieved by a call to a procedure whosa sequence of statements
contains code statements,

code_statement = type_mark'record.aggregate;

A code statement s only allowed In the sequence of statements of a procedure body. If a
procedure body contains code statements, then within this procedure body the only allowed form
of statement is a code statement (labsled or not), ine only allowed declarative items are use
clauses, and no exception handler is allowed {(cornments and pragmas are allowed as usual).

Each machine instruction appears ss a record aggregate of 8 record type that defines the cor-
responding instruction. The base type of ths typs mark of a code statement must be declared
within the predefined library package called MACHINE_CODE; this package must be named by a
with clause that applies to the compllation unit in which the code statement occurs. An implemen-
tation ls not requiréd to provide such a package.

An implementation s allowed to impose further restrictions on the record aggregates allowed in
code statements, For example, it may require that expressions contained in such aggregates be
static expressions.

An implementation may provide machine-dependernt pragmas specifying register conventions and
calling conventions. Such pragmas must be documented in Appendix F.

Example:

M : MASK;
procedure SET_MAGK: pragma INLINE(SET_MASK);

procedure SET_MASK s
use MACHINE_CODE;

begin

SI_FORMAT(CODE => SSM, B => M'BASE_REG, D => M'DISP)

-~ M'BASE_REG and M'DISP are implementation-specific predefined attributes
end;

13.8 Machine Coda Insertions 13.14

RN

nogigaginaudil wiauses anu iimpemesnalion-uvespenaent reaiurss

References. allow 1.8, apply 10.1.1, comment 2.7, compilation unit 10,1, declarative item 3.9, exception handlier
11.2, inline pragma 6.3,2, |abeled statement 5,1, library unit 10.1, package 7, pragma 2.8, procedure 8 8.1, procadure
body 8.3, racord aggregate 4.3.1, record type 3.7, sequence of statements 5.1, statement 5, static expression 4.9, use
clause 8.4, with clause 10.1.1

13.9 Interface to Other Languages

A subprogram written in another language can be called from an Ada program provided that all
communication is achieved via parameters and function resuits, A pragma of the form

pragma INTERFACE (/anguage.name, subprogram._name);

must be given for each such subprogram; a subprogram name Is allowed to stand for several
overloadad subprograms. This pragma is allowed at the place of a daclarative iter, and must apply
in this case to a subprogram declared by an earlier declarative item of the same declarative part or
package specification. The pragma is also allowed for a library unit; in this case the pragma must
appear after the subprogram declaration, and before any subsequent compilation unit. The
pragma specifies the other language (and thereby the calling conventions) and informs the com-
pller that an object module will be supplied for the uorresponding subprogrem. A body Is not
allowed for such a subprogram {not even in the form of a body stub) since the inatructions of the
subprogram are written in another language.

This capability need not be provided by all implementations. An implementation may place
restrictions on the allowable forms and piaces of parameters and calls.

Exampla:

package FORT_LIB Is
function SQRT (X : FLOAT) retum FLOAT;
funotion EXP (X : FLOAT) retum FLOAT:
private
praogma INTERFACE(FORTRAN, SQRT);
pragma INTERFACE(FORTRAN, EXP):
end FORT_LIB;

Notes:

The conventions used by other language processors that call Ada programs are not part of the Ada
language definition. Such conventions must be defined by these other language processors.

The pragma INTERFACE Is not defined for generic subprograms.

References: sllow 1.8, body stub 10.2, compllation unit 10.1, deularation 3.1, declarative Item 3.9, dectarative part
3.9, function result 8.5, library unit 10,1, must 1.8, name 4.1, overioadod subprogram 6.8, package specification 7.1,

parameter of a subprogram 6.2, pragma 2.8, subprogram 8, subprogram body 6.3, subprogram call 8.4, subprogram
declaration 6.1

13-16 Interface to Other Languages 13.9

(U}

TERYr_-

L A S S

i L)

PR ¥ PN - L. T .

PRI, S T

ANSI/MIL-STD-18154A Ada Reference Manual
13.10 Unchecked Programming

The predefined generic llbrary subprograms UNCHECKED_DEALLOCATION and
UNCHECKED..CONVERSION are used for unchecked storage dealiocation and for unchecked type
conversions.

generic
type OBJECT is limited private;
type NAME is mccess OBJECT:;
procedure UNCHECKED._DEALLOCATION(X : in out NAME);

generic
typs SOURCE s Himited private;
type TARGET s limited private;
function UNCHECKED_.CONVERSION(S : SOURCE) retumn TARGET;

References. generic subprogram 12.1, iibrary unit 10.1, type 3.3

13.10.1 Unchecked Storage Deallocation

Unchecked storage doallocation of an object designated by a value of an access type is achieved
by a call of a procedure that is obtained by instantiation of the generic procedute
UNCHECKED_DEALLOCATION. For example:

procedure FREE s new UNCHECKED_DEALLOCATION (object_type..name, access._type_name);

Such a FREE procedure has the following effect:
(a) after executing FREE (X), the value of X is nuli;
(b) FREE(X), when X is already equal to null, has no effect;

(c) FREE(X), when X is not squal to null, is an indication that the object designated by X is no
longer raquired, and that the storage it occuples Is to he reclaimed,

If X and Y designate the same objact, then accessing this object through Y Is erroneous if this
access is performed (or attempted) after the call FREE (X); the effect of each such access s not
defined by the language.

Notes:

It is a consequence of the visibility rules that the generic procedure UNCHECKED_DEALLOCATION
is not visible in a8 compilation unit uniess this genearic procedure is mentioned by a with clause that
applies to the compllation unit.

It X designat:‘en a task abject, the call FREE (X) has no effact on the task designated by the value of
this task object. The same holds for any subcomponent of tha object designated by X, if this sub-
component is a task object.

References: accoss type 3.8, apply 10.1,1, compilation unit 10.1, desighate 3.8 8.1, srronsous 1.8, genetic

instantiation 12.3, gonaric procedure 12.1, gensric unit 12, llbrary unit 10.1, null access value 3.8, vbject 3.2,
procedure 6, procedure call 8.4, subcomponent 3.3, task 9, task object 8.2, visibllity 8.3, with clause 10.1.1

13.10.1 UUnchecked Storage Deallocation 13-18

i

_.,.4

- :‘ ."s I",-'_."“‘

g
N

%

o
o

9,

Representation Clauses and Impleentation-Dependent Faatures

13.10.2 Unchecked Typs Convarsions

An unchacked type conversion can be achieved by a call of a function that is obtainad by instantia-
tion of the generic function UNCHECKED._CONVERSION.

The effect of an unchecked conversion Is to return the (uninterpreted) parameter value as a value
of the target type, that is, the bit pattern defining the source value is returned unchanged as the bit
pattern defining a value of the target type. An implementation may place restrictions on unchecked
conversions, for sxample, restrictions depending on the respective sizes of objects of the source
and target type. Such restrictions must be documented in appendix F.

Whenever unchacked conversions are used, It is the programmer’'s rasponsibility to ensure that
these conversions maintain the properties that are guaranteed by the language for objects of the
target type. Programs that violate these properties by means of unchecked conversions are
arroneous,

Note:
It is a consequenco of the visibility rules that the generic function UNCHECKED_CONVERSION is

not visible in & compllation unit unless this generic function is mentioned by a with clause that
applies to the compilation unit.

References: apply 10.1.1, cumpllation unit 10.1, erroneous 1.8, generic function 12.1, instantiation 12.3, parametsr
of » subprogram 6.2, type 3.3, with clause 10.1.1

13-17 Unchecked Type Conversions 13.10.2

-
ol

14. Input-Output

Input-output is provided in the language by means of predefined packages. The generic packages
SEQUENTIAL.I0 and DIRECT.IQO define Input-output operations applicable to files containing
elements of a given type. Additional operations for text input-output are supplied In the peckage
TEXT_IO. The package IO_EXCEPTIONS defines the exceptions needed by the above three
packages. Finally, a package LOW.LEVEL.IO is provided for direct control of peripheral devicas,

References. direct_io package 14.2 14.2.4, lo_exceptions package 14.5, low._level_lo package 14,8, sequential_io
package 14.2 14.2,2, text_lo package 14.3

14.1 External Files and File Objects

Values Input from the external environment of the program, or output to the environment, are con-
sidared to occupy external files. An external file can be anything external to the program that can
produce a value to be read or recelve a value to be writter An ext~rnal fllo is identifled by a string
(the name). A second string (the form) gives further syste!\. depandent characteristics that may be
asaoclated with the file, such as the physlcal organization o uccess rights, The conventions
governing the Interpretation of such strings must bs documunivd In Appendix F,

Input and output operations are expressed as operations on objects of some fi/e type, rather than
directly in terma of the external files. In the remainder of this chapter, the term f//e is always used
to refer to a flle object; the term externa/ file is used otherwise. The values transferred for a given
file must all be of one type.

Input-output for sequential fllea of values of a single element type is defined by means of the
penaric package SEQUENTIAL_IO . The skeleton of this package Is glven below.

with |O_EXCEPTIONS:
genstic

type ELEMENT._TYPE le private;
package SEQUENTIAL_IO Is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, OUT_FILE);
procedure OPEN (FILE : In out FILE_TYPE; ..);

procedure READ (FILE : In FILE.TYPE; ITEM : out ELEMENT_TYPE):
procedure WRITE (FILE : in FILE_TYPE; ITEM : in ELEMENT.TYPE):

end SEQUENTIAL_IO;

In order to define sequential Input-output for a given element typo, an instantiation of this generic
unit, with the given type as actual parametsr, must be declared. The resulting package contains
the declaration of a file type {(callad FILE_TYPE) for flles of such elements, as well as the opera-
tions applicable to these files. surh as the OPEN, READ , and WRITE procedures.

14-1 External Filas and Flle Objects 14,1

d

ANSI/MIL-STD-1815A Ads Referance Manual

5 Input-output for direct access files is likewise defined by a generic package called DIRECT_IO.
Input-output in human-readable form is defined by the (nongenatic) package TEXT_IO.

8 Befors Input or output operations can be performed on a file, the file must first be associated with

i an extarnal file, While such an association Is in effact, the file is said to be open, and otharwise the .

file is said to be closed. R

? The language does not define what happens to external files after the completion of the main

program (in particular, if corresponding files have not been closed). The effect of input-output for
access types Is Implementation-dependent.

[} An open file has a current mode, which is a value of one of the enumeration types

N type FILELMODE is (IN_FILE, INOUT_FILE, OUT_FILE); -- for DIRECT.IO
- type FILE_MODE Is (IN-FILE, OUT_FILE); - for SEQUENTIAL_IO and TEXT_IO

v These values correspond respectively to the cases where only reading, both reading and writing, or e
only writing are to be performed. The mode of a flle can be changed.

10 Several flle management operations are common to the three Input-output packages. These
operations ure dascribed in section 14.2.1 for sequential and diract files. Any additional effects
concerning text Input-output are described In section 14.3.1,

" The exceptions that can be ralsed by a call of an input-output subprogram are all defined in the Lo
package |O_EXCEPTIONS the situations In which they can be raised are described, elther

L following the description of the subprogram (and In section 14.4), or in Appendix F In the case of

b arror situations that are implementation-dependent.

Notes:

12 Each instantiation ot the generic packages SEQUENTIAL_IO and DIRECT_IO declares a different
type FILE_TYPE ; in the case of TEXT_IO, the type FILE_TYPE is unique.

/

1a A bidiractional device can often be modeled as two sequential flies assoclated with the device,

one of mods IN_FILE, and one of mode OUT_FILE. An implamentation may restrict the number of S
files that may be asaociated with a given external file. The effect of aharing an external fils in this e

way by several flle objects in Implementation-dependent.

0 Refarances. create procedure 14.2,1, current Index 14.2, current size 14.2, delete procedure 14.2.1, direct access
: 14.2, direct fily procedure 14.2, direct_lo package 14.1 14.2, enumeration type 3.5.1, exception 11, file mode 14.2.3,
generic instantlation 12.3, Index 14.2, input file 14.2.2, o_exceptions pac.age 14,5, open file 14.1, open procedure
14.2.1, output fils 14,22, read procedure 14.2.4, ssquential access 14.2, sequentlal file 14.2, xequontlal input-output ,
14.2.2, saquential_io package 14.2 14.2.2, string 3.8.3, text_lo package 14.3, write procedure 14.2.4 e

1 Y

14.2 Sequential and Direct Files

i ' Two kinds of access to external flles are defined: sequent/a/ access and direct access. The cor- P
responding file types and the associated operations are provided by the generic packages o
. SEQUENTIAIIO and DIRECT.IO. A flle object to be used for saquential access is called a

sequentfal file, and one to be used for direct access Is called a direct fils.

-

' 2 For sequential access, the filo |s viewed as a sequence of values that aru transferred In the order of K
their appearance (as produced by the program or by the environment). When the file is opened, ‘ .
1 transfar starts from the beginning of the flle, T

y 14.2 Sequential and Direct Files 14-2

.....

S

oy B4,

Al
\
A

Input-Output

For direct access, the file is viewed as a set of alements occupying consectlve positions in linear
order; a valua can be transferrad to or from an slement of the file at any selected position. The
position of an element is specitied by its /ndex, which is a number, greater than zero, of the
implementation-defined integer type COUNT. The first element, if any, has Iindex one; the index of
the last alemant, If any, is called the current size; the current size is zero if there are no elements.
The current size is a property of the external file.

An open direct file has a current index, which Is the Index that will be used by the next read or write
operation. When a direct file Is opened, the current index is set to one. The current index of a direct
file is a property of a flle object, not of an external file.

All three file modes are allowad for direct flles. The only allowed modes for sequential files are the
modes IN_FILE and QUT_FILE.

Refarences: count type 14,3, file mcde 14,1, In_flle 14,1, out_file 14.1

14.2.1 File Management

The procedures and functions describad In this section provide for the control of external files: their
declarations are rep :ated In sach of the three packages for sequentiel, direct, and text Input-
output. For text input-output, the procsdures CREATE, OPEN, and RESET have additional effects
described in section 14.3.1,

procedure CREATE(FILE : In out FILE.TYPE;
MODE : in FILE_MODE := default_mode;
NAME : In STRING = "";
EORM : In STRING = "");

Eatablishes a new extarnal flle, with the given name and form, and associates this
extarnal file with the given file. The given file is left open. The current mode of the
given file is set to the givan accass mode. The default access moce is the mode
OUT_FILE for soquential and taxt Input-output; It is the mode INOUT.FILE for
direct input-output. For direct access, the size of the created flle Is
Implementation-dependent. A null string for NAME specifies an external file that is
not accessible after the compistion of the main program (a temporatry file). A null
string for FORM specifies the use of the default options of the implementation for
the external file.

The exception STATUS_ERROR Iis raised if the given flle is already open. The
axception NAME_ERROR Is ralsed If the string given as NAME does not allow the
identification of an external file. The exception USE_ERROR Is raised If, for the
specifiad mode, the environment does not support creation of an external fils with
the given name (In the absence of NAME_ERROR) and form,

procedura OPEN{ FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : In STRING;
FORM : in STRING = "");

Associates the given file with an existing external file having the given nama and

form, and sets the current mode of the glver: file to the given mode. The glven file
is left open.

14-3 File Management 14.2.1

R

il

{4

ANSI/MIL-STD-1815A Ada Reference Manual

The exception STATUS_ERROR Is ralsed If the given file is already open. The exception
NAME_ERROR Is raised If the atring given as NAME does not allow the identification of an external
file; in particular, this exception is ralsed if no external file with the given name exists. The excep-
tion USE_ERROR s raised if, for the specified mode, the environment does not support opening for
an external file with the given name (In the absence of NAME_ERROR) and form.,

procedure CLOSE(FILE : In out FILE_TYPE);

Severs the association between the given file and its assoclated external file. The
diven flle Is left closed.

The exception STATUS_ERROR Is ralsed if the given file Is not open.

procedurs DELETE(FILE : in out FILE_TYPE);

Delotes the external file associated with the given file. The given file is closed, and
the external fila ceases to exist,

The exception STATUS_ERROR Is raised If the given file is not open. The exception
USE_ERROR |s raised if (as fully defined in Appendix F) delation of the external file
ls not supported by the environment,

prooedure RESET(FILE : in out FILE_TYPE: MODE : in FILE_MQDE);
procedurs RESET(FILE : in out FILE_TYPE);

Rasets the given flle so that reading from or writing to its elements can be
restarted from the beginning of the file; in particular, for diract access this means
that the current Index |s set to one. |f a MODE parameter is suppliod, the current
mode of the given file is set to the given mode.

The exception STATUS_ERROR is raised if the flle is not open. The exception
USE_.ERROR |s raised If the environment does not support resstting for the external

file and, aiso, if the environment does not support rasetting to the specified mode
for the external file.

function MODE(FILE : In FILE_TYPE) return FILE_MODE:

Returns the current mode of the given file,

The axception STATUS_ERROR Is ralsed if the file is not open.

function NAME(FILE : In FILE_TYPE) return STRING:

Returns a string which uniquely Identifles the external file currently assocliated with
the given file (and may thus be used in an OPEN operation), If an environment
allows alternative specifications of the name (for example, abbreviations), the str-
ing returnad by the function should correspond to a full specification of the name.

The exneption STATUS_ERROR s raisad if the given file is not open.

14.2.1 File Management 14-4

Eh

input-Output

function FORM(FILE : in FILE_TYPE) return STRING:

Returns the form string for the external file currently associated with the given file.
It an environment allows alternative spacifications of the form {for example,
abbreviations using default options), the string returned by the function should cor-
respond to a full specification (that is, it should indicate explicitly all options
selectad, including default optlons).

The exception STATUS_ERROR is raised if the given file is not open.

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

Returns TRUE if the file Is open (that is, if it i3 associated with an external file),
otherwise returns FALSE.

References: current mode 14.1, current size 14.1, closad file 14.1, direct access 14,2, extarnal file 14.1, file 14.1,
file_mode type 14.1, fila_type type 14.1, form string 14.1, inout_file 14,2.4, mode 14.1, name string 14.1, name_er-
ror exception 14.4, open flle 14.1, out_file 14.1, status_error exception 14.4, use_error exception 14.4

14.2.2 Sequential Input-Output

The operations available for sequential input and output are described Iin this section. The excep-
tion STATUS_ERROR is raised If a.\y of these operations is attempted for a file that is not open.

procedure READ(FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE);

Operates on a flle of mode IN_FILE. Reads an element from the given file, and
returns the value of this element in the ITEM parameter.

The exception MODE_ERROR is raised if the mode Is not IN_FILE. The exception
END_ERROR !s raised if no more elements can be read from the given file. The
exception DATA_ERRCR Is raised if the element read cannot be interpreted as a
value of the type ELEMENT_TYPE ; however, an Implementation Is allowed to omit
this check If performing the check is too complex.

procedure WRITE(FILE : In FILE_TYPE; ITEM : in ELEMENT_TYPE):

Opsrates on a file of mode OUY_FILE . Write= the value of ITEM to the given flle.

The exception MODE_ERROR Is ralsed If the mode Is not QOUT_FILE. The exception
USE..ERROR Is raised if the capacity of the external flle Is exceeded,

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

Operates on a flle of mode IN_FILE . Returns TRUE if no more elements can be read
from the given file; otherwise returns FALSE.

The exception MODE_ERROR is raised if the mode Is not IN_FILE.

References: data_error exception 14.4, slemant 14,1, alement_typa 14.1, end_error exception 14.4, external flls
14.1, file 14.1, file mode 14.1, flle_type 14.1, in_flla 14,1, mode_error exception 14,4, out_file 14.1, status_.error
exception 14.4, use_error exception 14.4

14-5 Sequential Input-Qutput 14.2.2

23

24

25

26

B oy

. ANSI/MIL-STD-18164 Ada Refererice Manual .

;",: 14.2.3 Spacification of the Package Sequential_IO

‘ 1 with [O_EXCEPT!ONS:;
: generic
type ELEMENT_TYPE Is private; Lol
package SEQUENTIAL_IO s RN

;:Z type FILE_TYPE s limited private; A
type FILE_MODE s (IN_FIL[, OUV_FILE): ol

-- File management

procedurs CREATE (FILE t In out FILE_TYPE; AN
MODE ! in FILE.MODE = QUT_FILE; —

NAME : in STRING := " A .
3 FORM : in STRING := ") Ll
) procedure OPEN (FILE : in out FILE.TYPE: T
MODE : in FILE_MODE e
NAME : in STRING: RO
.. FORM : In STRING = "'); -

o procedure CLOSE (FILE : in out FILE_TYPE);
. procedure DELETE (FILE : In out FILE._TYPE);
y procedure RESET (FILE : in out FILE.TYPE; MODE : in FILE.MODE};
- procedurs RESET (FILE : in out FILE_TYPE); ,
1 function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : In FILE_.TYPE) return STRING;

function FORM (FILE : in FILE_TYPE) return STRING;
function IS_OPEN (FILE : in FILE_TYPE) retum BOOLEAN;
-~ |nput and output oﬁeratlona

N procedura READ (FILE : In FILE_TYPE; ITEM : out ELEMENT_TYPE);
procedure WRITE (FILE : In FILE_TYPE; ITEM : in ELEMENT.TYPE);

s fimction END_OF_FILE(FILE : in FILE.TYPE) return BOOLEAN;
bt -~ Exceptions ;M:‘_";l’l
STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERRCR;

. MODE_ERROR : exception renames |O_EXCEPTIONS.MODE_ERROR;
S NAME_ERROR | exception renames !O_EXCEPTIONS.NAME_ERROR;

8 USE_ERROR . exception renames |O_EXCEPTIONS.USE_ERROR;
! DEVICE_ERROR : exreptiun renames |O_EXCEPTIONS.DEVICE_ERROR; .
END_ERROR : exception renames |IO_EXCEPTIONS.END_ERROR: . .

DATA _ERROR : sxception renames |O_EXCEPTIONS.DAYA_ERROR; . ~

private
-- implemantation-dependent
end SEQUENTIAL_IO;

14.2.3 Specification of the Package Sequentlal../O 14-6

.............

Input-Output

O PN

Refarences: cloge procedure 14.2.1, create procedure 14.2.1, data_.error exception 14.4, du!ste procedurs 14.2.1, 2
device_arror exception 14.4, end_error exception 14.4, end_of_file function 14.2.2, file_mode 14.1, file_type 14.1,

form function 14.2.1, in_file 14.1, io_exceptions 14.4, is_open function 14.2.1, mode function 14.2.1, mode_error
exception 14.4, name function 14.2.1, name_srror exception 14.4, open procedure 14.2.1, out_file 14.1, read

' procedure 14.2.2, reset procedure 14.2.1, ssquential_io package 14.2 14.2.2, status_error exception 14.4, use_arror
exception 14.4, write procedurs 14.2.2,

14.2.4 Direct Input-Output

‘ The operations available for direct input and output are described in this section. The exception 1
STATUS_ERROR is raised if any of these operations is attempted for a file that is not open.

~ procedure READ(FILE : In FILE_TYPE; ITEM . out ELEMENT_TYPE; 2
: FROM : in POSITIVE_COUNT);
l procedure READ(FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE);

Operates on a file of mode IN_FILE or INOUT_FILE. In the case uf the first form, 3
sets the current Index of the glven file to the index value given by the parameter

N FROM. Then (for both forms) returns, in the parameter ITEM, the value of the

- alement whose position I the given file is specified by the current index of the flle;

i finally, increases the current index by one.

The exception MODE_ERROR s ralsed If the mode of the given file is QUT_FILE. «

The exception END_ERROR !¢ raisad if the index to be used exceeds the size of the
external file. The exception DATA_ERPOHR Is raised if the element read cannot be
interpreted as a value of the type ELEMENT_TYPE ; however, an implementation is
allowacl to omit this check if performing the check is too complex.

procedure WRITE(FILE : In FILE_TYPE; ITEM : in ELEMENT_TYPE; 5
: TO : In POSITIVE..COUNT);
o procedure WRITE(FILE : In FILE_TYPE; (TEM : In ELEMENT_TYPE):

- 8" -3 =P a
A e

Operates on a fiie of mode INOUT_FILE or OUT-FILE. In the case of the first form, s
sota the index of the given file to the Index value given by the parameter TO. Then
(for both forms) gives the value of the parameter ITEM to the element whose
position In the given file ls spacified by the current index of the file; finally,

a
PN -

f_j:l increases the current index by one.

q The exception MODE_ERROR Is ralsed if the mode of the given file is IN_FILE. The ’

2 exception USE_ERROR Is raised If the capacity of the external file is exceeded.

~ .

‘_.: procarure SET_INDEX(FILE : in FILE_TYPE; TO : in POSITIVE_.COUNT); 8

. Operates on a fiie of any mode. Seta thie current index of the given file to the given y

o index value (which may exceed the current size of the file).

funation INDEX(FILE : In FILE_TYPE) return POSITIVE_COUNT; 1o

d Operates on a file of any mode. Returns the current index of the given file. "

B B
" 14-7 Direct Input-Output 14.2.4 ‘

RREAFMEM RS §: SN

function SIZE(FILE :

ANSI/MIL-STD-1815A Ada Reference Manual

in FILE_TYPE) return COUNT;

Operates on a file of any mode. Returns the current size of the external file that is
asgociated with the given file.

function END_OF_FILE(FILE : In FILE_TYPE) retum BOOLEAN;

Opeorates on a file of mode IN_FILE of INOUT_FILE. Returns TRUE if the current
index exceeds the size of the external file; otherwise returns FALSE.

The exception MODE..ERROR s raised if the mode of the given file is OUT_FILE.

References: count type 14.2, current index 14.2, current size 14.2, data_errnr exception 14.4, element 14.1,
element_typa 14.1, end_error exception 14.4, sxternal file 14.1, file 14.1, file mode 14.1, file_type 14.1, in_flle 14.1,
index 14.2, inout_flle 14.1, mode.error exception 14.4, open file 14,1, positive_count 14.3, status_arror exception

14.4, use.srror exception 14.4

14.2.6 Specification of the Package Direct_10

with I0_EXCEPTIONS;
generic

type ELEMENT_TYPE Is private;
package DIRECT_IO s

type FILE_TYPE Is limited private;

typa FILE_MODE is {IN_FILE, INOUT_FILE, OUT_FILE);
is range O .. /mplementation_defined,
subtyps POSITIVE_COUNT Is COUNT renge 1 .. COUNT'LAST;

type COUNT

-~ Flla managemant

procedure CREATE (FiLE : in out FILE_TYPE,
MODE : in FILE_.MODE :=

INQUTLFILE:

NAME : in STRING = "";
FORM : in STRING = "");
procedure OPEN (FILE : In out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING = “");
procedure CLOSE (FILE : In out FILE_TYPE);
procedure DELETE (FILE : In out FILE_TYPE);
procedure RESET (FILE : In out FILE_TYPE: MODE : in FILE_MODE):
procedure RESET (FILE : In out FILE_TYPE);
function MODE (FILE : in FILE_TYPE} return FILE_MODE:
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;
function IS_OPEN (FILE : in FILE_TYPE) return BOOLEAN;
14.2.5 Specification of the Package Direct..|0 14-8

L
R
. N
i

-
ool
e ‘1
R
TN
S e
T
S
..
ol

o

N

.L-‘-'_‘f Input-Output

-- Input and output operations

procedure READ (FILE : In FILE_TYPE; ITEM : out ELEMENT_TYPE; FROM : POSITIVE_COUNT};
procedure READ (FILE : In FILE_TYPE; ITEM : out ELEMENT_TYPE);

procedure WRITE (FILE : in FILE_TYPE; ITEM : In ELEMENT.TYPE; TO : POSITIVE_COUNT); - .
procedure WRITE (FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE;: "

procedure SET_INDEX(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT); RSy

function INDEX(FILE : in FILE_TYPE) rettrn POSITIVE_COUNT;
function SIZE (FILE : in FILE_TYPE) return COUNT;

function END_OF_FILE (FILE : in FILE_TYPE) retum BOOLEAN;

:, :‘_ L

-- Exceptions ", \‘v'..f

STATUS_ERROR ! axception renames |O_EXCEPTIONS.STATUS_ERROR; SRR
MODE_ERROR exception renames |O_EXCEPTIONS MODE_ERROR; i
NAME_ERROR exception renames |O_EXCEPTIONS.NAME..ERROR; e,
USE_ERROR exception renames JO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames |O_EXCEPTIONS.DEVICE_ERROR; SRR
END_ERROR exception renames |O_EXCEPTIONS.END_ERROR; DRERES
DATA_ERROR exception renames |O_EXCEPTIONS.DATA_ERROR;

RS R0 Arhiert
. .: 1

'
l
i
N
.
e
.
R
o,
'
o
u‘
.
-
-
ot
-
A
o

=T ¥
-

Pl
- s”

private
-- implementation-dependent
end DIRECT.IO;

..
s

IR X e
o e

References closs procedurs 14.2.1, count type 14.2, creats procedurs 14.2,1, data_orror exception 14.4, 2 o
default.mode 14.2,5, delete procedure 14.2.1, device_error exception *4.4, clement_type 14.2.4, end_error excep- » Ai
tion 14.4, enc_of_file function 14.2.4, flle_mode 14.2.6, flla_type 14.2.4, form function 14.2,1.In_flle 14.2.4, index . m
function 14.2.4, inout_file 14.2.4 14.2,1, lo_exceptions package 14.4, ia_opan function 14.2,1, mods function :
14.2.1, mode_error exception 14.4, name function 14.2.1, name..error exception 14.4, open procedure 14.2.1, out..-
file 14.2.1, read procedure 14.2.4, set_index procedure 14.2.4, size functivn 14.2.4, atatus_arror exception 14.4,
use.arror exception 14.4, write procedure 14,24 14,21

el R . £
etet

-

(3

-

;

St S 3
il

hr umt
=l

L e, - Erocett. T,
. la APt
:
SR

f;--‘ 14.3 Text Input-Output

Q’.: .

¥,y a et

t This section describes the package TEXT_IO, which provides facilities for input and output in ' TR
human-readable form. Each flle is read or written sequentlally, as a sequence of characters)

groupeti into lines, and as a sequence of lines grouped into pages. The specification of the pacl ..ge NNR
is glven below In section 14.3.10, R

The facilities for file management given above, in sections 14.2.1 and 14.2.2, are avallable for text 2
input-output. In place of READ and WRITE, however, there are procedures GET and PUT that
input values of suitable types from text files, and output values to them. These values are provided @
to the PUT procedures, and returned by the GET procedures, in a parameter ITEM. Several e
overloaded procedures of these names exist, for different types of ITEM. These GET procedures R
analyze the Input sequences of characters as lexical slements (see Chapter 2) and return the cor-

responding values; the PUT procedures output the given valuss as appropriate lexical elements.

Procedures GET and PUT are also avallable that Input and output individual characters treated as .
character values rather than as lexicel elements, “

'

A
0

.
.

.
M
v
!!-
.

3
.

+

.
‘o
T e
.
+

"W W " §- P R
O A=t X

LI e
PP
-

L “ 14-9 Text Input-Output 14,3

ANSI/MIL-STD-1815A Ada Reference Marwual

2 In addition to the procedures GET and PUT for numeric and enumeration types of ITEM that
operate on text files, analogous procedures are provided that read from and write to a parameter of
type STRING. These procedures perform the same analysis and composition of character
sequences as their counterparts which have a flle parameter.

N . For all GET and PUT procedures that operate on text files, and for many other subprograms, there .
are forms with and without a file parameter. Each such GET procedure operates on an input file, o
and each siich PUT procedure operates on an output file, If no file is specified, a default input file or

a default outpiit file is used.
5 At the beginning of program execution the default input and output files are the so-called standard
input file and standard output file. These files are opan, have respaectively the current modes . .

IN_FILE and OUT_FILE, and are assoclated with two Implementation-defined externai files.
Proceduras are provided to change the currant default input file and the current default output file.

4 8 From a loglcal point of view, a text file is a ssequence of pages, a page is a sequence of lines, and a RO
line Is a saquence of characters; the end of a line is marked by a /ine terminator; the end of a page o

{ Is marked by the combination of a line terminator Immediately followed by a page terminator; and o

N the end of a flle is marked by the combination of a line terminator immediately followed by a page

' terminator and then a file term/nator. Terminators are generated during output; either by calls of

e -« procedures provided expressly for that purpose; or implicitly as part of other operations, for exam-

ple, when a bounded line length, a bounded page length, or both, have been specified for a file,

“ 7 The actual nature of terminators is not defined by the language and hence depends on the -
s implementation. Although terminators are recognized or generatad by certain of the proceduras e
) that follow, they are not necessarily implemented aa characters or as sequences of characters. Ry
A Whether they are characters (and If so which ones) in any particular implementation need not con-
e cern a user who neither explicitly outputs nor explicitly inputs control characters. The effact of IS
:nput or output of control characters (other than horizontal tabulation) is not defined by the AR
anguage. -

5 [The characters of a lins are numbered, starting from one; the number of a character is called Its
o column number. For a line terminator, a column number is also defined: it is ona more than the
number of characters in the line. The lines of a page, and the pages of a file, are similarly
numbered. The current column number is the column number of the next character or line ter-
minator to ba transferred. The current /ine number is the number of the current line. The currant

page number is the number of the current page. These numbers ars values of the subtype L
POSITIVE_COUNT of the type COUNT (by convantion, the value zero of the type COUNT is used to e
o indicate special conditions),

'-',.f: type COUNT s range O .. implementation_defined;
::i: subtype POSITIVELCOUNT is COUNT range 1 .. COUNT'LAST;
X ’ For an output file, a maximum line langth can be specified and a maximum page length can be et

specifiad. If a value to be output cannot fit on the current line, for a specified maximum line length,
then a new line Is automatically started before the value is output; if, further, this new line cannot
fit on the current page, for a specifiead maximum page length, then a new page is automatically

started before the value is output. Functions are provided to determine the maximum line length
‘ and the maximum page length, When a file |s opened with mode OUT_FILE, both values are zero: X
~ by convention, this means that ths line lengths and page lengths are unbounded. (Consequently, Ty

output consists of a single line If the subprograms for explicit control of line and page structure are
not used.) The constant UNBOUNDED Is provided for this purpose.

10 References. count type 14.3.10, dofault current Input file 14.3.2, default current output file 14.3.2, extarnal flle 14.1,
file 14.1, get procedure 14.3.6, in_flle 14.1, out_flie 14.1, put procedure 14.3.5, read. 14.2,2, sequential access 14,1, .
standard input file 14.3.2, standard output flle 14.3.2 .

i 14.3 Text Input-Output 14-10

Input-Output

14.3.1 Flle Management

The only allowed file modes for text files are the modes IN_FILE and OUT_FILE . The subprograms
given in section 14.2,1 for the control of external files, and the function END_OF_FILE given in
section 14.2.2 for sequential input-output, are also available for text files. There is also a version of
END_OF_FILE that refers to the current defauit input file. For text files, the procedures have the fol-
lowing additional effscts:

® For the procedurss CREATE and OPEN : After opening a file with mode OUT_FILE, the page
length and line length are unbounded (both have the conventional value zero). After opening a
file with mode IN_FILE or OUT_FILE, the current column, current line, and current page
numbers are set to one.

® For the procedure CLOSE: If the file has the current mode OUT_FILE, has the effact of calling
NEW..PAGE, unless the current page Is already terminated; then outputs a file terminator.

® For the procedure RESET: If the file has the current made QUT_FILE, has the effect of calling
NEW_PAGE, uniess the current page is already terminated; then outputs a file terminator. If
the new file mode is QUT_FILE, the page and line lengths are unbounded. For a!l modes, the
current column, line, and page numbers are set to one.

The exception MODE_LRROR Il raised by the procedure RESET upon an attempt to change the
mode of a file that Is either the current default input file, or tha current default output file.

Roferences: create procedure 14.2.1, aurrent column number 14.3, current defsult input flie 14.3, current line
number 14 3, current page number 14,3, end..of-flle 14.3, external file 14.1, file 14.1, file mode 14.1, flle terminator

14.3, in_file 14.1, line length 14.3, mode_arror exception 14.4, open procedure 14.2.1, out_file 14.1, page length
14,3, resot procedure 14.2.1

14.3.2 Default Input and Output Files

The following subprograms provide for the control of the particular default files that are used whan
a file paramieter is omitted from a GET, PUT or other operation of text input-output described
below.

procedure SET_INPUT(FILE : in FILE.TYPE);

Operates on a file of mode IN_FILE. Sots th current default input file to FILE.
The exception STATUS_ERROR I raisud if the given file is not open. The exception
MODE_ERROR ls raised |f the mode of the given file is not IN_FILE.

procedure SET_OUTPUT(FILE : in FILE_TYPE);
Operates on a flle of mode OUT_FILE . Sets the current default output file to FILE.

The exception STATUS_ERROR Is raised if the given file is not open. Tlie axception
MODE._ERROR Is raised If the mode of the given file is not QUT_FILE.

14-11 Dsfault input and Output Files 14.3.2

t
(24

X}

ANSI/MIL-STD-1815A Ada Refersnce Manua!

funciicn STANDARDL_INPUT return FILE_TYPE;

Returns the standard input file (see 14.3).

function STANDARD_OUTPUT return FILE TYPE;

Returns the standard output file {see 14.3),

function CURRENT_INPUT retum FILE.TYPE;

Returns the current default input file,

function CURRENT_QUTPUT return FILE_TYPE;

Returns the current default output file,

Note:

The standard input and the standard output files cannot be opened, closed, reset, or deleted,
because the parameter FILE of the corresponding procedures has the mode in out,

References. current default fils 14.3, default file 14.3, file_typs 14,1, get procedure 14.3.8, mode.error exception
14.4, put procedure 14.3.5, status_error exception 14.4

14.3.3 Specification of Line and Page Lenpths

The subprograms described in thisjsection are concerned with the line and page structure of a file
of mode OUT_FILE. They operate either on the file given as the first parameter, or, in the absence
of such a file parameter, on the currant default output file. They provide for output of text with a
specified maximum line length or page length. In these cases, line and page terminators are out-
put implicitly and automatically when needed. When line and page lengths are unboundad (that is,
when they have the conventional value zero), as in the case of a newly opened file, new lines and
new pages are only started when explicitly called for.

In all cases, the exception STATUS_ERRQR Is raised If the file to be used is not open; the exception
MODE..ERROR is ralged if the mode of the file Is not OUT_FILE.
« Pprocedurs SET_LINE.LENGTHM(FILE : In FILE.TYPE: TO : in COUNT);
procedure SET LINE_LENGTH{TO : in COUNT);
Sets the maximum line length of the specified nutput file to the number of
characters specifiead by TO. The value zero for TO specifies an unbounded line
length,

The exception USE_ERROR Is raised if the apecified line length is inappropriate for
the associated extuernal file.

14.3.3 Specification of Line and Page Lengths 14-12

is

Input-Output

procodure SET_PAGE_LENGTH (FILE : in FILE_TYPE; TO : In COUNT);
procedure SET_PAGE_LENGTH (TO : in COUNT);

Sets the maximum page length of the specified output file to the number of lines
specified by TO. The value zero for TO specifies an unbounded page length.

The exception USE_ERROR is raised if ths specified page length ie inappropriate for
the assoclated external file.

function LINE_LENGTH(FILE : in FILE_TYPE) return COUNT:
function LINE.LENGTH retum COUNT;

Returns the maximum line length currently set for the specified output file, or zero
it the line length is unbounded.

function PAGE_LENGTH(FILE : in FILE_TYPE) return COUNT;
function PAGE_LENGTH retum COUNT:

Returns the maximum page length currently set for the specified output file, or zero
it the page length ls unbounded.

Refarences: count typs 14.3, current default output flle 14.3, external flle 14.1, file 14.1, flle_type 14.1, line 14.3,
line length 14.3, line terminator 14,3, maximum line length 14.3, meximum page length 14.3, mode_error exceptlon
14.4, open file 14.1, out_flis 14.1, page 14.3, page length 14.3, page terminator 14.3, status_error exception 14.4,
unbounded page length 14,3, use.error exception 14.4

14.3.4 Oporations on Columns, Lines, and Pages

they operate either on the file given as the first parameter, or, in the absence of such a file
parameter, on the appropriate (Input or output) current default file. The exceptlon STATUS_ERROR
is raised by any of these subprograma If the file to be used s not open.

14-13

h The subprograms described in this ssction provide for explicit control of line and page structure;
\!
,*-

procedure NEW_LINE(FILE : in FILE_TYPE; SPACING : in POSITIVE_COUNT := 1);
2 procedure NEW_LINE(SPACING : in POSITIVE.COUNT := 1);

Operates on a file of mode OUT_FILE.

For a SPACING of one: Qutputs a line terminator and set- the current column
number to one. Then incremants the current line number by one, except In the case
that the current line number is already greater than or equal to the maximum page
length, for & bounded page length; In that case a page terminator is output, the
current pags number is Incrementad by one, and the current line number Is sat to
one,

For a SPACING greater than one, the above actions are performed SPACING times,

The exception MODE_ERROR lIs raised if the mode is not OUT_FILE.

Operations on Columns, Lines, and Pages 14.3.4

ANS//MIL-STD-1815A Ada Refersnce Manual

\
:) procedure SKIP_LINE(FILE : in FILE_TYPE; SPACING : In POSITIVE_COUNT := 1);
procedurs SKIP_LINE(SPACING : in. POSITIVE_COUNT = 1):
7 Operates on a file of mode IN_FILE.
) For a SPACING of one: Reads and discards all characters until a line terminator

has been read, and then sets the current column number to one. If the line ter-
minator is not immaediately followed by a page tarminator, the current line number
is incremented by one. Otherwise, If the line terminator is immadiately followed by
a page tarminator, then the page terminator is skipped, the current page number is
incremented by one, and the current line number is set to one.

- e X2 . T WV NN

0 For a SPACING greater than one, the above actions are performed SPACING times.
0 The exception MODE_ERROR s raised If the mode Is not IN_FILE. The exception
END_ERROR Is raised if an attempt is made to read a file terminator.

" funotion END_OF_LINE(FILE : In FILE_TYPE) retum BOOLEAN;
funotion END_OF_LINE return BOOLEAN:

roel ad - RS 4~ L0 a ™

Operates on a file of mode IN_FILE. Returns TRUE If a line terminator or a file
terminator |s next; otherwise returns FALSE .

s el
<

; 1 The axception MODE_ERROR s ralsed if the mode is not IN_FILE.
' procedure NEW_PAGE(FILE : in FILE_TYPE):
l procedure NEW._PAGE!:

" Operates on a flle of mode QUT_FILE. Outputs a line terminator if the current line Is

not terminated, or If the current page Is empty (that is, if the current column and
. line numbers are both equal to one), Than outputs a page terminator, which ter-
\ minates the current page. Adds one to the current page number and sets the cur-
‘I rent column and line numbers to one.

18 The exception MODE_ERROR s ralsed if the maode I8 not QUT_FILE.
" procedure SKIP_PAGE(FILE: In FILE_TYPE);
procedure SKIP_PAGE;
8 Operates on a file of mode IN_FILE. Reads and discards all characters and line
terminators until a page terminator has been read. Then adds one to the current
page numbar, and aets the current column and line numbers to one.

. 1 The exception MODE_ERROR s raised if the mode Is not IN_FILE. The exception
! END_ERROR Is raised If an attempt is made to read a file terminator,

14.3.4 Operations on Columns, Lines, and Pages 14-14

P T T N)

bmie

ooy B

(o

-

raf®a .

" e %

Input-Output

function END_OF_PAGE(FILE : In FILE_TYPE) return BOOLEAN;
function END_.OF_PAGE retum BOOLEAN;

Operates on a file of mode IN_FILE. Returns TRUE If thea combination of a line
tarminator and a page tarminator is next, or if a file terminator is next; otherwise
raturns FALSE.

The exception MODE_ERROR s raised if the mode is not IN_FILE,

function END_OF.FILE(FILE : In FILE_TYPE) return BOOLEAN;
function END_OF_FILE return BOOLEAN;

Operates on & flle of mode IN_FILE . Returns TRUE |f a flle terminator is next, or |t
the combination of a line, a page, and a file terminator is next; otherwise raturns
FALSE

The exception MODE_ERROR is raised if the mode is not IN_FILE .

The following subprograms provide for the control of the current position of reading or writing In a
flle. In all cases, the default fils Is the current output file,

procedure SET_COL(FILE : In FILE_TYPE; TO : in POSITIVEL.COUNT);
procudure SET_COL(TO : In POSITIVE_COUNT);

if the flle mode is OUT_FILE:

If the value apecified by TO Is greater than the current column number,
outputs spaces, adding one to the current column number after sach
space, untll the current column number equais the specified value. if the
value spacified by TO Is equal to the current column number, there is no
effect, If the value apecified by TO s leas than the cutrent column number,
has the effect of calling NEW_LINE (with a spacing of ona), then outputs
(TO - 1) spaces, and sets the current column number to the specified value.

The exception LAYOUT_ERROR Is ralsed if the value specified by TO
axceeds LINE_LENGTH whan the line length is bounded (that is, when it
doss not have the conventional value zern).

If tha file moda Is IN_FILE !

Reads (and dlscards) individual characters, line terminators, and page ter-
minators, until the next character to be read has a column number that
equala the value specified by TO | thare is ne offsct If the current column
number already equals this value. Each transfer of a character or ter-
minator maintains the current column, line, and page numbers in the same
way as a GET procadure (see 14.3.5). (Short lines will be skipped until a
line is reached that has a character at the specified column position,)

The axception END_ERROR (s raised If an attempt is made to read & file
terminator.

14-16 Operations on Columns, Lines, and Pages 14.3.4

20

22

2

0

2

H

a8

30

N

N

33

& 2o
ea st

r

¥,

ANSI/MIL-STD-1816A Ada Reference Manual

. ™
< M procedure SET_LINE(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT); _
. procedurs SET_LINE(TO : In POSITIVE_COUNT); .
- If the file mode Is QUT.FILE :
\ ®
L L) ‘ If the value snacified by TO is greater than the current line numbar, has the s
offect of repeatedly calling NEWL_LINE (with a spacing of one), until the .
o cutrent line number equals the specified value. |f the value specified by TO .
is equal to the current line number, thera is no effect. If the value specified
by TO is less than the current line number, has the effact of calling R
NEW_PAGE followad by a call of NEW_LINE with a spacing equal to (TO - - "®
1), .
L B The exception LAYOUT._.ERROR Is raised if the value specifisd by TO R
| exceeds PAGE.LENGTH when the page length Is bounded (that Is, when it o
does not have the conventional value zero). .
SO If the mode Is IN_FILE:
a Has the effect of repeatedly calling SKIP_LINE (with a spacing of one), until jt', jf'
L the current line number aquals the value specified by TO ; there Is no effect IO
v If the current line number already equals this value, (Short pages will be b
b skipped until @ page is reached that has a line at the specified line poaition.) P ’
! ‘ R
L 40 The exception END_ERROR is raised if an attemnpt Is made to read a file N
[terminator, RIS
"‘) { ‘
¢ function COL(FILE : In FILE.TYPE) return POSITIVE_LCOUNT; RN
0 function COL retum POSITIVE_COUNT; AN
l Q Returns the current column number, | '
s “ The exception LAYOUT_ERROR Is raised If this number exceeds COUNT'LAST. “""
S function LINE(FILE : In FILE_TYPE) retun POSITIVE_COUNT;
j-_.: function LINE return POSITIVE_COUNT;
W e Returns the current line numiber, DR
n - b
; a Tha exception LAYOUT_ERROR s rained If this numbaer excesds COUNT'LAST. ’
. function PAGE(FILE : In FILE_TYPE) retum POSITIVE_COUNT; R
™ function PAGE return POSITIVE_COUNT; . -
*' a Returns the current page number. @
: @ The exception LAYOUT_ERROR Is raised If this number exceeds COUNT'LAST. B '
b 4
' % The column number, line number, or page number are allowed to exceed COUNT'LAST (as a o
consequence of the input or output of sufficlently many characters, lines, or pages). These svents o
. do not cause any exception to be ralsed. Howaver, a call of COL, LINE, or PAGE raises the

exception LAYOUT_ERROR If the corresponding number excaeds COUNT'LAST.

. 14.3.4 Operations on Columns, Linas, and Pages 14-18

L. e

Pafui At S

.y e - - - - |
. * . - . s e e [-
e PPRPIPL G S AU A 22 Tane

L

-"-'i. . f e .

PR e . e
. - e

A

\

W

“

s

'

~
wi et
o
GO

Input-Output

Note:

A page terminator is always skipped whenever the preceding line terminator is skipped. An
implementation may represent the combination of these terminators by a single character,
provided that it is properly recognized at Input.

Refarences: current column numbaer 14.3, current default file 14.3, currant line number 14.3, current page number
14.3, end_error excveption 14.4, flle 14,1, flle terminator 14.3, get procedure 14.3.6, in_fila 14.1, layout_arror excep-
tion 14.4, line 14.3, line number 14,3, line terminator 14.3, maximum page langth 14.3, mode_error exception 14.4,
open flle 14.1, page 14.3, page length 14.3, page terriinator 14,3, positive count 14.3, status_arror axception 14.4

14.3.6 QGet and Put Procedures

The procedures GET and PUT for items of the types CHARACTER, STRING, numeric types, and
enumeration types are described in subsequent sections. Features of these procodures that are
common to most of these types are described in this section. The GET and PUT procedures for
items of typs CHARACTER and STRING deal with indlvidual character values; the GET and PUT
procedures for numerlc and enumeration types treat the itams as lexical elements.

All procedures GET and PUT have forms with a tlle parametor, written first. Where this parameter
is omitted, the appropriate (input or output) current dsfault fila is understood to be specified. Each
procedura GET operatos on a file of mode IN.FILE. Each procedure PUT operates on & file of
mode OUT_FILE,

All procedures GET and PUT maintain the current column, line, and page numbers of the specified
file: the effect of each of these procedures upon these numbars ls the resultant of the effects of
individual transfers of characters and of Individual output or skipping of terminators. Each transfer
of a character adds orie to the ourrent crlumn number. Each output of a line terminator sets the
current column numbaer to one and adds one to the current line number. Each output of a page
terminator sets the current column and line numbers to ono and adds ona to the current page
number. For Input, each skipping of a line terminator sets the current colurnn number to ons and
addn one to the current line numbaer; each skipping of a page terminator sets the curient calumn
and line nimbers to one and adds one to the current page number. Similar corisidsrations apply to
the procedures GET_LINE , PUT.LINE, and SET.COL.

Several GET and PUT procadures, for numeric and enumeration types, have format parumeters
which specity fleld lengths; these parameters are of the nonnegative subtype FIELD of the type
INTEGER.

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any
GET procadurs for an unumaeration type begins by skipping any leading blarks, oi' line or page ter-
minators; a b/ank being defined as & space or a horizontal tabulatlon character. Next, characters
are Input only so long as ths sequence Input is an initial sequence of an identifier or of a character
literal (Ir. particular, input caases when a line terminator Is encountered). The character or line ter-
mingtor that causes input to cease remains avallable for subsequent input,

For a numeric typs, the GET proacedures have a format parameter called WIDTH . If tive value given
for thiz parameter is zero, the GET provedure procesds In the same mai.ner as for anumeration
types, but us'ng the syntax of numetlc literals instead of that of enumerdtion literals. If a nonzero
value I8 given, then exactly WIDTH characters are Input, or the characters up to a line terminator,
whichever comes firat; any skipped loading blanks are Included In the co''nt. The syntax used for
numaerlc literals ls an extended syntax that allows a leading #ign (but no " .drvening blanks, or line
ot page terminators),

14-17 Get and Put Procedures 14.3.6

-]

52

ANSI/MIL-STD-1815A Ada Reference Manual

Any PUT procedure, for an item of a numaeric or an enumeration type, outputs the vaiue of the item
as a numeric literal, identifier, or character literal, as appropriate. This is preceded by leading
spaces if required by the format parameters WIDTH or FORE (as described In later sections), and
then a minus sign for a negative value; for an enumeration type, the spaces follow Instead of
leading. The format given for a PUT procedurs is overridden if it is insufficiently wide.

Two further cases arise for PUT procedures for numeric and enumeration types, if the line length of
the specified output file is bounded (that is, if it does not have the conventional value zero). if the
number of characters to be output does not exceed the maximum line length. but is such that they
cannot fit on the current line, starting from tha c'irrent column, then (in effect) NEW_LINE is called
(with a spacing of one) before output of the item. Otherwise, if the number of characters exceeds
the maximum line length, then the exception LAYQUT..ERROR Is raised and no characters ars
output,

The exception STATUS_ERROR Is ralsed by any of the procedures GET, GET_LINE, PUT, and
PUT_LINE If the file to be usod is not open. The exception MODE_ERROR Is raised by the
procedurss GET and GFT_LINE If the mode of the.file to be used is not IN_FILE; and by the
procedurss PUT and PUT_LINE, if the mode Is not QUT_FILE.

The exception END_ERROR Is ralsec by a GET procedure if an attempt is made to skip a file
terminator. The exception DATALEHRROR |s raised by a GET procedure if the sequence finally input
is not a laxical elemant corresponding to the type, In particular If no characters were Input; for this
test, lsading blanks are Ignored; for an item of a numeric type, when a sign is Input, this rule
applies to the succeeding numaeric literal, The exception LAYOUT.ERROR 18 raised by n PUT
procedure that outputs to a8 parameter of type STRING, if the length of the actual string Is
insufficlent for the output of the item,

Examples:

I the examples, here and In sections 14.3.7 and 14.3.8, the string quotes and the lower case let-
ter b are not transferred: they are shown only o teveal the layout and spacss.

N ! INTEGER;

GETIN);

-- Charactarr at input Sequence Input Value of N

bh-12536b -12638 -12536

- bb12_838E1tb 12_B3BE1 1263560

-- bb12_6538E; 12_B3BE (none) DATA_ERROR raisad

Example of overridden \width parameter:
PUTITEM = -23, WIDTH w> 2); -- "-23"

Raferences: blank 14.3.8, column number 14.3, current defauit file 14.3, datu_error exception 14.4, end_orror
excoption 14,4, tile 14.1, fore 14.3.8, get procadure 14.3.6 14.3.7 14.3.8 14.3.9, In_flla 14.1, luyout. srror axception
14.4, line number 14,1 |ine terminotor 14,1, maximum linc langth 14.3, moda 14.1, modo_error exceptlon 14.4,
new_flle procedura 14.3.4, out_file 14.1, pags number 14.1, page terminator 14.1, put procedura 14.3.6 14,3.7
14.3.8 14,3.9, skipping 14.3.7 14,3.8 14.3.9, atatus.error exception 14.4, width 14.2.6 143.7 1438

14.3.6 Get and Fut Procaedures 14-18

Inpit-Output

g
' l 14.3.6 Input-Output of Characters and Strings ":’"..I '
":{ For an item of type CHARACTER the following procedures are provided: 1 ol
g e
AY procedure GET(FILE : in FILE_TYPE; ITEM : out CHARACTER); 2 .
\: procedure GET(ITEM : out CHARACTER); _

N After skipping any line terminators and any page terminators, reads the next 3 -
; character from the specifled input file and returns the value of this character in the g
out parameter ITEM. .
: '.:l‘,- The axception END_ERROR is raised if an attempt is made to skip a file terminator. 4
o procedure PUT(FILE : In FILE_TYPE: ITEM : in CHARACTER); ’ S
. procedure PUT(ITEM : in CHARACTER); f“‘j,. .

' If the line length of the specified output file is bounded (that Is, does not have the 8
X conventional vaiue zero), and the current column number exceeds it, has the effect

of calling NEW_LINE with a spacing of one. Then, or otherwise, outputs the given
character to the file,

..': For an item of type STRING the following procedures are provided: ?

s
‘:-« procedurs GET(FILE : In FILE.TYPE; ITEM @ out STRING); 8

N. procedurs GET(ITEM : out STRING);

*"' Determines the length of the given string and attempts that number of GET 9
operations for successive characters of tha string (in particular, no operation is par-
formed If the string is null).

.

procedure PUT(FILE : in FILE_TYPE; ITEM : In STRING);) S
procedure PUT(ITEM : in STRING); .

Determines the length of the given string and attempts that number of pUT "
T operations for successive characters of the string (in particular, no operation Is per-
; formed If the string Is null).

W procedure GET_LINE(FILE : in FILE_TYPE; ITEM : out STRING; LAST : out NATURAL); 17 i
N procedure GET_LINE(ITEM : out STRING; LAST : out NATURAL); R

-

Replaces successive characters of the specified string by successive characters 13

read from the specified input file. Reading stops if the end of the line is met, In

which case the procedure SKIP_LINE Is then called (in effect) with a spacing of A
one; reading also stops if the end of the string Is met. Characters not replaced are .. 0]
left undefined. : '

p

3

i«
o If characters are read, returns In LAST the Index value such that ITEM (LAST) Is the \

last character raplaced {the Index of the first character replaced is ITEM'FIRST), If

... no characters are read, returns In LAST an index value that is one less than

‘ ,J ITEM'FIRST.

f:-'. The axcaption END_ERROR Is raised If an attempt Is made to skip a file terminator. 15

.:.~.._“_,] 14-19 Input-Output of Characters and Strings 14.3.6

16

ANSI/MIL-STD-1815A Ada Reference Manual

procedure PUT_LINE(FILE : In FILE_TYPE; ITEM : in STRING);
procedure PUT_LINE(ITEM : In STRING);

Calls the procedure PUT for the given string, and then the procedure NEW_LINE
with a spacing of one.

Notes:

in a literal string paramater of PUT, the encicsing string bracket characters are not output. Each
doubled string bracket character In the enclosad string is output as a single string bracket
character, as a consequence of the rule for siring literals (see 2.6).

A string read by GET or written by PUT can extend over several lines.

Referencas. current column number 14,3, end_error exception 14.4, flle 14,1, file terminator 14.3, get procedure
14.3.5, line 14.3, line length 14,3, new_line procedure 14.3.4, page terminator 14,3, put procedure 14.3.4, skipping
14.3.5

14.3.7 Input-Output for Integor Types

The following procedures are defined In the generlc package INTEGER_IO. This must be
instantiated for the appropriate integer type (indicated by NUM in the spacification).

Values are output as decimal or based literals, without underline characters or exponent, and
preceded by a minus sign If negative. The format (which includes any leading spaces and minus
sign) can be specified by an optional fleld width parameter. Values of widths of tields in output for-
mats are of the nonnegative Integer subtype FIELD. Values of bases are of the integer subtype
NUMBER_BASE.

subtype NUMBER_BASE Is INTEGER range 2 .. 16;

The default fleld width and base to be used by sutput procedures are defined by the following
variables that are declared in the generic package INTEGER_IO:

DEFAULT_WIDTH : FIELD = NUM'WIDTN;
DEFAULT..BASE : NUMBER_BASE = 10;

The following procedures are provided:

procedure GET(FILE : In FILE_TYPE; ITEM : out NUM; WIDTH : In FIELD = 0):
procedurs GET(ITEM : out NUM; WIDTH : In FIELD := O);

If the value of the parameter WIDTH{ Is zero, skips any leading blanks, line
terminators, or page terminators, then reeds » piue or a minug sign if present, then
reads according to the syntax of an Integer literal (which may be a based literal), |
a nonzero value of WIDTH I8 supplied, then exactly WIDTH characters are Input, vr
the characters (possibly none) up *c a line terminator, whichever comes first; any
skipped leading blanks are included In the count.

Returns, in the parameter ITEM, the value of type NUM that corresponds to the
sequence Input,

The exception DATA_ERROR Is raised If the gequence Input does not have the
required syntax or If the value obtained is not of the subtype NUM.

14.3.7 Input-Output for Integer Types 14-20

ORI

Input-Output

9

procedure PUT(FILE : in FILE.TYPE; 0 e
ITEM : in NUM; Sl
WIDTH : In FIELD := DEFAULT_WIDTH, e
BASE : in NUMBER_BASE = DEFAULT_BASE);

procedurs PUT(ITEM ! in NUM:
WIDTH : in FIELD := DEFAULT_WIDTH;
BASE : In NUMBER_BASE = DEFAULT_BASE).

Outputs the value of the parameter ITEM as an integer literal, with no underlines, 10
no exponent, and no leading zeros (but & single zero for the value zero), and a
preceding minus sign for a negative value.

If the resulting sequence of characters to he output has fewer than WIDTH "
characters, then leading spaces are first output to make up the difference.

LRSSt FLIOSILF e~ N (R

Uses the syntax for decimal literal if the parameter BASE has the value ten (either 1
g explicitly or through DEFAULT_BASE); otherwise, uses the syntax for based literal,

with any letters in upper case. ' .{
l_‘ . o . ‘
3
%‘: procedure GET(FROM : In STRING; ITEM : out NUM; LAST : out POSITIVE); 13 L i{
[1 Reads an Integer value from the beginning of the given string, following the same 14 S 'j
Wl rules as the GET procedure that reads an Integer value from a file, but treating the oA
Eq end of the string as a file tarminator. Returns, in the parameter ITEM, the value of [?01
X type NUM that corresponds to the sequence input. Returns in LAST the Index S “
) value such that FROM (LAST) Is the last character read. l
:J The exception DATA_ERROR |s ralsed if the sequence input does not have the "
i raquired syntax or If the value obtained Is not of the subtype NUM.
o procedure PUT(TO : out STRING; "
o ITEM ! in NUM;
"y BASE : in NUMBER_BASE := DEFAULT_BASE);
i Outputs the value of the parameter ITEM to the given string, following the same "

- rule as for output to a file, using the length of the given string as the value for
o, WIDTH.

Examples: 0

e

m package INT.IO is new INTEGER._IO(SMALL_INT); use INT_IO;
K -- default format used st Instantiation, DEFAULT_.WIDTH = 4, DEFAULT..BASE = 10
2 PUT(126); - "b126" o
-\ PUT(-128, 7); -- "bbb-126" o
nd PUT(126, WIDTH => 13, BASE => 2); - "bbb2#1111110%" [
" .
"! References: based literal 2.4.2, blank 14.3.5, data_srror exception 14.4, decimal literal 2.4.1, field subtype 14,3.5, 19 o
- flle_type 14,1, get procedure 14.3.5, Intager_io package 14.3.10, integer literal 2.4, layout_error exception 14.4, line oo
‘.‘_;" terminator 14.3, put procedure 14.3.5, skipping 14,3.8, width 14.3.6 ' j',:
& '
» ‘
{[j 14-21 Input-Output for Integer Types 14.3.7 e

S ANSI/MIL-STD-1815A Ada Reference Manual

14.3.8 Input-Output for Real Types .‘.':j.;'{_
1 The following procedures are defined in the goneric packages FLOAT_IO and FIXED-.IO, which
i must be instantiated for the appropriate floating point or fixed point type respectively {indicated by -
Y, NUM In the specifications). ‘ .
ol 2 Values are output as decimal literals without underline characters. The format of each value output o
= consists of a FORE fleld, a decimal point, an AFT field, and (if a nonzero EXP parameter is supplied) j
e the lettar E and an EXP field. The two possible formats thus correspond to: :
P FORE . AFT .
3 and to: L
-t
R FORE . AFT E EXP
7 . without any spaces between these flelds. The FORE field may include leading spaces, and a minus .b

sign for negative values. The AFT fleld Includes only decimal digits (possibly with treiling zeros),
The EXP fleld Includes the sign (plus or minus) and the exponent (possibly with leading zeros).

5 For floating point types, the defauit lengths of these fields are defined by the following variables
i that are declarud In the generic package FLOAT_IO :

DEFAULT_FORE : FIELD = 2;
" DEFAULT_AFT : FIELD = NUM'DIGITS-1;
DEFAULT.EXP : FIELD = 3;

- [For fixed point types, the default lengths of these fields are defined by the foliowing varlables that .

g are declared In the generic package FIXED_IO: '

- DEFAULT_FORE : FIELD == NUM'FORE; R
O DEFAULT_AFT : FIELD == NUM'AFT; ARt
= DEFAULT_EXP : FIELD i= O;

1 The following procedures are provided:

> 8 procecture GET(FILE : In FILE_TYPE; ITEM : out NUM: WIDTH : in FIELD := O);
e procedure GET(ITEM : out NUM; WIDTH : in FIELD = O);

N) If the valus of the parameter WIDTH is zero, skips any leading blanks, line
by terminators, or page terminators, then reads a plus or a minus sign If present, then
" reads according to the syntax of a real (iteral (which may be a based literal), If a
nonzero value of WIDTH s supplied, then exactly WIDTH characters are Input, or
> the characters (possibly none) up to a line terminator, whichever comes first; any
‘ skipped leading blanks are Includad In the count.

10 Returns, in the parameter ITEM, the value of type NUM that corresponds to the
saquence input.

0 " The exception DATA_ERROR is raised If the sequence input does not have the
o= required syntax or if the value obtained is not of the subtype NUM,

v 14.3.8 Input-Output for Real Types 14-22

s oy - o . .) . .) "
T N Y VSN PO ST PN T RS ey g HITET LIV S YR SPUN WA S T S . T T I N ST) bie e u NERSIN

[I PREEN P N
- ks ey

Input-Qutpuit

: procadu » in FILE.TYPE; n
v n MUM; o
' %t e FIELD = DEFAULT._FORE: e
- 0 tin 0FLD = DEFAULT_AFT; " e
1. EXP . In FIELD = DEFAULT_EXP):

procedure PLTUITERY : in NUM;
FORE : in FIELD = DEFAULT_FORE;
AFT tan FICLD = DEFAULT-AFT;
EXF vin FIELDY = DEFAULT_EXP);

o Outputs the value of ti"a parameter 'TEM as a decimal literal with the format 13

defined by FORE, AFT and EXP. If the vaiue s hegative, a minus sign is Included in

- the intager part, It EXP has the value zeru, then the integer part to be output has as

N many digits as are needed to represent the integer part of the value of ITEM, »
s overriding FORE If necessary, or consists of the digit zero if the value of ITEM has L
no integer part. "

If EXP has a value greatar than zero, then the Integer part to be output has a single "
digit, which Is nonzero excupt for the value 0.0 of ITEM.

.I In both cases, however, If the integer part to be output has fewer than FORE 18 R
characters, Including any minug sign, then leading spaces are first output to make ;l
. up the difference. The numbar of digits of the fractional part is given by AFT, or Is K
v one If AFT equals zero. The value Is rounded; a value of exactly one haif in the last o
v place may be rounded eithsr up or down.

It EXP has *he value zaro, there la no exponent part. If EXP has a value greater than 16 IRk
zero, then the exponent part to be output has as many digits as are needed to . ,4.
{ reprasent the exponent part of the value of ITEM (for which a single digit integer aa
part is used), and includes an Initial sign (plus or minus). |f the exponent part to be Lo
L~y output has fewer than EXP characters, Including the sign, then leading zeros
o precede the dligits, to make up the difforence. For the value 0.0 of ITEM, the
exponent has the value zero.

' procedure GET(FROM : In STRING; ITEM : out NUM; LAST : out POSITIVE); 1

Reads a real value from the beginning of the given string, following the same rule 8
as the GET procedure that reads a real value from a file, but treating the snd of the

: string as a file tarminator. Returns, in the parameter ITEM, the value of type NUM R
s that corresponds to the sequence input, Returns in LAST the index value such that 2l
FROM(LAST) is the last character read.

The exception DATA_ERNROR Is raised If the sequence input does not have the 0

‘,::'5 required syntax, or if the value obtained is not of the subtype NUM.
.A o8
9 procedure PUT(TO : out STRING; 0 i
ITEM : In NUM;

: AFT :In FIELD = DEFAULT_AFT;

EXP in INTEGER := DEFAULT_EXP);

: Outputs the value of the parameter ITEM to the given string, following the same 2 “.q
- § rule as for output to a file, using a value for FORE such that the sequence of s
characters output exactly fills the string, incluvding any leading spaces. -

14.23 Input-Output for Real Types 14.3.8 '

W T R T Gy S Gy ey O SN VSR TN SR T

F4]

24

ANSI/MIL-STD-1816A Ada Reference Manual

Examnples:

package REAL_IO Is new FLOAT_IO(REAL); use REAL_IO;
-- default format used at Instantiation, DEFAULT_EXP = 3

X ! REAL = -123.45687; -- digits 8 (ses 3.5.7)
PUT(X); -- default format “-1.2345670E+02"
PUT(X, FORE => B, AFT => 3, EXP => 2); -- "bbb-1.23B6E+2"
PUT(X, 6, 3. O); - "b-123.457"

Note:

For an item with a positive value, If output to a string exactly fills the string without leading spaces,
then output of the corresponding negative value will raise LAYOUT_ERROR.

References: oft attribute 3.5,10, based literal 2.4.2, blank 14.3.5, duta_error exception 14.3.5, decimal litoral 2.4.1,
tield subtype 14.3.8, fils_type 14,1, fixed..lo package 14.3,10, fioating_(o package 14.3.10, fore sttribute 3.5.10, get
procedure 14.3.5, layout_error 14.3.5, line terminator 14.3.8, put procedure 14.3.5, real literal 2.4, skipping 14.3.8,

width 14,38
14.3.9 Input-Qutput for Enumeration Types

The following procedures are defined in the generic pack#ge ENUMERATION.IO, which must be
inatantiated for the appropriate enumeration type {Indicated by ENUM in the specification).

Values are output using either upper or lower case letters for identifiers. This is specified by fho
parameter SET, which is of the enumeration type TYPE_SET.

type TYPE_SET is (LOWER._CASE, UPPER_CASE);

The format (which Includea any trailing spaces) can be specitied by an optional fleld width
parameter. The default fleld width and letter case are defined by the following variables that are
declarad in the generic package ENUMERATION..IO!

DEFAULT_WIDTH : FIELD = O;
DEFAULT_SETTING : TYPE_SET = UPPER_CASE;

The following procedures are provided:

procedure GET(FILE : in FILE_TYPE; ITEM : out ENUM);
procedure GET(ITEM : out ENUM);

After skipping any leading blanks, line terminators, or page terminators, rends an
identifier according to the syntux of this lexical element (lower and upper case
being considered equlvalent), or a charactar literal according to the syntax of this
lexical elamant (including the apostrophes). Returns, in the parametar |TEM, the
value of type ENUM that corresponds to the sequence input,

The exception DATA_ERROR |5 ralsed if the sequence Input does not have the
required syntax, or If the identifier or character literal does not correspond to a
valus of the subtype ENUM.

14.3.9 Input-Output for Enumeration Types 14-24

.
bl

by

Input-Output

procedure PUT(FILE : In FILE_TYPE;
ITEM : In ENUM;
WIDTH : in FIELD = DEFAULT_WIDTH;

SET : In TYPE_SET := DEFAULT_SETTING):
procedure PUT(ITEM : in ENUM: .
WIDTH : in FIELD := DEFAULT_WIDTH; .
SET : In TYPE_SET := DEFAULT_SETTING);
Outputs the value of the parametsr ITEM as an enumeration literal (either an »
identifier or a character literal). The optional parameter SET indicates whether)
lower case or upper case is used for identifiers; it has no effect for character @,

literals, If the sequence of characters produced has fewer than WIDTH characters,
; then trailing spaces are finally output to make up the difference.

proosdure GET(FROM : in STRING; ITEM : out ENUM; LAST : out POSITIVE);

—r—
=

1

3

Reads an enumeoration value from the beginning of the given string, following the "
same rule as the GET procedure that reads an enumaration value from a file, but
treating the end of the string as a file terminator. Returns, In the parameter ITEM,

the value of type ENUM that corresponds to the saquence input. Returns in LAST

the Index value such that FROM (LAST) Is the last character read.

The exception DATA_ERROR |s raised if the sequence input does not have the)

required syntax, or if the identifier or character literal does not correspond to a
value of the subtype ENUM.

procedure PUT(TO : out STRING; n
ITEM : iIn ENUM;
SET : In TYPE_SET := DEFAULT.SETTING);

Outputs the vaiue of the parameter ITEM to tha given string, following the same "

rule as for output to a file, using the length of the given string as the vaiue for
WIDTH.

. R T e A Eank AN Pt TV e T WSS £ s S

3 Althougn the specification of the package ENUMERATION_IO would allow instantiation for an

integer type, this is not the intended purpose of this generic package, and the effect of such instan-
tiations is not definad by the language.

' Notes: S
:I Theru is a difference between PUT defined for characters, and for enumeration values. Thus w

; TEXT_IO.PUT('A'); -~ outputs the character A

‘* package CHAR_IO Is new TEXT_IO.ENUMERATION_IO(CHARACTER); e
i CHAR_IO.PUT('A’): - outputs the character 'A’, between single guotes T

The type BOOLEAN Is an enumeration type, hence ENUMERATION_IO can be instantiated for this "
type.

References: blank 14.3.8, data_error 14.3.5, enumerstion_io package 14.3.10, fisid subtype 14,3.5, file_type 14.1, " o .
get procedura 14.3.5, line terminator 14.3.5, put procedure 14.3.5, skipping 14.3.5, width 14.3.5 Y

. s 3 T R
Lt tLTEE

Input-Output for Enumeration Types 14.3.9

g

............. . . . W .
Py O o N O N T S Y Y W N A R R

- ANS//MIL-STD-1815A Ada Reference Manual

o 14.3.10 Specification of the Package Text_IO

{ ' with |10_EXCEPTIONS;
package TEXT_IO is

L)
:
ol type FILE_TYPE s limited private;
N type FILE.MODE is (IN_FILE, OUT_FILE):

typs COUNT Is range O .. implementation_defined;
subtype POSITIVE_COUNT Is COUNT range 1 .. COUNTLAST,;

i UNBOUNDED : constant COUNT = O: - line and page length

\ subtype FIELD is INTEGER range O .. /mp/ementation_defined,
> subtype NUMBER_BASE s INTEGER range 2 .. 186;

, type TYPE_SET Is (LOWER._CASE, UPPER_CASE):

— File Management

procedure CREATE (FILE : in out FILE_TYPE;
B MODE :

: In FILE_MODE = OUT_FILE;
NAME : In STRING = "

FORM : in STRING - ")

procedure OPEN (FILE : in out FILE_TYPE;

MODE : In FILE_MODE;

NAME : In STRING;
b FORM : in STRING = "*);

' procadure CLOSE (FILE : in out FILE_TYPE);
A procedure DELETE (FILE : In out FILE_TYPE);
o procedure RESET (FILE : In out FILE_TYPE: MODE : In FILE_MODE);
1 prooedure RESET (FILE : in out FILE_TYPE);

funotion MODE (FILE : in FILE_TYPE) return FILE_MODE :
: function NAME (FILE : in FILE_TYPE) retum STRING;
[funotion FORM (FILE : In FILE_TYPE) retum STRING;

)

N function IS_OPEN(FILE : in FILE_TYPE) retum BOOLEAN;
:;1 -- Control of default Input and output flles

s procedure SET_INPUT (FILE : In FILE_TYPE);

N prooedure SET_QUTPUT (FILE : In FILE_TYPE);

N function STANDARD_INPUT retum FILE_TYPE:

X funotion STANDARD_QUTPUT retum FILE_TYPE;

-. funotion CURRENT_INPUT veturn FILE_TYPE:

ty function CURRENT..QUTPUT returmn FILE_TYPE:

14.3.10 Specification of the Package Text./O

14-28

il

T

‘,"
LT

B .
.‘ ', f -
. PRI
)

e

...........

input-Output

14-27

T
B S e
PR YPURPUTOK FYG WU O oy A

-- Specification of line and page lengths

procedure
procedure

procedure
procedure

function
function

function
function

- Column,

procedure
procedure

procedure
prooedure

function
funotion

procedure
procedure

prooedure
prooedure

function
function

funation
funotion
prooedure
prooedure

procedure
procedure

SET_LINE_LENGTH (FILE : in FILE_TYPE; TO : in COUNT);

SET_LINE_LENGTH (TO : in COUNT);

SET_PAGE_LENGTH (FILE : in FILE.TYPE; TO : in COUNT);

SET_PAGE_LENGTH (TO : In COUNT):

LINE_LENGTH (FILE : in FILE_TYPE) retum COUNT;
LINE_LLENGTH retum COUNT;

PAGE_LENGTH (FILE : in FILE_TYPE) retum COUNT;
PAGE_LENGTH retum COUNT;

Line, and Page Control

NEW_LINE (FILE : In FILE_TYPE; SPACING : in POSITIVE_COUNT := 1);

NEW_LINE (SPACING : In POSITIVE_COUNT := 1);

SKIP_LINE (FILE : in FILE_TYPE; SPACING. : in POSITIVE_COUNT := 1);

SKIP_LINE (SPACING : in POSITIVEL.COUNT = 1);

END_OF_LINE (FILE : in FILE_TYPE) retum BOOLEAN;
END_OF_LINE return BOOLEAN;

NEW_PAGE (FILE : in FILE_TYPE);
NEW_PAGE;

SKIP_PAGE (FILE : In FILE_TYPE);
SKIP_PAGE:;

END_OF_PAGE (FILE : in FILE_TYPE) retum BOOLEAN;
END_OF_PAGE retum BOOLEAN;

END_OF_FILE (FILE : In FILE_TYPE) retum BOOLEAN;
END.OF_FILE return BOOLEAN;

SET.COL (FILE : In FILE_TYPE; TO : in POSITIVE_COUNT);
SET_COL (TO : in POSITIVE.COUNT);

SET_LINE (FILE : in FILE_TYPE; TO : In POSITIVE_.COUNT);
SET_LINE (TO : in POSITIVE_COUNT);

funution COL (FILE : in FILE_TYPE) retum POSITIVE_COUNT;
function COL retum POSITIVE_COUNT;

funotion LINE (FILE : In FILE.TYPE) retum POSITIVE_COUNT;
function LINE return POSITIVE_.COUNT;

function PAGE (FILE . In FILE.TYPE) retumn POSITIVE_COUNT;
funotion PAGE return POSITIVE_COUNT;

]|

Specification of the Package Text /0 14.3.10

PRI SO T SDUT AP S, S

e

e »Au‘!

T T N O T Y

ANSIMIL-STD-1815A4 Ada Reference Manual

-- Character Input-Output

procedure GET(FILE : in FILE_TYPE; ITEM : out CHARACTER);
: procedure GET(ITEM : out CHARACTER);
i procedurs PUT(FILE : in FILE_TYPE; ITEM : In CHARACTER);
; procedure PUT(ITEM : in CHARACTER);

-
Cd
)/

~ String Input-Output

procedure GET(FILE : in FILE_TYPE; ITEM : out STRING);
procedure GET(ITEM : out STRING):
procedure PUT(FILE : in FILE_TYPE; ITEM : In STRING):
procedure PUT(ITEM : in STRING):

procedure GET_LINE(FILE ! In FILE.TYPE; ITEM : out STRING; LAST : out NATURAL);
procedure GET_LINE(ITEM : out STRING; LAST : out NATURAL):

procedure PUT_LINE(FILE : In FILE_TYPE: ITEM : in STRING):

procedure PUT_LINE(ITEM : in STRING);

- Generic package for Input-Output of Intager Types
generic

typa NUM s range <>;
package INTEGER.IO s

| DEFAULT WIDTH : FIELD = NUM'WIDTH,
DEFAULT.BASE : NUMBER..BASE = 10;

procedure GET(FILE : in FILE_TYPE; ITEM : out NUM; WIDTH : In FIELD :~ O):
procedure GET(ITEM : out NUM: WIDTH : in FIELD = O); i

Cad nn R

procedute PUT(FILE : in FILE.TYPE i
ITEM :in NUM; o
WIDTH : in FIELD := DEFAULT.WIDTH; e
BASE ! iIn NUMBER_BASE := DEFAULT_BASE); e
procedure PUT(ITEM : in NUM; <
WIDTH : in FIELD = DEFAULT_WIDTH; N
BASE : In NUMBER_BASE = DEFAULT.BASE): SN
procedure GET(FROM : in STRING; ITEM : out NUM; LAST : out POSITIVE) M.j
procedure PUT(TO ! out STRING; o
ITEM : In NUM: e
BASE : in NUMBER_BASE := DEFAULT_BASE); . :
ond INTEGER_IO; oA
L g
4
.1
. &
Y

14.3.10 Specification of the Package Text_/O 14-28

T |

Input-Output

-- Generic packages for Input-Output of Real Types

A generio
1 type NUM s digits <>
3 package FLOAT_IO is

¥ DEFAULT_FORE : FIELD :
! DEFAULT_AFT : FIELD :
: DEFAULT_EXP : FIELD

1

2; o
NUM'DIGITS-1; O

+

i

. procedure GET(FILE : in FILE_TYPE; ITEM : out NUM: WIDTH : in FIELD

= O
procodure GET(ITEM : out NUM; WIDTH : In FIELD = O);
., procedure PUT(FILE : in FILE_TYPE;
y ITEM :in NUM;
. FORE : In FIELD = DEFAULT.FORE;
s AFT ! in FIELD = DEFAULT_AFT;
b EXP : in FIELD = DEFAULT.EXP);
procedure PUT(ITEM : in NUM; N
. FORE : In FIELD = DEFAULT_FORE;)
Ny AFT ! in FIELD = DEFAULT.AFT:
L EXP ! In FIELD = DEFAULT.EXP); ' =
procedure GET(FROM : in STRING: ITEM : out NUM; LAST : out POSITIVE); :
g procedure PUT(TO : out STRING;
ITEM :in NUM; e
| AFT { in FIELD = DEFAULT_AFT;
EXP t in FIELD = DEFAULT_EXP);
% end FLOAT_IO;
B generic
- type NUM s deita <>
' package FIXED.IO Is
4 DEFAULT.FORE : FIELD = NUM'FORE;
v DEFAULT_AFT ! FIELD = NUM'AFT;
DEFAULT_EXP ¢ FIELD = O; O
vi
procedure GET(FILE : In FILE_TYPE; ITEM : out NUM; WIDTH : In FIEID = Q) S
. procedure GET(ITEM : out NUM; WIDTH : In FIELD = O); B
e procedure PUT(FILE : In FILE_TYPE;
o ITEM : in NUM;)
FURE ! In FIELD := DEFAULT.FORE;
L AFT { In FIELD = DEFAULT_AFT;
EXP : in FIELD = DEFAULT_EXP); -
S procedure PUT(ITEM : in NUM; L
e FORE : in FIELD :» DEFAULT_FORE:
- AFT ! In FIELD := DEFAULT_AFT;
¥ EXP : In FIELD := DEFAULT_EXP):
B proosdure GET{FROM : in STRING: 'TEM : out NUM; LAST : out POSITIVE) . "
. | procedure PUT(TO : out STRING:
! ITEM :in NUM; o
Ny AFT tin FIELD = DEFAULT_AFT;
' EXP : in FIELD = DEFAULT_EXP); S
o end FIXED_IO; B
I:-ﬁ; 14.29 Specification of the Packaye Text /0 14.3.10

ANSI/MIL-STD-1816A Ada Reference Manua!

-- Generic package for Input-Output of Enumeration Types

generic
type ENUM s (<>);
package ENUMERATION_IO is

DEFAULT.WIDTH : FIELD := O;
DEFAULT_SETTING : TYPE_SET = UPPER_CASE;

procedure GET(FILE ¢ in FILE_TYPE; ITEM : out ENUM);
procedure GET{ITEM : out ENUM):
procedure PUT(FILE ! In FILE.TYPE;
ITEM ! in ENUM;
WIDTH : in FIELD w= DEFAULT.WIDTH;
SET t In TYPE_SET = DEFAULT_SETTING);
procedure PUT(ITEM tin ENUM;
WIDTH : in FIELD = DEFAULT.WIDTH;
SET ¢ in TYPE_SET = DEFAULT_SETTING);

procedure GET(FROM : In STRING; ITEM : out ENUM; LAST : out POSITIVE);
procedurs PUT(TO : out STRING;

ITEM :in ENUM;

SET ! in TYPE_.SET = DEFAULT.SETTING);

ond ENUMERATION.IO:

-« Excaptions
STATUS_ERROR : exception renames |Q_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR exception renames |O_EXCEPTIONS.MODE_ERROR;
NAME_ERROR excaption renames |O_EXCEPTIONS.NAME_ERROR;

USE_ERROR : exception renames (O_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR ! exception renames |O_.EXCEPTIONS.DEVICE..ERROR:

END_ERROR exoeption renames |O_EXCEPTIONS.END_ERROR;
DATA_ERROR sxoeption renames |O_EXCEPTIONS.DATA_ERROR;
LAYOUT_ERROR : exoeption renames |0..EXCEPTIONS.LAYOUT_ERROR;
private
-- Implementation-dependent
end TEXT.IO;

14.4 Exceptions In Input-Qutput

The following excaptions can be raised by input-output operations, They are declared in the
package 10..EXCEPTIONS , defined In section 14.5; this package Is named in the context clause for
each of the thres Input-output pockages. Only outline descriptions are given of the conditions
under which NAME_ERROR, USE_.ERROR, and DEVICE..ERROR are rnised; for full detalls see
Appendix F, If more than one error condition exists, the corresponding axcoption that anpears
earliest In the following list Is the one that ls raised.

The exception STATUS_ERROR is raised by an attempt to operute upon a file that Is not open, and
by an attempt to open e flle that |s already open.

14.4 Exceptions In Input-Output 14-30

5 Input-Output . :j

A ',
N The exception MODE_ERROR is raised by an attempt to tead frum, or test for the end of, a file 3 L
whose current mode I8 QUT_FILE, and also by an atternpt to write to & file whose cuirent moda is
B IN_FILE. In the case of TEXT_IQ, the exreption MODE_ERROR Is also raised by spacifying a file
» whose current mode is OUT_FILE In a call o/ SET_INPUT, SKIP.LINE, END..OF_LINE, SKIP_PAGY,

] or END_OF_PAGE; and by specifying a file whose current mode I8 IN_FILE in a call of
) SET_OUTPUT, SET_LINE_LENGTH, SET_PAGE.LENGTH, LINE_LLENGTH, PAGF_LENGTH,
NEW..LINE, or NEW_PAGE.

The exception NAME_ERROR Is raised by a call of CREATE or OPEN if the string glven for the .
paramater NAME does not allow the Identification of an external fila, For example, this exception is

. raised if the string Is lrproper, or, aiterr.utively, If either none or mora than o.ia external fil¢ corraa-
ponds to the satring.

The exception USE_ERROR Is raised if an operation ia attempted that is not possible for ruasons 5
i that depend on characteristics of the external file. For example, (' exception is raised by the

X procedure CREATE, among other circumstances, if the given mode I8 OUT.FILE but the form

¥ specifies an input only device, if the parameter FORM specifier invalld access rights, or It cn
oxternal file with the given name uireacdy exists and overwriting is not allowed,

e The excaption DEVICE_ERROR Is ralsed If an Input-output operation cannot be compluteu because 8
of a maifunction of thu underlying systam,

:'i The exception END_ERROR |s raised by an attempt to skip (read paat) the end of a fiia. 9

2 The exception DATALERROR may be raised by the procedure READ If the element read cannot be 0
4 interpreted as a value of the required typs. This exception is also ralsed by a procodure GET

{ (defined in the package TEXT.IO) If the Input charscter sequence fails to satisty the required

! syntex, or if tho value input does not belong (o the range of the required typa or subtype.

' The exception LAYOUT_ERKOR Is ralsed (in tuxt input-output) by COL, LINE, or PAGE If the value 0

:",Q roturnad exceeds COUNT'LAST. The exception LAYOUT_ERROR Is also raised on output by an

o attempt to set column or line nurnbers In excess of specified maximun: line or page lengtha,

" respectively (axcluding the unboundad cases). It is also ralsed by an attempt to PUT too many

W characters to a string,

A

- References: col function 14,3.4, arsate procedurs 14.2,1, end_of..line function 14.3.4, end_of_page function 14.3.4, 10

:.j- axternil file 14.1, file 14,1, form wstring 14.1, get provedura 14.3.5, In_file 14.1. io_esceptions package 14,8, iine

function 14,3.4, line_langth function 14.3.4, name string 14.1, naw_line procedure 14.3.4, new_page procedurs

:.:1 14.3.4, vpsn procedure 14,21, out.tile 14,1, page function 14.3.4, page_length function 14.3.4, put procedura

o 14.3.8, read procedure 14.2,2 14,2.3, aut.Input procedure 14.3.2, set_line_length 14.3.3, sot_page.length 14.3.3,

< set_output 14.3.2, skip.line provedure 14.3.4, skip_page procedure 14.3.4, text_lo package 14.3

"

{

L] L

L R

R

W' "

i :
14-31 Exceptions In Input-Output 14.4 2

ANSI/MIL-STD-1815A Ada Reference Manual

e L9 0

l' 146 Specification of the Pankage 10._Exceptions
') This package defines the exceptions noeded by the packages SEQUENTIAL.IO, DIRECT_I0, and)
TEXT.IO. ofa
2 package |O_EXCEPTIONS is ‘
STATUS_ERROR : ewception;
MODE._ERROR ! excaption: .
NAME_ERROR : exception; SR
USE._ERROR i exception; @)
DEVICE..ERROR : szasption; R
END._ERROR ¢ axcaption;
DATA_ERROR ! axception;
LAYOUT..ERROR : axcaption; o
end {0EXCEPTIONS; —
14.8 Low Level Input-Ouxput .
§ '_-‘-'ﬁ "

1 A low level input-output operation Is an operation acting on a phyaical devioe. Such an operation
is handled by uwing one of the (overioaded) predufined procedures SEND._CONTROL and
RECEIVE_CONTRO!

1 A procadure SEND..CONTROL may be used to send control information to a physical device, A L
prousdures RECEIVE.CONTROL may by used to monitor the sxecution of an input-output operation b oo
by reqi:asting Infortnation from the phyaical device, R

3 Suach procedures are declar 4 in the standard puckage LOW_LEVEL_IO and have two paramaters R
idantifying the cavice and the data. However, the kinds and formats of the control information will RIS
depend on the physical characteristics of the machine and the device Hence, the typas of the '
parameters are iImplamsntation-defined, Qverloaded definitions of thase procedures should he e
provided for the supported devices. MR

q The visible part of the package defining these procedures is outlined as follows:

» peckage LOW_LEVELIO s R
-~ declarations of the possible types for DEVICE and DATA. ol '
-- declaratiuns of overloaded procedures for these types;
procedure SEND_CONTROL (DEVICE : device_type; DATA : In out data_type),
procodure RECEIVE.CONTROL (DEVICE : device_type: DATA . In out data.tyne);
und;

v The bodias of the provedures SEND_CONTROL and RECEIVE_CONTROL for various devices can he '
supplied in the body of the package LOW_LEVEL.I0. These procedure bodles may be written with N
node statements.

14.6 Low Level Input-Output 14-32

LR

.

AN
. S
an & et

[
kY

. T et s s .,
. Talal s .
P = F—t -z . et

JD ;:’..._ itaaty

g

.

Input-Qutput
14.7 Example of Input-Output

The following example shows the use of some of the text input-output facilities in a dialogue with
a user at a terminal. The user is promptead to typs a color, and the program responds by giving the
number of items of that color available In stock, according to an inventory. The default input and
output files are used. For simplicity, all the requisite instantiations are given within one sub-
program; In practice, a package, separate ' m the procedure, would be used.

with TEXT_IO; use TEXT..I0;
procedure DIALOGUE s
type COLOR Is (WHITE, RED, ORANGE, YELLOW, GREEN, BLUE, BROWN);
package COLOR_IO is new ENUMERATION_IO(ENUM => COLOR);
package NUMBER_IO is new INTEGER_IO(INTEGER);
use COLOR.10, NUMBER._IO;

INVENTORY : array (COLOR) of INTEGER := (20, 17, 43, 10, 28, 173, 87);
CHOICE : COLOR;

procedure ENTER_COLOR (SELECTION : out COLOR) is

begin
loop
begin
PUT ("Color selected: "); -- prompts user
GET (SELECTION); -- accepts color typed, or raises exception
return;
exception
when DATA_ERROR =
PUT("Invalld color, try again. “); -~ user has typed new line
NEW_LINE(2);
-- completes exacution of the block statement
ond;
end loop; -- repeats the hlock statement until color accepted
end;

begin -- statements of DIALOGUE;
NUMBER_!O.DEFAULT.WIDTH := B;

loop
ENTER_COLOR(CHOICE); =-- wuser types color and new line
SET_COL(B); PUT(CHOICE); PUT(" items availabla:"):
SET_COL(40); PUT(INVENTORY(CHOICE)); -- default width is b
NEW.LINE;

end loop;

end DIALOGUE;
Example of an Interaction (characters typed by the user are itallcized):

Color selacted: Black
invalid color, try again.

Color selected: Blue

BLUE items available: 173
Color selected: Yellow
YELLOW items avalilable: 10
14-33 Example of Input-Output 14.7

A, SO, SURET U OURD L LAY YUUN 5 VISP OR TN PSUU | APy | SV VPR S P

"
K
R
R]

x -

« o
-

A. Predefined Language Attributes

This annex summarizes the definitions given elsewhere of the predefined language attributes.

P'ADDRESS

P'AFT

P'BASE

P'CALLABLE

P'CONSTRAINED

For a prefix P that denotes an object, a program unit, a label, or an entry:

Yields the address of the first of the storage units allocated to P. For a sub-
program, package, task unit,or label, this value refers to the machine code
assocliated with the corresponding body or statement. For an entry for
which an address ciause has been given, the value refers to the cor-
responding hardware Interrupt. The value of this attribute is of the type
ADDRESS defined in the package SYSTEM. (See 13.7.2.)

For a prefix P that denotes a fixed point subtype:

Yields the number of decimal digits needed after ihe point to accommodate
the precision of the subtype P, unless the delta of the subtype P is greater
than 0.1, in which case tha attribute yields the value one. (P'AFT lIs the
smallest positive Integer N for which (10%xN)«P'DELTA Is greater than or
equal to one.) The velue of this attribute is of the type universal_integer.
(Ses 3.5.10.)

For a prefix P that denotes a type or subtype:

This attribute danotes the base type of P. It is only allowed as the prefix of
the name of another attribute: for example, P'BASE'FIRST. (See 3,3.3.)

For a pefix P that is appropriate for a task tyre:

Yields the value FALSE when the execut of the task P is either completed

or terminated, or when the task I rmal; vyields the value TRUE
otherwise. The value of this attribute .s predefined type BOOLEAN .
(See 9.9.)

For a prefix P that denotes an object of a type with discriminants:

Ylelds the value TRUE If a discriminant constraint applies to the object P, or
if the object I3 a constant (including a formal parameter or generic formal
parameter of mode In); ylelds the value FALSE otherwise. If P Is a generic
formal paramater of mode In out, or if P is a formal parameter of mode in out
or out and the type mark glven in the corresponding parameter specification
denotes an unconstrained type with discriminants, then the value of this
attribute Is obtained from that of the corresponding actual parameter. The
value of this attribute Is of the predefined type BOOLEAN . (See 3.7.4.)

7 P'CONSTRAINED

i 8 P'COUNT

v P'DELTA

,. © P'DIGITS

. 1 P'EMAX

1 P'EPSILON

1 P'FIRST

® « PFERST

e
o
. 'A
. ‘.
R
=
ge
X

ANSI/MIL-STD-1815A Ada Reference Manual

For a prafix P that denotes a private type or subtyps:

Yields the value FALSE if P denotes an unconstrained nonformal private type
with discriminants; also ylelds the value FALSE if P denotes a generic formal
private type and the associated actual subtype is either an unconstrained
type with discriminants or an unconstrained array type; yields the value
TRUE otherwlise. The value of this attribute is of the predefined type
BOOLEAN. (See 7.4.2))

For a prefix P that denotes an entry of a task unit:

Yields the number of entry calis presently queued on the entry (if the
attribute is evaluated within an accept stateament for the entry P, the count
does not include the calling task). The value of this attribute is of the type
unlversal_integer. (See 9.9.)

For a prefix P that denotes a fixed point subtype:

Ylelds the value of the delta specified in the fixed accuracy definition for the
subtype) P. The valus of this attribute is of the type universal_real. (See
3.5.10.

For a prefix P that denotes & floating point subtype:

Yislds the number of decimal digits in the decimal mantissa of model
numbers of the subtype P. (This attribute yields the number L) of section
3.5.7.; The value of this attribute is of the type universal_integer. (See
3.5.8.

For a prefix P that denotes a floating point subtype:

Yields the largest exponent vaiue in the binary canonical form of model
numbers of the subtype P. (This attribute ylelds the product 4«B of section
3.5.7.; The value of this attribute is of the type universal_integer. (See
3.56.8.

For a prefix P that denotes a floating point subtype:

Yields the absolute value of the difference between the model number 1.0
and the next model number above, for the subtype P. The value of this
attribute 1s of the type universa/_real. (See 3.56.8.)

For a prefix P that denotes a scalar type, or a subtype of a scalar type:

Yields the lower bound of P. The value of this attribute has the same type as
P. {See 3.5.)

For a prefix P that is appropriate for an array type, or that denotes a con-
stralned array subtype:

Yieids the lower bound of the first index range. The value of this attribute
has the same type as this lower bound. (See 3.6.2 and 3.8.2))

Predefined Language Attributes

P'FIRST(N)

P'FIRST_BIT

P'FORE

P'IMAGE

P'LARGE

P'LAST

P'LAST

For a prefix P that is appropriate for an array type, or that denotes a con-
stralned array subtype:

Yields the lower bound of the N-th index range. The value of this attribute

has the same type as this lower bound. The argument N must be a static

expreasion of type universal_integer. The value of N must be positive

gngnze)ro) and no greater than the dimensionality of the array. (See 3.6.2 and
8.2,

For a prefix P that denotes a componeni of a record object:

Yields the offset, from the start of the first of the storage units occupled by
the component, of the first bit occupied by the component, This offset is
{neaaured in)blts. The value of this attribute Is of the type universal_integer.
See 13.7.2.

For a prafix P that denotos a fixed point subtype:

Yields the minimum number of characters needed for the integer part of the
decimal representation of any value of the subtype P, assuming that the
representation does not include an exponent, but includes a ona-character
prefix that Is eithar a minus sign or a space. {This minimum number does not
Include superfluous zeros or underiines, and Is at least two.) The value of
this attribute is of the type universal_integer. (See 3.5.10.)

For a prefix P that denotes a discrete type or subtype:

This attrlbute Is a function with & single parameter. The actual parameter X
must be a value of the base type of P. The resuit type is the predefined type
STRING. The result is the /mage of the value of X, that is, a sequence of
charactera representing the value in display form. The image of an integer
value is the corresponding decimal literal;, without underlines, leading
zeros, exponsnt, or tralling spaces; but with a one characte: prefix that Is
either a minus sign or a space.

The Iniage ¢! an enumaeration value is either the corresponding identifier In
upper case or the corresponding character literal (including the two
apostrophes); nelither leading nor trailing spaces are included. The image of
a char)actor other than a graphlc character is implcmentation-defined. (Seo
3.5.6.

For a prefix P that denotes a real subtype:

The attribute yleids the largest positive model numbaer of the subtype P. The
value of this attribute is of the type universal.resl. (See 3.56.8 and 3.5.10.)

For a prefix P that denotes & scalar type, or a subtype of a scalar type:

Yields the upper bound of P, The value of this attribute has thu same type as
P. (See 3.5.)

For a prefix P that is appropriate for an array type, or that denctes a con-
strained array subtype:

Yields the upper bound of the first index range. The value of this attribute
has the same type as this upper bound. (See 3.6.2 and 3.8.2.)

A-3

20

H

. PO L
<, - Lt L.

ANS/I/MIL-STD-1815A4 Ada Reference Manual

2 P'LAST(N) For a prefix P that s appropriate for an array type, or that denotes a
conatrained array subtype:

Yields the upper bound of the N-th index range. The value of this .
attribute has the same type as this upper bound. The argument N ¢
must be a static expression of type universal_integer. The value of N
3 must be positive (nonzero) and no greater than the dimensionality of
v the array. (See 3.6.2 and 3.8.2.)

23 P'LAST_BIT For a prefix P that denntes a component of a record object:

Yields the offset, from the start of the first of the storage units
occupled by the component, of the last bit occupied by the compo-
nent. This offset is measured in bits. The value of this attribute is of
the type universal_integer. (See 13.7.2.)

] P'LENGTH For a prefix P that is appropriate for an array type, or that denotes a L
& constrained array subtype: L

S Yieids the number of values of the first index range (zero for a null
L range). Th: vaiue of thia attribute is of the type universal_integer.
" (See 3.6.2.

» P'LENGTH(N) For a prefix P that s appropriate for an array typs, or that denotes a
constrained array subtype:

Yields the number of values of the N-th index range (zero for a null

range). The value of this attribute Is of the type universal_integer. S

The argument N must be a static expression of type univer- b “ﬂl
o sal_integer. The value of N must be positive (nonzero) and no s
b4 greater than the dimensionality of the array. (See 3.6.2 and 3.8.2.) ‘

2 P'MACHINE.EMAX For a prefix P that denotes a floating point type or subtype:
Yields the largest value of exponent for the machine representation “
g of the base type of P. The value of this attribute is of the type un/ver- R
sal_integer. (See 13.7.3.)
:'J 7 P'MACHINE_EMIN For a prefix P that denotes a floating point type or subtype:
Yields the smallest (most negative) value of exponent for the .
machine representation of the base type of P. The value of this et
attribute is of the type universal_integer. (See 13.7.3.)

*E) P'MACHINE_MANTISSA For a prefix P that denotes a floating point type or subtype:

Yields the number of diglts In the mant/ssa for the machine ,
representation of the base type of P (the digits are axtended digits in S e
. the range O to P'MACHINE_RADIX - 1), The value of this attribute is S
of the type universal_integer. (See 13.7.3.)
X e
¢ A-4 o
-

IR [. . v N o - . .)] .
T T T AP ' T O " .
N D O N O T NN DS TRY N N oy SISl A T S S S S LSt S S S L S S S JUUS S

. Predefined LLanguage Attributes

: P'MACHINE_OVERFLOWS For a prefix P that denotes a real type or subtype: 29

Yields the value TRUE if every predefined operation on values of the
base type of P either provides a correct result,or raises the exception
NUMERIC_ERROR in overflow situations; ylelds the value FALSE
otherwlse. The value of this attribute is of the predefined type
BOOLEAN. (See 13.7.3.)

P'MACHINE_RADIX For a prefix P that denotes a floating point type or subtype: 30

e Leetodsans - dema¥

Yields the value of the radix used by the machine representation of ‘ -'...
the base type of P, The value of this attribute is of the type univer- K
sa/_integer, (See 13.7.3.)

P

et

P'MACHINE._.ROUNDS For a prefix P that denotes a real type or subtype: Y

-4

Ylelds the value TRUE If avery predefined arithmetic operation on L
velues of the base type of P either returns an exact result or performs
rounding; ylelds the value FALSE otherwise. The value of this
attribute Is of the predefined type BOOLEAN . (See 13.7.3.)

A
e slalala

N P'MANTISSA For a prefix P that denotes a real subtyps: 2

o) Yields the numbar of binary digits in tho binary mantissa of model
numbers of the subtype P. (This attribute yields the number B of
o section 3.5.7 for a floating point type, or of section 3.5.9 for a fixed
% point type.) The value of this attribute is of the type un/ver-
sal_integer. (See 3.5.8 and 3.6.10.)

- s e oo

P P'POS For a prefix P that denotes a discrete type or subtype: EH ety

N This attribute is a function with a single parameter. The actual LT

paramater X must be a value of the base type of P. The result type is R
the type universal.integer. The result I8 the position number of the
value of the actual parameter. (See 3.5.5.)

.. P'POSITION For a prefix P that denotes a component of a record object: 3 .Q;'

Yields the offset, from the start of the first storage unit occupied by
N the record, of the first of the storage units occupied by the compo-
! nent. This offset Is measured In storage units. The value of this :
attribute Is of the type universal_integer. (Sea 13.7.2.) s,

P'PRED For a prefix P that denotes a discrete type or subtype: a8

This attribute Is a function with a single parameter. The actual
parametar X must be a value of the base type of P. The result type is -
! the base typs of P, The result is the value whose pasition number is R)
L one less than that of X, The exception CONSTRAINT_ERROR Is
ralsed If X equals P'BASE'FIRST. (See 3.5.5.)

o P'RANGE For a prefix P that Is appropriate for an array type, or that denotey &)
7 constralned array subtype:

Yields the first Index range of P, that Is, the range P'FIRST .. P'LAST. !
(See 3.8.2.) ‘

(Rl -

ANSI/MIL-STD-1815A Ada Reference Manual

) P'RANGE(N) For a prefix P that is appropriate for an array type, or that denotes a
constrained array subtype:

4 Yields the N-th Index range of P, that is, the range P’'FIRSTI(N) .. .
| PLASTIN). (Ses 3.6.2.) .

» P'SAFE__EMAX For a prefix P thet denotes a floating point type or subtype:
Yields the largest exponent value in the binary canonical form of safe
numbers of the hase type of P. (This attribute ylelds the number E of

I section 3.6.7.) The value of this attribute is of the type univer-

: sal_integer. (See 3.5.8.)

‘.: » P'SAFE_LARGE For a prefix P that denotes a real type or subtype:

. Yislds the largest positive safe number of the base type of P. The value
l of this attribute is of the type universal/_real. (See 3.6.8 and 3.5.10.)

0 P'SAFE_SMALL For a prefix P that denotes a real type or subtype:
Yields the smallest positive (nonzero) safe number of the base type of P,

The vul)ua of this attribute is of the type universal_seal. (See 3.6.8 and
3.6.10.

L # » € » ¥

n P'SIZE For a prefix P that denotes an objoct:

2 Yislds the number of bits allocated to hold the object. The valus of this
! attribute Is of the type universal_integer. (See 13.7.2.)

2 P'SIZE For a prefix P that denotes any type or subtype:

Yields the minimum number of bits that is needed by the implementation
to hold any possible object of the type or subtype P, The value of this
attribute Is of the type universal_integer. (See 13.7.2.)

.

.4 ANES." .7

a P'SMALL For a prefix P that denotes a real subtype:
. Yields the smallest positive (nonzero) model numbaer of the subtype P,
! The value of this attribute is of the type universa/_real. (See 3.6.8 and
! 3.6.10) \
! “ P'STORAGE_SIZE For a prefix P that denotes an access type or subtype: -
Yields the total number of storage units reserved for the collection .
) associated with the base type of P. The value of this attribute Is of the
) type universal_nteger. (See 13.7.2.)
| " P'STORAGE_SIZE For a prefix P that denotes a task type or a task object: e

Yields the number of storage units reserved for each activation of a task
., of the type P or for the activation of the task object P. The value of this
§ attribute is of the type universal_integer. (See 13.7.2.)

A-6

- c s . o s .
¥

)

Tt e Do A e
T TN R S R L LR A L T L R

Predefined Language Attributes

e P'SUCC For a prefix P that denotes a cliscrete type or subtype: "

This attribute Is a function with a single parameter. The actual parameter
X must be a value of the base type of P. The result type is the base type
of P. The result Is the value whose position number |s one greater than
that of X. The exception CONSTRAINT_ERROR Is raised if X equals
‘h'u P‘BASE'LAST' (S.’ 3-6-5-)

i P'TERMINATED For a prefix P that is appropriate for a task type: o
™ Yields the value TRUE If the task P Is terminated; yields tha value FALSE
otherwise. The value of this attribute is of the predefined type BOOLEAN .

(See 9.9.)

P'VAL For a prefix P that denotes a discrete type or subtype: “

This attribute is a special function with a singla parameter X which can
be of any Integer type. The result type is the base type of P. The result is

AR
"
i
n.
~-l

X

f\;_: the value whose position number is the universal./nteger value cor-

s respunding to X. The exception CONSTRAINT_ERROR Is raised If the

E universal_integer value corresponding to X Is not in the range

IR P'POS (P'BASE'FIRST) .. P'POS (P'BASE'LAST), (See 3.6.6.)

iy

N P'VALUE For a prefix P that denotes a discrete type or subtype: »
DY

5:';1 This attribute is 8 function with & .ngle parameter, The actual parameter

;".‘:-; X must be a value of the predefined type STRING . The result type Is the

‘M',

base type of P. Any leading and any tralling spaces of the sequence of
characters that corresponds to X are ignorad.

»

i

For an snumeration type, if the sequence of characters has the syntax of
an enumeration literal and if this literal exists for the base type of P, the L
result Is the corresponding enumeration value, For an Integer type, If the L
sequence of characters has the syntax of an integer literal, with an

optional single leading character that Is a plus or minus sign, and if there

= e e F & =
5 -
LR
o

PR)

ls a corresponding value in the base type of P, the result is this vaiue. In .
e any other case, the exception CONSTRAINT_ERROR Is raised. (See 3.6.5.) '
,:'Z: ;: P'WIDTH For a prefix P that denotes a discrete subtype: 50

Yields the maximum Image langth over all values of the subtype P (the
/mage is the sequence of characters returned by the attribute IMAGE).
The value of this attribute is of the typa un/versal_integer. (See 3.5.5.)

Lt

S

I.. .".

[

Bt A-7
vy

LTINS~ I

s
X

e,
P e’ i S

YT gy LA

i TS
- e

.

B. Predefined Language Pragmas

This annex defines the pragmas LIST, PAGE, and OPTIMIZE, and summarizes the definitions given
elsawhere of the remaining language-defined pragmas.

Pragma

CONTROLLED

ELABORATE

INLINE

INTERFACE

LIST

MEMORY_SIZE

Meaning

Takes the simple name ot an access type aa the single argument, This pragma
le only allowed Immadiately within the declarative part or package specification
that contains the declaration of the access type; the declaration must occur
before the pragma. This pragma Is not allowed for a derived type. This pragma
specifies that automatic storage reclamation must not be performed for objects
designated by values of the access type, except upon leaving the innermost
block statement, subprogram body, or task body that encloses the access type
declaration, or after leaving the main progiam (see 4.8).

Takes one or more simple names denoting library units as arguments. This
pragma Is only allowed immediately after the context clause of a compllation
unit (before the subsequent library unit or secondary unit). Each argument
must be the simple name ¢ a library unit mentioned by the context clause. This
pragmé alieoifios that the ~arresporing library unit body must be elaborated
befure the given curnpliation unit. If the given compllation unit |s a subunit, the
library unit body must be elaborated betore tha biody of the ancestor library unit
of the subunit (ses 10.8).

Takes one or more hames as argumants; each name s either the name of a
subprogram or the name of a generic subprogram. Yhis pragma is only allowed
at the place of a declarative item in a declarative part or package specification,
or after a library unit In a compilation, but before any subsequent compliation
unit, This pragma specifies that the aubprogram bodles should be expanded
inline at each call whenever possible; In the case of a generic subprogram, the
pragma applies to calls of its instantiations (see 6.3.2),

Takes a language name and a subprogram name as arguments. This pragma Is
aliowed at the place of a declarative item, and must apply in this case to a sub-
program declared by an earller declarative item of the same daclarative part or
package spacification. This pragma is also allowed for a library unit; In this
case the pragma must appear after the subprogram declaration, and before any
subsequent compliation unit, This pragma specifies the other language (and
thereby the calling conventions) and informs the compller that an object
module will be supplied for the corresponding subprogram (see 13.9).

Takes one of the Identifiers ON or OFF as the eingle argument. This pragma Is
allowed anywhere a pragma is allowed, It specifies that listing of the compila-
tion is to be continued or suspended until a LIST pragma with the opposite
argument Is given within the same compilation. The pragma Itself |s always
listed If the compller Is producing a listing.

Takes a numarlc literal as the single argument. This pragma Is only allowad at
the start of a compllation, before the first compilation unit (It any) of the com-

pliation. The effect of this pragma Is to use the value of the specifiad numerlc
literal for the definition of the named number MEMORY_SIZE (sea 13.7).

B-1

Ly s . '
TVRT VR WVRTIOW TEW TSR TP WP S S I ST T SO T B DU T o STy

2.om ™ om Ve o om . omltoawra

o
el bdand

v W)

/ 8 OPTIMIZE

) PACK
R
. . PAGE
. n PRIORITY

| = SHARED

3 n STORAGE..UNIT

" SUPPRESS

18 SYSTEM_NAME

ANSI/MIL-STD-1815A Ada Reference Manual
Takes one of the identifiers TIME or SPACE e&s the single argument. This
pragma I8 only allowed within a declarative part and it applies to the block or

body enclosing the declarative part. It specifies whether time or space is the
primary optimization criterion,

Takes tho simple name of a record or array type as the single argument. The
allowed positions for this pragma, and the restrictions on the named type, are
governed by the same rules as for 8 representation clause. The pragma
specifies that storage minimization should be the main criterion when selecting
the representation of the given type (see 13.1).

This pragma has no argument, and is allowed anywhere a pragma Is allowed. It
specifies that the program text which follows the pragma should start ori a new
page (if the compller Is currently producing a listing).

Takes a static expression of the predsfined integer subtype PRIORITY as the
single srgument. This pragma is only allowed within the specification of a task
unit or iminediately within the outermost declarative part of a main program. It
specifies the priority of the task (or tasks of the task type) or the priority of the
main program (see 9.8).

Takes the simple name of a variable as the single argument. This pragma ls
sllowed only for a variable declared by an obiect decluration and whose type is
a scalar or access type; the varlab!s declaration and the pragma must both
occur (in this order) Iimmadiately within the same declarative part or package
specification. This pragma spccifies that avery read or update of the variable is
a synchronization point for that varlable. An implementation must restrict the
objects for which this pragma is allowad to objects for which each of direct
madl)ng and diract updating is Implemanted as an indivisible operation (see
8.11),

Takes a numeric literal as the single argument. This pragma is only allowed at
the start of a compllation, before the first compilation unit (if any) of the com-
pilation. The effect of this pragma Is to use the value of the specified numeric
literal for the definition of the named number STORAGE_UNIT (see 13.7).

Takes as arguments the identifier of s check and optionally also the name of
either an object, a type or subtype, a subprogram, a task unit, or a generio unit.
This pragma Is only allowed either iImmediately within a declarative part or
immediately within a package specification. In the latter case, the only allowed
form is with a nama that denotes an entity (or several overloaded subprograms)
declared Immediately within the package spacification. The permission to omit
the given check extends from the place of the pragma to the end of the
declarative reglon associvted with the innerinost enclosing block statement or
program unit, For a pragma gliven In a package specification, the permission
extends to the end of the scope of tho named entity.

If the pragma Includes & nume, the permission to omit the given check I8 further
restricted: It is given only for operations on the named object or on all objects
of the base type of a named type or subtype; for calls of a named subprogram;
for activations of tasks of the ramed task type; or for Instantiations of the given
generic unit (see 11.7).

Takes an enumeration literal as the single argument, This pragma is only
allowed at the start of a compilation, before the first compilation unit {if any) of
the compllation. The effect of this pragma Is to use the enumeration literal with
the specified Identifier for the definition of the zonstant SYSTEM_NAME. This
pragma ls only allowed if the specified Identifier corresponds to one of the
literals of the type NAME declared in the package SYSTEM (see 13.7).

B-2

C. Predefined Language Environment .

This annex outlines the specification of the package STANDARD containing all predefined 1 SR
identiflers in the ianguage. The corresponding package body is Implementation-defined and is not Y
shown, A

The operators that are predefined for the types declared in the package STANDARD are given in 2
~ comments since they are Implicitly declared. Italics are used for pseudo-names of anonymous

e types (such as un/versal_real) and for undefined information (such as /imp/ementation. dafinad and Lo
any_fixed_point_type). -

N package STANDARD s .
type BOOLEAN s (FALSE, TRUE); .

-- The pradafined relational operators for this type are as follows: N

e -- function "=" (LEFT, RIGHT : BOOLEAN) retum BOOLEAN:
W - function “/=" (LEFT, RIGHT ! BOOLEAN) return BOOLEAN:
:;.vj - function “¢" (LEFT, RIGHT : BOOLEAN) return BOOLEAN:;
i -- funotion "{=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- funstion ">" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
- function ">=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN; !
-- The pradefined loglcal operatora and tha predefined logical negation operator ars as follows:
o - function "snd” (LEFT, RIGHT : BOOLEAN) retum BOOLEAN; o
N -- function “or* (LEFT, RIGHT : BOOLEAN) return BOOLEAN; RN
- funotion "xor* (LEFT, RIGHT : BOOLEAN) retum BOOLEAN; R
b o
- function "not” (RIGHT : BOOLEAN) return BOOLEAN;

The universal type universal_integer Is predefined.

type INTEGER Is /mplementation_defined;

«- The predesfined operators for this type are as follows:

' -- funation "=" (LEFT, RIGHT : INTEGER) retum BOOLEAN;

' -- function “/=" (LEFT, RIGHT : INTEGER) retum BOOLEAN; ®
-- funotion "¢" (LEFT, RIGHT : INTEGER) retum BOOLEAN; -
D -- function “¢{=" (LEFT, RIGHT : INTEGER) retumn BOOLEAN; S
o == function ";" (LEFT, RIGHT : INTEGER) retum BOOLEAN; L

. - function “>=" (LEFT, RIGHT : INTEGER) retum BOOLEAN; T

) ANSI/MIL-STD-1815A Ada Reference Manual

" 3 -- fungtion “+” (RIGHT : INTEGER) return INTEGER;
-- funection “-" (RIGHT : INTEGER) ratumn INTEGER:
-- function “abs” (RIGHT : INTEGER) return INTEGER;
B -- function "+ (LEFT, RIGHT : INTEGER) return INTEGER: o
I -~ function "“-" {LEFT, RIGHT : INTEGER) return INTEGER;)
" - function "*" (LEFT, RIGHT : INTEGER) return INTEGER; R
o -- funetion “/" (LEFT, RIGHT : INTEGER) retumm INTEGER; -

-~ function “rem” (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "mod” (LEFT, RIGHT : INTEGER) return INTEGER;

-- funetion "**" (LEFT : INTEGER; RIGHT : INTEGER) return INTEGER;

7 -- An implementation may provide additional predefined integer types. |t ia racommended that the
-- names of such additional types end with INTEGER as in SHORT_INTEGER or LONG_INTEGER,
-- The specification of each operator for the type universal_integer, or for any additional
-- predefined integer type, is obtained by replacing INTEGER by the name of the type In the

- specification of the corresponding operator of the type INTEGER, axcept for the right operand i
-- of the exponentiating operator, , 0
';{: L
;Z:] == The universal type universal_real is predefined. g
3 9 type FLOAY Is implementation_defined;
;_': -- The predefined operators for this type are as follows: '
+ -- funation "=" (LEFT, RIGHT : FLOAT) return BOOLEAN; f:?:
-~ function "/=" (LEFT, RIGHT : FLOAT) return BOOLEAN:
- function "¢" (LEFT, RIGHT : FLOAT) return BOOLEAN;
v -~ function "{=" (LEFT, RIGHT : FLOAT) return BOOLEAN: vt
! -~ function ">" {LEFT, RIGHT : FLOAT) retumn BOOLEAN: P T
‘:: -- function ">==" (LEFT, RIGHT : FLOAT) return BOOLEAN: KA
. -~ function "+" (RIGHT : FLOAT) return FLOAT; Dt
- -- function "-" (RIGHT : FLOAT) return FLOAT; A
N -- function "abs” (RIGHT : FLOAT) return FLOAT; P

N -- funstion “+" (LEFT, RIGHT : FLOAT) return FLOAT:
0 -~ funetion "-" (LEFT, RIGHT : FLOAT) return FLOAT:
b -~ function "*" (LEFT, RIGHT : FLOAT) return FLOAT:
o -« funetion "/" (LEFT, RIGHT : FLOAT) return FLOAT;

o -- function "**" (LEFT : FLOAT; RIGHT : INTEGER) return FLOAT;

10 -- An Implementation may provide additional predefined floating point types. It Is recom-
" SN -~ mended that the names of such additional types end with FLOAT as in SHORT._FLOAT or

- -~ LONG_FLOAT. The specification of each operator for the type universal_real, or for any
-- additional pradefined floating point type, Is obtained by replacing FLOAT by the name of the
-- type In tha specification of the corrasponding operator of the type FLOAT.

{-'.‘_ '

Predefined Language Environment

5 37
Y

" Tt
= e
“;%' -- In addition, the following operators are predefined for universal types: "
'I -- funotion "*" [LEFT : universs/_integer, RIGHT : universal_resl) return universal_real; Sy
i -~ function "*" (LEFT : universal_real, RIGHT : universal_integer) return universal_, aal; . OJ
. -- function “/* (LEFT : universal_real; RIGHT : univarsal_integer) return universal_real: \ .-'j:
' «- The type univarsal_fixed is pradefilned. The only operators daclared for this type are ‘ f,f"_:
7o -~ function "*" (LEFT : any.fixed_point_type; RIGHT : any.fixed_point_typo) return universal_fixed; *
. - function "/* (LEFT : any_fixed_noint_type: RIGHT . any_fixed_point_type) return universal_fixad: ' ‘i
L"‘”.. == The following characters form the standard ASCIl character set. Character literals cor- e *
R -- responding to control characters are not identiflers; they are indicated In italics in this deflnition. . 1
' S
type CHARACTER s a .g
(nul, soh, stx, etx, eot, enq, ack, bel, : 1
o bs, Mt ", vt, . or, f0, 4, RS
i dle, decl, dec2, dcd, ded. nak, ayn, et T
: can, em, sub, esc fs, gs, rs, us, Vi
® ‘q
' A' o'c' uu‘ 0#0’ 'so' t%o' 0&0. Ht' . K 'v‘
'(l’ .)1‘ D‘I' |+0' "OI 0-" 0'0' l/l' '.. J
OOO' l‘O' 02" 'al' 040' 060‘ 060' 070' . “
Oel' 19'. ‘:" O:" D<l' 0-0‘ '>" 0?0‘ .. . j
l@.' pAp' DBO' oco' »D.' :E" ‘F'. nen’ R .'\‘ :
'H'. "o' 'J" ‘K., .L', 'M', ‘N'. no.' " -1%
.P.; ool' oal' os" 'T.p out' Ovo' OWD' ‘
txo‘ ch' »zi. c[c' t\o‘ o]:‘ n\r' :_"
(XY c' oa:' 'b.; ooo' 'd'g o.c' 'f" vgn’ l‘
DhO' 0‘0' "0' lkl' l'c' Oml' in" loi’
npo' oqa. trl' l.l' Otb' 'U'. Ovo‘ lwl' ‘)
I ""x 'X', 'V'v '!'1 'lo' 'I': ’I': "“"c de/); "“d‘
l‘.:"\ ‘q
,.“ for CHARACTER use -- 128 ASCIl character set without holes
".‘1“‘ (0, 1' 2' 3| 4' 5; "y 1251 120. 127); "‘.‘
h '” . ' i‘
M ~- The predefined operators for the type CHARACTER are the same as for any enumaration type. 1 kmﬂ

>

f A S R

k=34

TaTm =
.3

- - - pTEw i 2
L s . -

_—-. »

[}

. M ‘ N . - .
[P P S T ™

package ASCI| I»

-~ Control characters:

NUL
STX
EOT
ACK
8S
LF
FF
$O
DLE
DC2
DCa
SYN
CAN
sUB
FS
RS
DEL

constant

! aonatant

! constant
! oonstant

¢ constant

ae se o= o= a1

constant
constant
constant
constant
constant
aonstant
constant
constant
constant
constant
constant
oonstant

-- Other charactars:

EXCLAM
SHARP
PERCENT
COLON
QUERY
L.BRACKET
R_BRACKET
UNDERLINE
L_BRACE
R.BRACE

’
+
]
.
)
'
]
)
]
.
1
4
‘
'
‘
'
1)
.
.

constant
conatant

‘constant

gonetant
constant

i gonstant

conatant
canstant
gonsatant
constant

-« Lower case letters:

-- Predafined subtypes:

subtype NATURAL s INTEGER
subtype POSITIVE

is INTEGER

CHARACTER

CHARACTER
CHARACTER :
CHARACTER :
CHARACTER
CHARACTER

CHARACTER

CHARACTER :
CHARACTER :

CHARACTER

CHARACTER :

CHARACTER
CHARACTER
CHARACTER

CHARACTER
CHARACTER :

CHARACTER

CHARACTER

CHARACTER

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

CHARACTER :

CHARACTER
CHARACTER

LC_A : aonstant CHARACTER '« 'a’;
LC.Z : constant CHARACTER i '2';
end ASCII;

[T PN B [N
Am e bl noe s mothey A R e eh sl

range 1

nul;
x;
eot;
ack;
bs;
I
A
s0!
dle;
de2;
dc4;
syn;
can;
sub;
s
rs,
del;

x

e o D

C-4

SOH

ENQ
BEL
HT

CR
Si
DC1
DC3
NAK
ETB
EM
ESC
GS

~US

QUOTATION
DOLLAR
AMPERSAND
SEMICOLON
AT.SIGN

BACK_SLASH

CIRCUMFLEX
GRAVE

BAR

TILDE

range O ., INTEGER'LAST;
. INTEGER'LAST,;

conscant

. constant
! conutant
i constant
! gonstant
i constant
. gconstant

cohetant
gonatant
conatant
oonetant
conatant
constant
aonstant
oconstant
constant

gonstant
oonstant
sunstant
constant
constant
gonstant
constant
constant
gonatant
constant

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

CHARACTER

CHARACTER

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

ANSI/MIL-STD-1818A Ada Reference Manual

- e B -

. ~ Predefined Language Environment . .
4 ol
X -- Predefined string tyne: , w .

type STRING is array(POSITIVE range <>! of CHARACTER; .:'r‘:
a pragma PACK(STRING);
d e
-- The predefinad operétors for this type are as follows: 8 h . l

-- function "=" (LEFT, RIGHT : STRING) raturn BOOLEAN;
-~ function "/=" (LEFT, RIGHT : STRING) return BOOLEAN:
" (LEFT, RIGHT : STRING) return BOOLEAN; -

-~ function "¢
o -~ function "{=" (LLFT, RIGHT : STRING) return BOOLEAN;
°3 . function ">" (LEFT, RIGHT : STRING) return BOOLEAN;
-~ function ">=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "&" (LEFT : STRING; RIGHT : STRING) return STRING; - .
— function "&" (LEFT : CHARACTER; RIGHT : STRING) retum STRING; Lo
] == function "&" (LEFT : STRING; RIGHT : CHARACTER) return STRING; @)
'.,'-,‘ -- function "&" (LEFT : CHARACTER; RIGHT : CHARACTER) return STRING; SRONE
‘ type DURATION ls delta /mplementation_defined range implementation_defined, »
) -- The predefined operators for the type DURATION are the same as for any fixad point type. g}
. -~ The predefined exceptions: 20 k
- CONSTRAINT_ERROR : exception; '
. BN NUMERIC_ERROR : exception;
- N PROGRAM_ERROR ! sxception;
o STORAGE_ERROR : exception;
3" TASKING_ERROR : exception; -
end STANDARD; B
:::.':'. Certain aspects of the predefined entitles cannot be completely described in the language itself. 2
> For example, although the enumaration type BOOLEAN c¢an be written showing the two
) enumeration literals FALSE and TRUE, the short-circult control forms cannot be expressed In the Dt
s language. AR
f:'_ Note:
o The language definition predefines the tollowing library units: 2
Y% . ;
e - The package CALENDAR (see 9.8) B
1 - The package SYSTEM (see 13.7) e
- - The package MACHINE_CODE (if provided) (see 13.8) o
- The generic procadure UNCHECKED_DEALLOCATION (see 13.10.1)
‘._‘ - The generic function UUNCHECKED_CONVERSION (see 13.10.2) ".
> Y L
;.3-“} - The generic package SEQUENTIAL_IO (see 14.2.3) '
- The generic package DIRECT_IO (see 14.2.5)
- The package TEXT_IO (see 14.3.10)
WY - The package IO_EXCEPTIONS (see 14.5)
O - The package LOW.LEVEL_IO (see 14.6)
9. I

C-b

B (W,
ta
]
S,

8

0.
D]

o
.

.

[This glossary is .. part of the standard definition of tha Ads programming language.

D. Glossary

s appendix is informative and is not part of the standard definition of the Ada programming
language. Italicized terms in the abbreviated descriptions below either have glossary entrias
themselves or are described In entries for related terms,

Accept statement. See entry.

Access tyne. A value of an access type (an
access value) Is either a nuil value, or a value
that designates an object created by an
allocatcr. The designated object can be read
and updated via the access value. The defini-
tion of an access type specifies the type of
the objects designated by values of the
access type. Sae also collection.

Actual parameter. See parameter.

Aggregate. The evaluation of an aggregate
ylelds a value of a composite type. The value
is specified by giving the value of each of the
components. Elther positional assoc/ation or
named assoclation may be used to Indicate
which value is associated with which compo-
nent,

Allocator. The evaluation of an allocator
creates an object and returns a new access
value which designates the object,

Array type. A value of an array type congists
of components which are ali of the same sub-
type land hence, of the same type). Each
component is uniquely distinguished by an
index (for a one-dimenslonal array) or by a
sequence of indices (for a multidimensional
array), Each Index must be a value of a dis-
crete type and must lie in the correct Index
range.

Assignment. Assignment Is the operation
that replaces the current value of a var/able
by a new value. An asslgnmant staterment
specifies a variable on the left, and on the
right, an expression whose value is to be the
new value of the variable.

D-1

‘Block statement.

Attribute. The evaluation of an attribute
yields a predefined characteristic of a named
entity; some attributes are functions.

A block statement Is a
single statement that may contain a
sequence of statements. |t may also include
a declarative part, and exception handlers;
their effacts are local to the block statement,

Body. A body defines the execution of a sub-
program, package, or task, A body stub is a
form of body that indicates that this execu-
tion Is defined in a separately complled swb-
unit,

Collection. A collection I8 the entire set of
objects created by evaluation of allocators for
an access type.

Compilation unit. A compllation unit is the
declaration or the body of a program unit,
presented for compilation as an Independent
text. It Is ortionally preceded by a context
clause, naming other compllation units upon
which it depends by means of one more with
clauses.,

Component. A component is a value thatis a
part of a larger value, or an obfect that is part
of a larger objact,

Composite typs. A composite type s one
whose values have components. There are
two kinds of composite type: array types and
record types.

Constant. Sea object.
Constraint. A constraint determines a subset

of the values of a type. A value In that subset
satisfies the constraint,

P ST

Iy

RERRN: - N

s 7 Wr SE S

Context clause. See comp//aticn unft.

Deciaration. A declaration associates an
igentifler (or some other notation) with an
entity. This assoclation is In effect within a
region of text called the scope of the declara-
tion. Within the scope of a declaration, there
are places where it Is possible to use the
identifier to refer to the assoclated declared
entity. At such places the identifier is said to
be a simple name of the entity; the name is
said to denote the associated entity.

Deaclarative Part. A declarative part Is a
sequence of dec/arations. It may also contain
related Information such as subprogram
bodles and reprasentation clauses.

Denote. See declaration.

Derived Type. A derived type is a type whose
operations and values are replicas of those of
an existing type. The existing type Is called
the parent type of the derived type.

Designate. See access type, task.

Direct visibility. See visibility.

Discrete Type. A discrete type is a tywe
which has an ordered set of distinct valuas,
The discrete types are the enumeration and
Integer types. Discrete types are usec for
indexing and iteration, and for choices in case
staternents and record var/ants.

Discriminant. A discriminant is & dis-
tinguished component of an object or value
of a record type. The subtypes of other com-
ponents, or aven thinir presence or absence,
may depend on the value of the discriminant.

Discriminant constraint. A discriminant con-
straint on a record type or private type
specifies a value for each discriminant of the
type.

Elaboration. The elaboration of a dec/arstion
is the process by which the declaration
achleves Its effect (such as creating an
object); this process occurs during program
execution,

ANSI/MIL-STD-1815A Ada Referance Manual

Entry. An entry is used for communication
between tasks. Externally, an eniry is called
just as a subprogram is cailed; its internal
behavior is specified by one or more accapt
statements specifying the actions 10 be per-
formed when the entry is called.

Enumeration type. An eanumeration type is a
discrete type whose values are represented
by enumeration literals which are given
explicitly in the type declaration. These
enumeration literals are either /dentifiers or
character Iiterals.

Evaluation. The evaluation of an expression
is the process by which the value of the
expression is computod. This process occurs
during program execution.

Exception. An exception is an error situation
which may arise during program sxecution.
To ralse an exception is to abandon normal
program executior: 80 s to signal that the
error has taken place. An exceptlor, handler Is
a portion of program text specifying a
response to the exception. Exscution of such
a program taxt is called handling the excep-
tion.

Expanded name. An expanded name denotes
an entity which is dec/ared immediately
within sore construct. An expanded name
has the form of a selscted component: the
prefix denotes the construct (a program unft;
or a block, loop, or accept statemsnt): the
selector is the simple name of the entity.

Expression. An expression Jefines the com-
putation of a value.

Fixed point type. See rsal type.
Floating point type. See real type.
Formal parameter. See parametsr.

Function. See subprogram.

Generic unit. A generic unit is a template
elther for a set of subprograms or for a set of
packages. A subprogram or package created
using the template is called an /nstance of
the generic unit. A generic Instantiation is the
kind of declaration that creates an Instance.

Glossary

A generic unit Is written as a subprogram or
package but with the spacification prefixed
by a generic formal part which may declare
generic formal parameters. A generic formal
parameter is either a type, a subprogram, or
an object. A generic unit is one of the kinds of
program unit,

Handler. See exception.
Index. See array type.

Index constraint. An Index constraint for an
array type specifies the lower and upper
bounds for each index range of the array
type.

Indexed component. An indexed component
denotes a component in an array. It is a form
of name containing expressions which
specify the values of the /ndices of the array
componant, An Indexed component may
also denote an entry in a family of entries,

Instance. See generic unft,

Integer type. An integer type is a d/screte
type whose values represent all integer
numbers within a specific range.

Lexical element. A lexical element is an Iden-
tifier, a /fteral, a delimitsr, or a comment.

Limited type. A limited type is a type for
which neither agsignment nor the predefined
comparison for equality is implicitly declared.
All task types are limited. A private type can
be defined to be limited. An equality operator
can be explicitly declaraed for a limited type.

Literal. A literal represents a value literally,
that is, by means of letters and other
characters. A literal Is either a numeric literal,
an enumeration literal, a character literal, or a
string literal,

Mode. See paramater.

Mode!l number. A model number is an exsact-
ly representable value of a rea/ type. Opara-
tions of a real type are defined In terms of
operations on the model numbers of the type.

The properties of the model numbers and of
their operations are the minimal properties
preserved by all impleinentations of the real
type.

Name. A name is a construct that stands for
an entity: it is said that the name denotes the
entity, and that the entity is the meaning of
the name. See also dec/aration, prefix.

Named assoclation, A named association
specifies the assoclation of an item with one
or more positions in a list, by naming the
positions,

Object. An object contains a value. A
progtam creates an object sither by
elaborating an object declaration or by
evaluating an allocator. The daclaration or
allocator specifies a type for the object: the
object can only contain values of that type.

Operation. An operation is an elementary
action assoclated with one or more types. It
is either implicitly declared by the declaration
of the type, or it I8 a subprogram that has a
parameter or result of the type.

Operator. An operator Is an operation which
has one or two opetands, A unary operator |s
written before an operand; a binary operator
is written between two operands, This nota-
tion Is a speclal kind of function call. An
operator can be declared as a function, Many
operators are Implicitly declared by the
declaration of a type (for example, most type
declarations imply the declaration of the
equality operator for values of the type).

Overloading. An identifier can have several
alternative meanings at a given point in the
program text: this proporty Is called
overloading. For example, an overloaded
enumeration litaral can be an identifier that
appears in the definitions of two or more
enumeration types. The effectiva meaning of
an ovetloaded identifler is determined by .he
context. Subprograms, aggregates,
allocators, and string /lterals can also be
overloaded,

LIEETEN

i Pkt A B s e - 1 s IR

Packags. A package specifies a group of
logically related entities, such as typss,
obfects of those types, and subprograms with
paramaters of those types. It is written as a
package declaration and a package body.
The package declaration has a vis/ble part,
containing the declarat/ons of all entities that
can be explicitly used outside the package. It
may also have a private part containing struc-
tural detalls that complete the specification
of the vigible entitias, but which are irrslevant
to the user of the package. The package bady
contains implementations of subprograms
{and possibly tasks as other packages) that
have been specified in the package doclara-
tion. A package is one of the kinds of
program unft,

Parameter. A parameter is one of the named
entities associated with a subprogram, entry,
or generic unit, and used to communicate
with the corresponding subprogram body,
accept statement or generic body. A formal
parameter 18 an identifiar used to denote the
named entity within the body. An actua/
parametsr 14 the particular entity assoclated
witl: the corresponding formal paramester by
a subprogram roll, entry call, or generic
instant/ation. The mode of a formal
parameter spacifies whether the associated
actual parameter supplies a value for the for-
mal parameter, or the formal supplies a value
for the actual parameter, or both. The
association of actual paramaeters with fornal
parameters can be specified by named
associations, by positional assoc/ations, or by
a cumbination of these.

Parent type. See derived type.

Ponitional assoclation. A positional associa-
tion specifies the association of an item with
a position in a list, by using the same position
in the text to specify the Item.

Pragma. A pragma conveys information to
the compiler.

Prefix. A prefix is used as the first part of cer-
tain kinds of name. A prefix la sither a func-
tlon call or a name.

Private part. See package.

ANSI/MIL-STD-18154 Ada Reference Manual

Private type. A private type is a type whose
structure and set of values are clearly
dafined, but not directly available to the user
of the type. A private type is known only by
its discriminants (if any) and by the set of
operations defined for it. A ptivate type and
its applicable operations are defined in the
visible part of a package, or in a generic for-
mal part. Assignment, equality, and ine-
quality are also defined for private types,
unless the private type is //imited.

Procedure. See subprogram.

Program. A program Iis composed of a
number of campl/ic*ion units, one of which is
a subprogram cahed the maln program,
Fxecution of ths program consists of execu-
tion of the main program, which may invoke
subprograms declared in the other compila-
tion units of the program.

Program unit. A program unit is any one of a
generic unit, package, subprogram, or task
unit,

Qualified expression. A qualified expression
is an expressfort preceded by an indication of
its typa or subtype. Such qualification ia
used when, In its alserce, the expression
might be amblguous (for axample as a conse-
quence of overloading).

Raising an exception. See sxception.

Range. A range s a contiguous set of values
of a scalar type. A range Is spacified by giv-
ing the lower and upper bounds for the
values. A value in the ranges is said to be/ong
to the range.

Range constraint. A rarige conatraint of a
type specifies a range, and thereby deter-
mines the subset of the values of the type
that belong to the range.

Real type. A real type is a type whoso values
represent approximations to the real
numbers. There are two kinds of real type:
fixed point types are specified by absoiute
error bound; floating point types ara
specified by a rslative error bound expressed
as a numbe of significant decimal digits.

e
L

P

3
gt~ Seriyyd

A K

FAS SISO

Glossary

Record type. A value of a record type con-
sists of components which ara usually of dif-
ferent typas or subtypes. For each compo-
nent of a record value or record objfact, the
definition of the record type specifies an
identifiar that uniquely detarmines the com-
ponent within the record.

Renaming declaration. A renaming declara-
tion declares anothar name for an entity.

Rendezvous. A rendezvous is the interaction
that occurs betwesan two parallel tasks when
one task has called an entry of the other task,
and a corresponding accept statement is
being executed by the other task on behalf of
the calling task.

Repressntation clause. A represantation
clause directs the compller in ths selection of
the mapping of a type, an object, or a task
onto features of the underlying machine that
executes a program. In some cases,
representation clauses completely specify the
mapping; in other cases, they provide criterla
for choosing a mapping.

Satisfty. See constraint, subtype,

Scalar type. An object or value of a scalar
type does not have components. A scalar
type is either a discrete type or & raal type.
The values of 4 scalar type are ordered.

Scope. See dac/aration,

Selected component. A selected component
is a name consisting of a prefix and of an
Identifler nelled the se/ector. Selected com-
ponents are used to denote record compo-
nents, entrias, and ob/ects designated by
access values; they are &lso used as
expanded names.

8elector, See selected component.

Simple name. See daclaration, name.

Statement. A statement specifies one or
more actions to be performed during the
execution of a program.

Subcomponent. A subcomponent is either s
component, ot a component of another sub-
component.

Subprogram. A subprogram Is either a
procedure or a function. A procedure
specifies a sequence of actions and Is
invoked by a procedurs call statement. A
function specifies a sequence of actions and
also returns a value called the resu/t, and so a
function call is an expression. A subprogram
is written as a subprogram declaration, which
specifies its name, formal parameters, and
(for a function) its result; and a subprogram
body which specifies the sequence of
actions, The subprogram call spacifies the
actual parametars that are to be assoclated
with the formal parameters. A subprogram is
one of the kinds of program unft.

Subtype. A subtype of a type characterizes a
subset of the values of the type. The subset is
determined by a constraint on the type. Each
value in the sat of values of a subtype
belongs to the subtype and satisfies the con-
straint determining the subtype,

Subunit. See body.

Task. A task operates In parallel with othar
parts of the program. It is written us a task
specification (which spacifies the name of the
task and the names .. formal parametars of
its entries), and a task body which defines ita
sxecution. A task unft is one of the kinds of
program unit. A task type is a typs that per-
mits the subsequent dac/aration of any
number of similar tasks of tha type. A value
of a task type is said to des/gnate a task.

Type. A type characterizes both a sst of
values, and a set of operations applicable to
those values. A type definition is a language
construct that defines a type, A particular
type is either an access type, an array type, a
private type, a racord type, a scalar type, or a
task type,

Use clause. A use clause achleves direct

visibility of declarations that appear in the
visible parts of named packages.

Variable. See object.

Varlant part. A variant part of a record
specifies alternative record components,
depending on & discriminant of the record.
Each value of the discriminant establishes a
particular alternative of the variant part.

ANSI/MIL-STD-1815A Ada Reference Manual

Visibility. At a given point in a pragram text,
the declaration of an entity with a certain
identifier Is said to be vis/b/e if the entity is an
acceptable meaning for an occurrence at that
point of the identifier. The declaration is v/s/-
ble by selection at the place of the se/ector in
a selacted component or at the place of the
name in a namead assoclation. Otherwise, the
declaration Is directly visible, that is, if the
identifier alone has that meaning.

Visible part. See package.

With clause. Sea comp//ation unit,

el

2.1

graphic_character == baslc_graphic_choaracter
| lower_case_lsttar | other_speclal_character

basic..graphic..character i
upper.case..letter | digit
| special.charactar | space_character

basic_character i
basic_graphic.character | format_effeotor

2.3

identifier =
letter llunderiine) letter_or_digit}

:..t: lotter_or.digit = letter | digit

:“,}‘: letter i~ upper.case_latter | lower..cane_letter
”3 24

W numerlc_literal =+ decimal.literal | boaed_literal
24,1

‘ decimal_literal i~ Integor linteger] (exponant]
intager = algit |[underline] digit}

! exponent = E [+] Integer | E - integer

" ;'_:'. 24.2

1:?,'_: based_literal ::-:

' hase » bassd_integer [based_integar] # [exponant)

basa = integor

' based_intager i

) extanded._digit [lunderline] extendud _digit]
SO extended_diglt := digit | letter

N 26

'f* charucter_litaral == ‘graphlo_character'

AN 28

:. string._literal == "|graphic_character}”

28

a0y

4. A pragma =

pragma Idantifier l(ar?umcnt_lnoolnlon
o . argumant_sasocletion}:
argument_nssoclatlon =

) |argument_identifisr =>| name

el | [argument_identitiar =>] sxpression

L) ‘

ER RO
St
.l.‘.o

L)
»

.
fe
.
ta
1
'

" [This syntax summary Is not part of the ntandard definition ¢f the Ada programming ianguage.]

E. Syntax Summary

E-1

'
{
H

how = o o

f
i

31

basic_declaration ::=
object_daclaration | number..declaration
| type.declaration | subtype_daclaration
I subprogram_declaration | package..declaration
| task_declaration | generic.declaration
l’ exception_declaration = generic_instantiation

rernaming_declaration defarred_constant.declaration
32

obfect._declaration :i»s
identifier._list : [constant] subtype.indication [exprossion);
| Identifier_list : [constant] conutrained..atray.definition
[t exprossion);

number_declaration i -
identiflor_list : constent ;= universal_static.expression;

identifier_list = Identifier |, Identifier)

331

type_declaration = full_type.deciaration
! Incomplete_typa_duciaration | private_type..deciaration S

full_type_declaration it
type Idantifier [discriminant.purt] is type_dafinition;

type_definition -
snumeration_type_definition
| real_type_definition
i record_typa_definition
| derlved..type..definition

integer_.type_definition
array..type_definition
| access_type_defiaition

332

subtype_daclaration =
subtype identifier is subtype.indication;

subtype_indication = type_mark [constraint]

type.mark = type_name | subtype_name

constraint =

tange..conatralnt | tlowting_point_constraint

H R
SRR . L
. .y V. . e e -
- PRSI ST
L fal e e afo :

| fixed._point..constraint | Index_conatraint N q

| discriminant._constraint : e

L

3.4 R

ooy

derlved type_definition ::= new subtype_indication . ®

B

a6 :
range_constraint : : range range

range range _attrlbute
| simple_expression .. simple_sxpression .;

e Tl e M L. 7T

TR A A 2 X A A BN .

I AR R

o
-

el LA e Y

R

c £ £ 0 707

L Y

T Rt d o A =

361
anumeration_type.definition =

(snumaration, litaral_specification

| enumaration_literal_spacification})

enumaration, literal_spauification 1= enumeration_literal
enumeration_litaral = Idantifier | character.literal
364
integer_.type._dsfinition :i== range._conatraint
3.6.8

real_type_definition =
floating..point_constraint | fixed.point_constraint

3.6.7

fioating..point_constraint !i=
floating_accuracy_definition (range_constraint]

floating_aacuracy_definition 1w
digits stat/c_simple_expression

368

fixed_point_constraint il
fixed.accuracy._definition (range._constraint]

fixed_accuracy. definition =
delta stat/c_simple_exprassion

3.8

array.-type_definition ii=
unconstrained_array_definition | constrained_array..definition

unconstrained_array_definition =
arraylindex_subtypa_definition |, index.subtype_definition) of
componant.subtypa_indloation

constralned_array_definition =
array index._constraint of companent_subtype_indication

index_subtype_definition ! type mark range <>

index_construint i~ (discrate_range |, discrete_rangel)

discrete_range i discrete_subtype.indication | range
37
record. typs..definition ti=
record
componeant_list
end record

componant_list =
component_dnclaration |component_daclaration}
| {componunt.declaration} varlant_part
I nulk;

component_declaration =
Idontitier_list . component_subtype.dstinition [:= expression;

componant._kubtypa_definition 1= subtypa_indloation

E-2

ANSI/MIL-STD-1815A Ada Reference Manual

3741

discriminant_part =
{discriminant_specification |: diseriminant_spacificationl)

discriminant_specification =
identifier_list : type_mark [i= expression)

3.7.2

discriminant_constraint iz
idiscriminant_association |, discriminant_assoclation|)

discriminant_assoclatlon i
(discriminant..simple_name || discriminant_simple_name|
expression

379
varlant_part =
case discriminant_simple_name |s
variant
| varlant!
snd case:
variant e
when cholce || cholce} >
component_liat

cholce := simple_expression
| discrete_range | others | component-simple.name

38

access_type_definition = agoess subtype.indication

a.e1

incomplata_type_declaration =
type identifier [discriminant_part];

3.9

doclarative_part =
{basic_daclarative_item| (later_decisrativo_item|

basic_declarative.item = basic_declsration
| representation.clause | use_clause

later. declarative_iteam .= body
| subprogram_dariaration | package.declarstion
| task_declaration generiv_declaration
| use._clausa generic.instantiation
body = proper.body | body.stub

propar_body -
subprograin_brdy | package_body | task.body

-)]

Syntax Summary

» 4.

* name = simple_name

RN | characier_iiteral operator.symbol
A | indexad_component | slice

| selected_compuorent | attribute
simiple..nome = identlfier

prefix = name | function_call

4.1

indexed..component :i== prefix(exprassion |, expression|}

4.1.2

slice = prefix(discrete_range)

413
selected._component = prefix.sslector
selsctor ii= slmple_name

| character_iitaral | operator.symbol | ah
414
atiribute i prefix'attribute_designator

sttribute_designutor 1=
simpiv_name ((universa/_static_expression))

‘la

- aggregete iim
A {component.aasociation |, component.assoclation})

i componant_assoclation =
. (cholos || choles) => | exprasaion
4.4

exprassion v
relation |and relation| | relation Iond then relation!

: | relation [or relation} ralation {or elee relation|
CUs | relation (xor relatlon|
- relation iim
vl simple_expression [telationaloperstor simpls.exprassion)
DAk | simple_sxpression [not] in range
| sitnple.expression [not] in type.mark

simple_oxprassion !im
{urary..adding_operator} term (binary_adding.operator term|

term i factor |multiplying_operator factor]

e factor it= primary [« primary] | abs primary | net primary
e primary e

o numerlo_literal | nul | aggregate | string_literal

| neme | sllocator | function_call | typs_conversion
R | aualified_expression | {expression)

P . oot .
S SV STy T ey Vg PR

4.5
logical_operator = and | or | xor
relational_operator = = | /=] < | <= | > | >m .
binary_adding_operator = + | - | & : .
unary_sdding_operator =+ | - B
multiplying..opsrator ==« | / | mod | rem ;
highest_precedence._operator = «x | abs | not :
4.6 e
\ypo_‘commlon = type_mark(oxpression) :;-::"'
47 o
qualified_expression ii= i
typemark'(axpression) | type_mark'aggregate @

48 o

sllocator iim
new subtype_indication | new quallfied_expresalon

8.1

sequence_of_statements :i:= statement (statement)

stotement e SN
| label] simplo_statement | llabell compound_statemaent ‘

|in'\plo..nmnrncm tiee null.atatemnent \ Sy

assignment._statemont | procedure_call_statement Ry
| oxit_statemant return_atatement . 5 .
goto_statement antry.call_statement
delay_statement abortustatement
| ralse_statement vode_statement
compound_statement im J
{f_statement case.statement |
| loop.statement block_statement ’

| acospL.statement | select_statement i
label = <</abs/_simple..name> >

null_statement i null;

8.2

assignment_statement = s
variable.name == exprassion;

8.3

if_statemaent :im

K condition then
sequenos_of_statements

{ olatf condition then
soquance_of_statements|
olse
sequence_of_statements)
ond it

condition !~ boo/san._expression

ATl
Pt

e

T ataTaTatala

il

54

case_statement lm
case expression is
case._atatement_alternative
| case._statemant_alterative}
and oase;

cave_statemant_slternative iia
when nholce {| oholoe | =>
saquence..of_statements

5.5
loop_statament ii=
Inop_simple_name:)
(iteration_scheme] loop
sequence..of_statements
ond loop [loop_simple_name);

iteration.acheme i= while condition
| for loop_perameter_specification

loop..paramater_spacifioation :im
identifler in [reverse] discrete_rangs

8.0
block_statamant 1=
(block_s!mple_name:]
(devlare
declarative_part)
begin
sequance_of_statements
| sxception
exception_handler
| exception_handler|)
end (block.slnple_name);
8.7

exitstatement !iw
axit {loop.namy] (when candition);

5.8
return_statement == retum [expression);
5.9

goto_statement = goto /wbe/_name;

0.1
subprogram_deciaration i:= subprogram..specification;
subprogram._specification :im
procedure identifier l'ovmll.pln
| funotion designator (formal_part) return type_mark
designator :ix Identifier | operator_symbol
operator_symbol :im string_llteral

formal_part =
{parsmetsr_apecification |; paramaeter_speoification})

paramaeter_specification :im
identifler_list : modo type_mark 'i= expression)

mode = in] | in out | out

E-4

ANSI/MIL-STD-1815A Ada Raference Manual

8.3

subprogram_body =
subprogram_aspuecification s
| declarative_part)
begin
sequence._of_statements
| excoption
axception_handler
| exception_handier|]
ond [designatorl;

64

procedure_call_statement :im
pi vedure_nama |actual_parameter—part};

function_call =
tunction.name [actusl_parameter.pan)

actusl_parameter_part !im
(parameter_association {, parameter.association))

parameter_association i
| tormal_paramater w=>) actusi.parameter

formal.parameter (e parameter_simple_nams

actual..parameter (s
expression | var/able.name | type_markivar/able.name)

74
package-deciaration :i= paockage.specification;

packaga_specification ii=
package |dentifier Is
|basic..declarative.Jtem)
| private
(baslc_declarative Jtem|}
ond [package_simple_name)

package_body iim

package body package_simple_nams Is
| doolurltlvo_pmf

[begin
ssquence..of _statements

| exception
axception_handler
| exception_handier}l}

ond [package_simple..name);

14

private._type_ceclar. ‘on il
type Identifler [dissriminant_par] s (imited] private;

deferred_constant_declaration iim
Identifier_liat : constant typs_mark;

8.4
use_clause i~ use package_name |, package_namel;
8%

renaming._daclaration .
Identlfler : type_mark renamse object_name;
| Identifler : sxoeption renamas excaption_name;
| puckage Identifier renames package..name;
| subprogram_specification renames
subprogram._or.entry..name;

T Oy O N O O VY YV SO PN Y

B

i Syntax Summary

K 9.1 8.7.2

task_declaration = task.apecification; conditional_entry_call =

. select e

;- tasi_specification te entry_call_statement R
task [type] identifier [Is | saquence_of_statemaents) -

l |antry_declaration| else - ®

X {representation.clouse} ssquence..of_statoments N

- X end [task_simpls.name)) end select;

:‘ task_tody = 9.7.3

task body task_simple_name le

! [declarative_part] tmed_entry_call = R

g bagin select s s

asauence_of statamenta

untry_call_statamant @

4 | exception | sequenca..of_statements} 3
B exception,. .handler or RN,
o) | oxception_hardler}) delay._aiterrative NN
i ond [taskaimple_name); end select; . .
(Y] Lo,
;‘.' 8.10 .
u‘ "6 "." -

{ sbort_statement i abort task_name |, task_name); T
. entry_declarution 1= L
.. entry ldentifier [(discrete_range)l (formal_part!; 1o

' 10

entry_call_stutemant tis

v entry_nems [eotusl_paramster_part];

actopstatament i
scoept entry.simple_name (lentry_index)] [formalpert] (do

compliation = |compliation_unit)

complistion_unit iiw
context_clause library_unit

sequance.. of_statements | context_clause secondery.unit

o ond [e:ery_simple_nams)); .
library.unit :im TR
. entry..indax = tuprassion subprogram_declaration | package.declaration RN
b | generio_deciaration gensrio_inatantlation R
i | subprogram_body S
. 8.8 secondsry..unit = library_unitbody | subunit :
" delay_statemani :ue delay simpla_expression; tibraty_unit_body t= subprogram_body | package.bexly
R
t 10.1.4
) 9.7 .
L context._clause ii= [(with..clause (use_oclause}}
s solnct statement tim selactive_walt LR

| conditional_sntry_call | timed_entry. ol with_clause :im ©
anl with unit_simple-name {, unft_aimple..namel; ')
9.2.1 10.2
e . o
- selective_walt = body.stub = N
sslent subprogram_specification is separets;
o select_aiternative | packsge body package_simple.name s seperate;
by or | tusk body tusk_simplo.name la separate; ot
Ay select_ altarnative
[oiss ' subunit 1= separate (perent_unit_nams) proper_body
N seguence.of.statements) 5
te ond selwot; e
ety 1.
e snlect_slternative iim :
< | when condition =>} sxception_dscluration = Identifter_list ; exception;

selsctive_weltslternative 2 o

el 11.2 TroTn
. welective_walt_alternative :i= scceptalternative :
e | delay_niternative | terminate_alternative axcoption_handler i oL
"N when exceptlon_cholos || exception_cholce] => REEEE
N scoapt_aiternative lim sequence._of_statements o
acceptstatement (sequonce_of.statements| IR
o sxception..oholoe = exception.nams | othme R
@ delay_sitarnative iis !
oy delsy_stutement (sequenne..of_statements)

r ‘r

1‘.3 - .AAj,....

terminate_elternative = terminate; ralse_statament = raise [exception.nams);

i =

i

121
generic_declaration = generlc_specification;

genaric_specification =
generic_formal_part subprogram_specification
| generic_formal_part packege_spscification

generic_formal_part = genuric |(ganeric_parameter_declaration}

gonaric_paramater_daclaration =
identifier_list : [in [outl) type_mark [:= expression|;
| type identifier is generic_type_definition;
| private_type_declaration
| with subprogram_specification [is name);
| with subprogram_spacification (I8 <>);

generic_typa_definition 1=
(<>) | range <> | digits <> | delta <>
| array_type.definition | access—type_definition

123

generic.instantiation 1=
package idantifler s
new generic_package_name [generic_actusi_purt);
| procedure identitier s
new gener/c_procedure_name [generic_sctualpart);
| function designator (s
new generic_function.nams [generic..actusl_part);

generic_actual_purt !i=
{generic_assoaiation |, ganatic_.sssociation])

genaric_association il
[generio_formal_parameter ='>] generio_actual.parameter

generic_formal_parameter !ias
parameter_siinple..name | operator_symbol

generic.actusl_paramatar = gxpression | vareble_name
| subprogram.nams | entry.name | type.mark

E-8

" ..-V.‘ 'l. .l .‘q N B 1] ‘4. . . N . - N
2 it A s g e e L b e by Rk et st bash by B el s S s e

ANSI/MIL-STD-1815A Ada Reference Manual

13.1 S
representation_clause .= R
type_reprasentation_clause | address_clause o
type_representation_clauss = length..nlause e
| enumeration_representution_clause @
| record.rapressntation_clause PR
13.2 o
length._clause :=: for attribute use simple_expressiors; N ;i
13.3 '--'.‘
enumeration._reprasontation._clsuss iim Lo
for type.simple_name use aggregate; K

134 e
racord._represantation_clause :i= W
for type_simpla_name use

record (alignment_clause)

lcomponent._ciasuse}
ond record;

slignment_clauso = at mod static.simple. exprassion;
compansnt._clauge !i=

component_name at static_simple_expression
range stat/c_tange;

13.6 R

address_clause = o o
for simple_name uve at simple_expression; S

13.8 I

code_statemant = type_mark'record_aggregate;

i4

LN

Syntax Cross Reference

y
. In the list given helow each syntactic category is followed by the section number whare it is N
R defined. For example: w
- adding_opurator 4.6 '®
."',
. in addition, each syntactic category is followed by the namas of other categories in whose defini-
.. tlon it appears. For example, adding_operator appears in the definition of simple_expression:
o t
vl L“J 1
A sdding_operator 48 B
o simpis_sxpression 44 Y
{j'f An ellipsis (...) Is used when the syntactic category Is not defined by a syntax rule. For sxample: e :
4 "
ot lower..case.letter .
oN All uses of parentheses are combined in the term “()". The Italicized prefixes used with somae terms e
b have been delcted here. L
O o
.‘;2'\ :\': .
-\.‘_i .
", e
i L
| .
AT
2N abort W sotunlparameter 04
sbort_statement 9.10 parameter_assoolation o4
' :':‘l; abort.statemant 9.10 sctual_parameter_part 64
o simple_statement 6.1 sntry_cell_staternant 98
funation_gcall 84
abe procedure_callstatement 04
factor 44 ot
highest_precedsnce_operator 48 addrens_olause 138 L
raprasentation.clause 131 ol
Soaept 95 apgregate 43 5
tat t) . .
focspLstatemen code_statement 13.8 S
sccept_attemative 9.7.1 snumarstion_representation_cleuse 133 T
sslective_walt_alternative 9.7 primary 4.4 -5
qualifind._.expresgion 47)
nocoptatatement 90 .
wnoncpt_olummlvn 9.7 alignment_slause 13.4 R
oompound. statement 8.1 recard._tepresentation_clause 134 .
agoess
access_type_definition e all
salectn) 413)
sccess_type.definition 28 “
generic_typs_definition 124 allocator 48
typa_definition 3.3 primary 4.4

ANSI/MIL-STD-1815A4 Ada Reference Manual

and case o
expression 44 case_statement 5.4 ol
logical_operator 45 variant_part 3.7.3 3
argument_association 28 case_statemant 5.4 o , .
pragma 28 corpound._statement 6.1 0!
array 5.4 S
constrained._array_definition 3.6 ““":;:?_T:::}'::‘::" ative 5.4
unconstrained_array_definition 3.6 R
character_literal 2.6 g
array_type-_dsfinition 3.8 snumeration_literal 3.5.1 o
peneric_type_definition 121 name 4.1 o
type_definition 331 salector 41.3 ..;.
assignment_statement 5.2 choice 373 e
simple_statoment 5.1 case.statement.alternative 5.4 L
component._assoclation 43 PR
at varlant 373 S
address_clause 138 A
alignment_clause 134 code_statenient 13.8 o
component_clause 13.4 simple_statemant 5.1
attribute 414 llati 10.1 " ‘.'.
length_clause 13.2 complation R
neme 4.1 compiiation_unit 10,1 A
range 38 compliation 10.1
attribute_designator 4.1.4 component_association 43
attribute 414 sgoregate 4.3
. 242 component_oclause 134
based_llteral 24.2 record_represantation_clause 13.4
based_intsger 242 component_declaration 3.7
based_litera’ 242 p:omponont_lln a7
basod_li “ral 242 component_Jist 3.7
numeric_literal 24 record_type._definition 3.7
variant 373
basic_character 241 .
componsnt_subtype_definition 3.7
basic_declaration <3 component.declaration a7
basic..declarative_item 39
compaund.statemant 8.1
basic_declarative_item 3.9 © p:mt.m,:'. 5.1
declarative_part 3.9
package_speolfication 71 condition 5.3
oxit_statement 8.7
basle_graphic_character 2.1 if_statsrment 6.3
basic.character 2.1 [teration_schema 6.5
graphic_character 241 select_alternative 8.7
begin itlonal_en il 8.7.2
block_statemrent 6.6 cond |:Ie:=t_.lt:'tyo?:::nt 9.7
package_body 71
subprogram_body 63 .
task_body 9.1 constant .
deferred_conatant_decleration 7.4 4
binary_adding_operator 46 number_declaration 3.2 -
_ simple_expression 4.4 object_deciaration 3.2
d block_statement 5.8 constreined_array._definition 3.8 °®
compound..statement 8.1 array..type_definition 3.8 ol
.. object_dsclaration 3.2 :
o body 3.9 B
o later_declarative_Item 39 - ‘
o constraint 332 -
R body subtype_indication 332 '
= body.stub 10.2 -
package_body 74 context_clause 10.1.1 .
= task_body 8.1 compllation..unit 10.1 -
} body..stub 102 decimal_literal 244
: body 39 numeric...litsral 24

Syntax Cross Reference

declarative_part
block_statement
package_body
subprogram_body
task_body

declare
block_stateinent

defarrad_constant_declaration
basic_declaration

delay
delay_statement

dalay_altemative
selectiva_wait_slternative
timed_entry_oa!l

delay_statement
delay_altarnative
simple_statement

deita
fixed_accuracy..definition
generic..type_definition

derived_type_definition
type_definition

designator
generic_instantiation
subprogram_body
subprogram_specitication

digit
basic_graphic_character
extended_digit
integer
lotter_or_digit

digits
floating_accuracy.definition
generic_type_definition

discrete_range
choice
entry_dectaration
Index_constraint
Ic:lop_pnramotor.,npmlﬂutlon
slice

discriminant_sssoolation
discriminant_constraint

disariminant_constraint
conatraint

discriminant_part
full_type_declaration
Incomplete_type_declaration
private_typs_declaration

discriminant_s
discriminant.part

do

acceptstatement

exponent

oo
eN® NN

o
L W

-
—®©:

©
Dw Mo
“a

-
Y- X
P T 79N

L
YT
APy L Y]

° W
“owoevw P>
P

N0 N Donoewo

<3

VOW PW W >

NN NBLN oy
R

we
-dd

4.1

else
conditional_entry_call
oxpression
if_statemant
selective_wait

eisif
if_statement

end
accept.statement
block_statement
case_statement
conditional_antry._call
if_statement
loop_statemaent
package_body
package_specification
record_representation_slause
record_typa_definition
selective_walt
subprogram.body
task_body
task_specification
timec_.entry_call
varlant_part

entry
entry._duclaration

antry_call_statenment
conditionai_entry.call
simple_statement
timed._entry_call

entry_declaration
task_specification

entry._index
sccept_statement

snumeration_literal
snumeration_literal_specification

snumeration_literal_specificetion
enumaration_type_definition

snumeration_representation. sle
type_representation_clause

snumeration._type_definition
type_definition

[2]
block_statement
exception_deciaration
package_body
renaming_declaration
subprogram_body
task_body

exgeption_cholue
exception_handler

laration
basic_deciaration

sxception_handier
block_ atatoment
package_body
subprogram._buody
task_body

o
w:

©
- — ey
NUDOONWWNNFAIRRD

VO wwayrc >

wo

® ©
Lo o o

— s

W wa
i

- o
WO WW o OO LY O NN ©
a

wo
o

- .

-
LA B Bl -]
PR Y. RETSEY)

- -
—
[3 M

-

W -
-—.d

-
OISR

Lwsan

ke
X

ANSI/IMIL-STD-1815A Ada Reference Manus!

" oxit function o
exitstatemant 8.7 generir_instantiation 12.3 S
subprogram_spacification 8.1 .
a0 oxit_statement 8.7
o simple_statement 8.1 function_call 6.4 .
?l prafix 4.1 St
, exponant 2.4 primary 4.4 [
- based_literal 242
R decimal_literal 2.4.1 generic
generic_formal_part 121
expression 44
actual_parameter 64 generic_actual_parameter 12.3 -
argumaent_association 2.8 ganeric._assoclation 12.3 '
assignment_statement 6.2
attribute_designator 414 genaric_actual_part 123 {
v case_stater .ent 8.4 generic_instantiation 123
. componeni_association 4.3
NS component_declaration 3.7 generic_association 12.3
condition 6.3 generlc_actual_part 123
D discriminant_association 3.7.2
discriminant_spsecification 371 generic_declaration 121
entry_index 8.8 basic..declaration 31
generic_actual_parameter 123 later_declarative_item as
generic_parameter_declaration 1241 library_unit 10.1 Y
indexed_component 411 L
number_deciaration 3.2 generic_formal_parameter 12.3 -
objuct_declaration 3.2 generic_assoclation 123 i
paramster_specification 6.1 :
primary 4.4 generic_formal_part 121 .
qualified..expression 4.7 gensric_specification 1241 N
return_statement 8.8
type_conversion 48 generic_instantiation 123
basic_.declaration 3.1
extended_digit 24.2 later_declarative_item 3.9
based_integer 2.4.2 library_unit 101
factor 44 generin_parameter_deciaration 12,4
term 4.4 generic_formal_part 121
fixed_acouracy_definition .89 gensric_specification 124
fixed..point_constraint 389 generic_.declaration 1241
i eneric_type_definition 121
“"‘d‘::r:':m:?m'"' 332 ’ generic._parametar_declaration 1241
real_type_dsfinition 386
floating_accuracy._definition 3.5.7 goto_statement 5.9
X floating_point_canstraint 3.8.7 goto_statement 5.9
floating_point_constraint 3.8.7 simple_statement 8.1
X constraint 3.3.2
S rphic_character 21
X real_type_definition as.e orep character,_literal 28
" string_litaral 20
for
s address_clause 13.8 highest_precedence_operator 48 W
enumaration_representation_clause 133 ,
o Iteration_scheme 8.8 identitier 2.3
length_oclause 13.2 argument_assaclation 28
. record.representation_clause 134 designator 8.1
o sntry._declaration 98
i enumeration_literal 3.8,
' formal_parsinster 6.4 full..type_declaration 331
J parameter_association 6.4 generlc_instantlation 123 SN
- genaric_parameter_declaration 1§ . ;
' ™m identifier_list .
to '“"';:;,‘,_,m,m,m g; incomplete_.type_daclaration 81
. entry._declaration 9.5 loop_parameter_specification 8.8 .
' subprogram._spacification 6.1 packege_specification 21 -
. pragma 28
' - private_type_deciaration 7.4 :
;‘ format_effector renaming._declaration a8 v a
e basic_character 2.1 simple._name 4.1 e
subprogram_spacification 81 e
full_type_declaration 3.3.1 subtype_deciaration 332
type_deciaration 33,1 task_spacification 9.1

E-10

DTSN T N TP O Y P VST Ui Ny T T VU T UV OV TN 1TV PR QR ¥ WY Oy Gy QTR SR S S IV T W W S VR S

Syntax Cross Reference Lo

., wled
{ .
~ PR |
‘ identifier_list 3.2 letter_or_digit 2.3 R
‘ component_daclaration 3.7 identifier 2.3 L)
" deferred_constant_declaration 74 o
{ discriminant_specification 3.7 Nibrary_unit 10.1 Co
. exception_declaration 1.4 compilation_unit 10.1 ’
' generic_parameter..deciaration 121 - -
i number_declaration 3.2 library_unit_body 10.1 @
object_declaration a2 secondary_unit 10.1 -t
¥ parameter_specification 6.1 .
; limited ;
: it private_type_declaration 7.4 5
P if_statement 83 .
< logical_operator 4.5 .
H_statement 5.3
I compound_statement 5.1 loop
: i loop._statement 8.6
. n
N generic_parameter.deciaration 12.1 loop_paramater_specification 6.5
N loop..parameter_specification 6.6 iteration_schame 8.5
mode 6.1
4 relation 44 loop_statement 8.8
compound_statement 6.1
i incomplete_| 3.8.1
o type_declaration 331 lower_cass_latter
o graphlc_character 2.1
5 Index_constraint 36 lotter 2.3
" constrained_array_definition ae
J constraint 332 mod
o alignment_oclausse 13.4
oA index_sul ition 36 multiplying..oparator 48
” unconstrained_array_definition a0 5
. mode 6.1 3
N indexed_tomponent 414 parameter._specification CR o
N name 41
o multiplying_operator 4.8 .
W integer 241 term 44 i
o1 b.” 20412 .' "
) decimal_literal 241 namo 4.1 -
l sxponent 241 abort_statament 8.10 .
sctual_parameter 04 e
. integer_type_definition 384 srgument..association 20 PRI
" type_definition 331 assignment_statemaent 8.2 e
o component.clause 13.4 AR
N is entry_call_statemant 9.8 e
\t body.stub 102 exception_cholce 11.2 C
' cass_statement 8.4 exit_statement 8.7 N 'l
. full._type_declaration 331 function_call 0.4 -
- generic_instantiation 123 genarlc_sctual_parameter 12.3 'j
-S_' o.ﬂ.r'w"m.t.f..d.cl.'.ﬂon ’2.1 q.n.ﬂc_lnlt.n“.ﬂon 12‘3 oo ‘1‘
- packags_body 74 generic_paramaeter_cleclaration 121 SRR
package._specification 13! goto_statemaent 8.0 2y
private_type_deciaration 74 profix 4.1 RPN
N subprogram..body 63 primary 44 S
subtype_deciaration 332 procedure_call_statement 6.4 w0 i
' task_body 8.1 raise_statement 11.3
L task_specification 91 renaming_declaration 8.8:%
- viriant_part 373 subunlt 10.2 S
. type..mark 332 P
A Hteration_schame 88 use_clause 84 e
lcop_statement LN AR
W new S
-0 labet 8.1 allocator 40
-1 statement 81 derived_type_definition 3.4 .,
§ generic_instantiation 123 - ..'i,.-"
cA later_declarative_jtem a9 CL
deciarative_part 39 not o
5 factor 4.4 T
Ly length_clause 13.2 highest_precedence_operator 45 oo
type_representation..clause 131 relation 4.4 B '.1
s letter 23 null Pl
L extended_diglt 242 component_liet 3.7 .
identifier 23 null_statement 8.1 Cod
lotter.or_digit 23 primary 44 -
L
- E-11 R
Qe .‘._4
. A
. L ‘.n L PATC PSR SIS W MLM‘LMA_LMQA.MM MM alatalalhdlalmalteu.a IS o

ANSI/MIL-STD-18154 Ada Reference Manual

nult_statement

8.1
simpla_statement 8.1 pﬂmnfvzcmr ::
number_declaration 3.2 private
basic.declaration 31 package_specification 714
fteral 24 private_type._.declaration 74 -
primary 44 private...typa_declaration dool ;: R
generic_parameter_deciaration 12, e
laration 3.2 S
basic_declaration 34 type_declaration 331 SRR
of procedure e
generic._instantiation 123 .
constrainec_array_definition 3¢ R
unconstrained_array_definitlon 3.6 subprogram__specification 8.1 "
procedure_call_statement 64)
m“a‘:’.'-;v"‘m:‘:‘ : 1 simple..statement £.1
g::\o.rln_fomﬂ_pmmnor 13? Pﬂ’l":’ -‘-:Odv g:
selector 413 lubant 10:2 |
o expression 4l quollllo|d.ol Xprassion :: -
logieal_operator 48 ;rm:x r ad o
selective_wait 9.74
timed_entry_call 973 raise
othet Ioha raise_statement 113
graphic_character 24 ralse_statement 1.3
others simple_statement 8.1 v
cholce 3.73
range as :
exception_cholce 11.2 component_clause 134 .
out dllcroto_nnna' 3.0 .
'gnog;:lo._pmmom..doollmlon 12. : ::m,:;fon“" nt 32 K ‘
range -
body_stub 103 o e et 12 T
' generic_type_definition 121 e
genseric_instantlation 1;? index_subtyps_definition 28
:::::gmlﬂu don 2 range_constraint as
renaming_declaration 88 range_constraint 3.8
conatraint 33.2
9“"1?:—""" | 13} fixed_polnt_constraint 389
""V:‘;';d‘-b“V 99 floating_point_conatraint as7 .,
proper. ¥ ' integer_type_definition 384 @
packege_deciaration 71 doft '
busla_declaration a1 ruLt:yp:. dof?rmam gg? .
later_declarative_item 39 - - R
fibrary_unit 104 record L
record_representation_clause 134
package..specification 7.1 [
generic.speocification 121 record_type_definition 3.7 R
package_deciaration 7.1 record_repressntation_olause 12.4 s
parameter_association 04 type_rapresentation.olause 131 L
sctual_parameter_part 64 record_type_definition 3.7 . ".-j',' ;
parameter_spec o1 type..definition 331 e
formal.part 6. relation 44 . ’
pragma 28 exprension 44 o
g relational_operator 48
': m’:::gm. 2"' relation 44
- rem
s ""“"m bute ‘?1 multiplving_operator 45 '
s indexed_component 411 renames T
o sslacted_component :: g renaming_deciaration 8.8

2 slice

E-12

v Syntax Cross Reference L

I
renaming_declaration 3.8 simple._name 4.1 5
“ basic_declaration kR accept_atatement 9.8 '
o address_clause 13.8
Y wb uuon_ual on “r._l 1g; ;‘ttrlgo.dulgntnor 4;: !
i asic_declarative_item A ock_statemen N o
{ task_specification X body..stub 10.2) .
) choire 373 .
s retum discriminant_association 3.7.2 DR
- return_statement 8.8 snumeration_representation_clsuse 133
a '{ subprogram_specification 6.1 formal_parameter 6.4 X
generic.formal_parameter 12,3 L,
N return_statement 5.8 label 6.1 R
- . simple_statement 8.1 loop._statement 8.8 -
name 4.1 .
reverss package._body (3 o
e loop_parsmeter_specification 8.8 package._spocificetion 74 '
e record_representation_clause 41 34
- secondary_unk 10,1 selector 1.3 K
- . complistion_unit 101 task_body 9.1 Iy
o task_specification 9.1 e
R lect vnlrlhlm.parl 18:?
" with_clause 1.
X conditional_entry_catl 9.7.2 .
0 selectiva_walt 9.7 simple_statement 8.1 N N
o1 timed_entry_call 8.7.3 statement LA
:': selvct_sitemative 9.74 slice 412
I selective_walt 971 name 41 h
Ly . select_statement 9.7 space_character
s compound.statement 8.1 basio_graphia_character 2.1
-;[
- selected..component 413 specialcharacter
o name 4.1 baslc_graphie_character 2.
‘\1 selective_walt 9.7 statemaent 8.1
» sslect_statement 07 sequence_of_statements 8.1 »
' selective_walt_sitemative 9.71 string_Jiteral 28 L,
B select_eiternative 9.7 operator_symbol 6.1 RN
S 3 primary 44 Lo
. selector 1. G
.0 selected._component 413 subprogram_body 6.3 AN
O IIbrary_un:t 10.1
I library, unit body 101 e
b “p‘b':;:_nub 10; proper_body 39 A
AR subunit 10.2 wbpmgnm_do‘ohrl'&n L] o
X basic_decisration 31 ;
N mwmmm o ;: lmr_doollarntlvc..ltom 39 L
o ;f«&..mtomom 9.8 Wbrary_unit 10.1 Tl
By ock_statement se e
3 i case_statement.alternative 64 lubpmw:‘lu%um 18; o
n §°:‘d“"’|""-"‘l'"-°"‘ 972 generic_parameter_deciaration 121 -
- o ey i o i
- | Lat:nmo_m 3 renaming_declaration 6.6
B loop_stetement 88 :3::2:::2 doolvlmlon ::1‘
packagebody 71 -)
o selactive_walt .71 subtype :
N ::‘:’kp_'gg;'ywv :‘:1' subtype_dsclaration 332 h
e timad_entry_call 973 subtype_deciarstion 332 .Y
S simple_s 4l basic..declaration 3.1 :
sddress..clause 13.6 asubtype_indioation 2.3.2 Lo
K. . :ngz‘."’"—""““ 3';; acosss_type_definition ae
' 3 allacator 48
o component_olause 134 compunent_subtype_definition 37
'y e toion 548 conaina ottt 20
g floating_accuracy.definition as7 d.'.':,':‘._?.pn.g', nition g'e U
e length_clause 13.2 !
S object_declaration 2 .
TR range < subtype_daclaration 2.3.2 f
e relation 44 uriconstrained_array_definition 3.6

subunit
secondary_.unit

task
body_stub
task_body
task_specification

task_body
proper_body

task. deciaration
basic_declaration
later_declarativa_item

tasi_specification
tasi. declaration

torm
simple_expression

terminate
terminate_aiternative

terminate_aiternative
solective._wait_alternative

then

expression
if_staterrent

timad_entry_call
select_stutement

full._type_dealaration
generic_parameter.declaration
incomplete..type_declaration
private..type_declaration
task_specification

type_conversion
primary

typa_declaration
basio_declaration

type_definition
full_type_declaration

type_mark
actual_pargmeter
code__statemant
deferred_constant_declaration
discriminant_spaecification
generic_actual_parameter
genaric.parameter_decliaration
index.subtype_detinition
parameter_apeoification
qualified._axpression
rolation
renaming_declaration
subprograin_specification
subtype_indlcation
typa_conversion

typs_repreientation_clause
reprasentation_oclause

unary_adding. operator
simple..exprassion

unconstrained_array. definition
array..typs_definition

..
oo
=N

—_

AP D WWD WO VOO

b Do D a-N:

F s

Py

oo ®©
NN N
X

o
o o

N w»

Ar DNBDNW

w_w
PP Qi

o

»

)

- W wa
a2mbi ‘-J

—-— @

N e aNsBows2TREN

w
W Ah WL AWSNF ACWRRNNUNGOL W L

-
-

o e

E-14

ANSI/MIL-STD-1815A Ada Reference Manual

underiine

based_integer
identifier
integer

uppar_case_letter

basic_graphic. shai s iime
letter

address_clausd
enumeration..represantstior_clauss
length_clause
record_represenation._clause
use..clause

use._clause

basic.declarative_item
context_clause
later_duclarative_item

variant

variant._part

variant_part

componsnt_list

when

cass_statement_alternative
sxception._handler
uwxit_statomant

sslect alternative

variant

while

with

Itoratior_scheme

genaric_paramaeter_declaretion
with_clause

with_olause

xor

context_clause

expression
logical._operator

otrit literal

based..litersl

binary_adding_.operator

attribute
character_literal
coda_statemant
quallfied_expression

accept_atatemaent
actual_parameter
actual_paramete. _part

- aggrepate

attribute_designator
discriminant_constraint
discriminant_part
entry_declaration
unumaration_type_dafinition
formal._part

L
L vt
N

ladiag
[~

— s =

-
o

WN NN W0 PRWWWW
NG W ©O—=DE ABNOOR:

84
1.2
8.7
9.7
323

12.1
10.1.1

1019
10.1.1

4.4
A8

EROFY PEE Y ¥E L

capuN—sma

w W

4
‘
>
'
'
CY
[
0
i
.
'
[

Syntax Cross Reference

) generic_actual_part
generic_typa..definiticn
index_constraint
indexed_component
pragma
primary
qualified_expression
slice
subunit
type.conversion
unconstreained_array_definition

multiplying_operator

LY}
factor
highest_precedence_operator

binary_adding_operator
exponent
unory_adding_operator

abort_stateament
actusl_parameter_part
aggregate
diseriminant_conatraint
snumeration_typa_definition
generic_sctual.part
Identifier_list
Index_constralnt
indexad..component

pragma
unconatrainad_array_definition
use_clause

with_clause

binary_adding_operator
sxponent
unary_adding..operator

based_literal
decimal_ilteral
selected_component

(1]
range
multiplylng_operator

[
relational_operetor

block_statement
nomponent.declaration
deferred_constant_declaration
discriminant_specification
exception_declaration
gansric_parameter_declaration
loop_statement
number_declaration
object_deciaration
paramater_specificetion
renaming_declaration

>

.y
WA= ARNSWRN
(- - J QS RSW N, Y, A

- W o
CRUNCWRINANLOL,
“romeaNMB-N@2O

>

-
©

>
]

-
BOVLANSNNUD
e LY LY PP XY

E-16

<<

assignment_statament
componant.declaration
discriminant_apecification
generic_paramater_daclaration
numbar_declaration
object_declaration

pare natar_specification

abort_statement
accept_statament
address_clause
alignment_clause
assignment_statament
block_statement
body.stub
case._statement
coda_statement
component_clause
component_deciaration
component_iist
conditional_entry_oall
deferred..conatunt_declaration
delay_statament
discriminant_part
entry_call_ststemaent
antry..declaration
enumaeration_rapresentation_clause
exception_declaration
exit_statemant
formal_part
full_type_declaration
genaric_deciaration
generic_instantiation
genaric_parameter_declaration
goto_statemant
If_statemont
incomplete_type_deciaration
length_clause
loop_statemant
null_statemant
number_declaration
object_declaration
package_body
package_ducluration
pragmu
private_type..daclaration
prucedura_ocall_statemant
ralse_statement
record_representation_clause
renaming_declaration
return_statement
selactive..walt
subprogram_body
subprogram._.declaration
subtype_declaration
tusk_body
task_declaration
terminate_niternative
timed_entry_ocall
use_clause

variant_part

with_clause

relational__operator

labal

relational_oparator

W
BV UWo

ZRedLL G

w
coamLLol

—— D —— w © -

«

—_

©

w

_.
ow Do
WP N e N T W DR R W R RD L A NN AN A WD S Wt U DB PRV UGRADBRRNBNPRINO:

L > .
- o

Eal
o

T -

ANSI/MIL-STD-1815A Ada Reference Manual

<> w
> .
] generic_paramaeter_declaration 1241 relational_operator 4.6
goneric_typo_definition 121
Index_subtype_definition a6 N
- e
- ~ relational_operator 45 o
relotional._operator 48 ®
-> >> e
argument_assoclation 2.8 labet B IR
case_statement_altemative 84 TR
component_association 4.3 .
discriminant_assoclation 3.7.2 | - -
exception_handier 11.2 case_statemant_alternative 5.4 RN
genaric_associetion 12,3 companent_association 4.3 ®
g parameter_sssociation 8.4 discriminant_association 3.7.2 Ly
X sslect_alternstive 9.7.1 exception_handler 11.2 o
' varlant 3.7.3 variant 3.7.3 R
{
<
Al
Al
L]
A .)
XI . o
P, Lt
- - l‘
. i o
\ h‘r Cphe v
(] o \ '-‘. '
b e
AR
: p
1 .:‘ N "7.
;. A L
b
W'
. ' s
" . C
: Y
&))
i o ame o

{This mppendix is not part of the standard definition of the Ada programming language]

F. Implementation-Dependsnt Characteristics

The Ada language definition aliows for certain machine-dependences in a controlled manner. No
machine-dependent syntax or semantic extensions or restrictions are ellowed. The only allowed
implementation-dependences correspond to implementation-dependent pragmas and attributes,
certain machine-dependent conventions as mentioned In chapter 13, and certain allowed restric-
tions on ropresantation clauses.

The reference manual of each Ada implementation must include an appendix (called Appendix F)

that describes all Implementation-dependent characteristics. The appendix F for a given implemen-
tation must list in particular:

{1) The form, allowed places, and effsct of every implomentation-dependent pragma.
(2) The name and the type of svery Implementation-dependent attribute.

(3) The specification of the package SYSTEM (see 13.7).

(4) The list of all restrictions on represantation clauses (see 13.1)

(6) The conventions used for any Implementation-generated name denoting implementation-
dependent components (see 13.4).

(8) The lntorp)retatlon of expressions that appear In address clauses, including those for interrupts
(see 13.B).

(7) Any restriction on unchecked conversions (see 13.10.2).

(8) Any Implementation-dependent characteristics of the Input-output packagas (see 14),

[This index is not rart of the standard definition of the Ada programming language.|

S

o e
R

: Index
, An entry exlists in this Index for each technical term or phrase that is defined in the reference a
N manual. The term or phrase is in boldface and is followed by the section number where it is RS
X defined, also In boldface, for example:
Record aggregate 4.3.1 B R
' References to other sections that provide additional information are shown after a semicolon, for " .

2 example: 4
Record aggregate 4.3.1; 4.3 o

y References to other related entries in the Indax follow in brackets, and a line that is indented below

1 a boldface entry gives the section numbars where particular uses of the term or phrase can be - '.‘.-
= found; for example:
..3 Record aggregate 4.3.1; 4.3 B
2 [see also: aggregate) I
as a basic operation 3.3.3; 3.74 s
in a code statement 13.8 L
N ' e
" Thi index also contains entries for diffsrent parts of & phrase, entries that correct alternative ter- L
N minology, and entries directing the reader to Information otherwise hard to find, for example: L
1471
‘s Cheok
: {see: suppress pragmial
.
- in an abnormal task 9.10
A :I:::\:‘c:r:m’luboutlon or evaluation (of declarations or in a saleat alto;nutlvn 9.7.1 ,
*'w . including an exit statement 5.
* |see: exception, raise statement) including a goto statement 5.9 ,‘ :
ve Abnormal task 9.10; 9.9 "':f.':':;"gn'.;;'.“;;‘h;"n”g"“ 8.8 S
i (see also: sbort statement] to communicate valuss 9,11 L
as recipient of an entry call 9.7.2, 9.7.3, 11.5: 8.8 Lo
- raising tasking_error In & calling task 11.5: 8.8 Access to external flles 14.2 S
'7-:: Abort statement 9.10 Access type 3.8; 3.3, D y
A [see also: abnormal task, statemaent, task] [see alo: sllocator, appropriate for a type, class of typs, Ce
,'_ as a simple statemant 5.1 collection, derlvad type of an access type, null access R
NS vaiue, object designatad by..] o
! Abs unary operator 4.3.6; 4.8 as a derived typs 3.4
A [see also: highest pracedence operator) as & generic formal type 12,1.2, 12,38 ——
S as an operation of a fixed point type 3.8.10 deailocation [see: unchecked_desllocation) .
as an operation of a floating point typs 3.5.8 designating e limited type 7.4.4
X 88 an operation of an Integer type 3.8.8 designating & task type determining task
- in a fuctor 4.4 dependence 9.4
N formal paremeter 8.2
Absolute valus operation 4.8.8 name In a nontrolled pragma 4.8
object Inltiallzation 3.2.1
Accept alternative (of a selective wait) 9.72.1 operation 3.8.2 . @
for an interrupt entry 13.8.1 prefix 4.1 R
vulue designating an object 3.2, 4.8
Accept statement 9.5; 9, D valus designating an objeot with discriminants 8.2
(see also; entry call statement, simple name in.., state- with a discriminant constraint 3.7.2
ment, task) with an Index constraint 3.6,1
accepting a conditions! entry call 8.7.2
accepting a iimed entry call 9.7.3 Access type definitlion 3.8; 3.3.1, 12.1.2
and optimization with exceptions 11.68 as 8 generic type definition 12,1 -
#e 8 compounhd statament 8.1 o
as part of a declarative region 8.1 Access_check
sntity denoted by an expanded name 4.1.3 |see: constraint_error, suppross)

-1 Abandon e Access.check

+ . “ . . - B - . . “ . 0 N
et e . . P L S R
lnv'vr'-l--n.\,.'--..l--.w-‘..-.~.-..-.~.».‘.-.-..-'.. U AR

Accuracy
of a numaric operation 4.6.7
uf 8 numarle oparation of a universal type 4.10

Activation
|sen: task activation)

Actual object
Isee: genaric actual object|

Actual parameter 6.4,1; D; {of an operator) 6.7; {of a sub-
program) 6.4; 6.2, 6.3
|see aiso: antry call, formal parametsr, function call,
procedure call staternent, subpragram call)
charactaristics and overload resolution 6.8
in a generic Instantiation [see: generic actual
paramatar|
of an array type 3.6.1
of a record typs 3.7,2
ol a task type 9.2
that s an array aggregate 4.3.2
that is a loop parameter 6.5

Actus! paramater part 8.4
in a conditional antry call 9.7.2
in an entry call statement 9.6
in a function call 6.4
in a procedurs call statement 6.4
In a timed entry call 9.7.3

Actual part
|see: nctual parameter part, ganeric actual part)

Actual subprogram
{sme: generlc antual subprogram)

Actual typs
|see: generic actual type]

Adding operator
[see: binary ndding operator, unary udding operator)

Addition uvperation 4.5.3
accuracy for a real type 4.6.7

ADDRESS (predufined attribute) 13.7.2; 3.5.8, 3.6.8,
3.6.10 36.2, 3.74, 3.8.2, 74.2, 9.9, 13.7, A
[soe alsn: address clause, system.address|

ADDRESS (predefined type)
|ses: system address|

Address clause 13.8; 13.1, 13.7
Isee also: storage address, system.address|
a8 & repressntation clause 13.1
for an entry 13.5.1

AFT (predefinad attribute) for a fixad point type 3.8.10; A
Aft Hield of text_lo output 14.3.8, 14.3.10

Aggregate 4.3, D
?soe olso: array aggrogate, overloading of.., record
agaregate|
as a baslc operation 3.3.3; 3.6.2, 3.7.4
a8 a primary 4.4
in an allocator 4.8
in a codo statement 13.8
in an enumaratlon reprssentation clause 13.3
in a qualified axprassion 4.7
must not be the argument of a conversion 4.8
of u detlved type 3.4

Alignmant clause (In a record representation clause} 13.4

Accuracy e Arithmetic operator

ANSI/MIL-STD-1815A Ada Referance Manual

All in a selacted componant 4.1.3
Allocation of processing resources 9.8

Allocator 4.8; 3.8, D

|see also: access type, collantion, exception ralaed during...,

initial value, object, overloading of..]
as o bhasic oparation 3.3.3; 3.8.2
as a primary 4.4
crenting an object with a discriminant 4.8; 6.2
for an array type 3.6,1
for a generic formal access type 12.1.2
for a private type 7.4.1
for a record type 3.7.2
for o task typs 9.2; 9.3
must not be tha argument of a converslon 4.6
raising storage_error due to tha size of the collec-
tlon being exceeded 11.1
setting a task value 9.2
without storage check 11.7

Allowed 1.6

Alternative
|see: accept alternativa, case statemant alternative, closed
alternative, delay alternative, open alternative, select alter-
native, selective wait, terminate alternative)

Ambiguity
|see: overloading|

Ampersand
|eee: catenation|
character 2.1
dalimiter 2,2

Ancestor library unit 10,2

And oparator
{soe: logical operator}

And then control form
{see: short circuit control form]

Anonymous type 3.3.1; 3.6.4, 3.5,7, 3.6.9, 3.6, 9.1
snonymous base type (ses: first named subtype)

ANBSI (amaerlcan national standards Institute) 2.1

Apostrophe character 2.1
in a character literal 2.8

Apostrophe dslimiter 2.2
In an attribute 4.1.4
of o qualified expression 4.7

Apply 10.1.1

Appropriate for a type 4.1
for an array type 4.1.1, 4.1.2
for a tecord type 4.1.3
for A task type 4.1.3

Arbitrary selection of gelact alternatives 9.7.1

Argumaent association In a pragma 2.8

Argument identifier In a pragma 2.8

Arithmetic operator 4.8
|sse algo: binary adding oparatar, axponentiating operator,
multiplying operator, pradefined operator, unary adding

operator|
ag an operation of a fixed point type 3.8.10

.......

HWIGOA

as an operation of a floating point type 3.6.8
as an operatlon of an Integer type 3.8.5
rounding for real types 13.7.3

Array aggregate 4.3.2; 4.3
isee also: aggregats)
as a basic operation 3,3.3; 3.8.2
In an enumeration representation clause 13.3

Array assignment 5.2.1

Array bounds
|see: bound of an array|

Array component
Isee: array type, component, Indexed component)

Array type 3.6 3.3, D
[see also: component, composite type, constrained arruy,
constrained..., index, matching components, null slice,
slice, unconstrained..)
as a full type 7.4.1
as a generic formal type 12.1.2
as a generic porameater 12.3.4
as the type of a formal parameter 6.2
conversion 4.8
for a prefix of an indexed component 4.1.1
for a prefix of a slice 4.1.2
operation 3.6.2; 4.6.2, 4.6.3
operation on an array of boolaan components 4.6.1,
4.5.8
with a component type with discriminants 3.7.2
with a limited component typa 7.4.4

Array type deiinition 3.8; 3.3.1, 12,1.2, 12,34
{see also: constrained array definition, elaborution of...
unconstralned array definition)
4s 8 gunerlc type definition 12,1

Arrow compound delimiter 2.2

ASCI| (american standard code for information interchangs)
21

ASCIl (predefined library packagse) 3.8.2; 2.8, C
{see also: graphical symbol)

Assignmant compound delimiter 2.2; 5.2
in an object declaration 3.2.1

Assignmaent operation 5.2; D

[see also: inltial value, limited type]
as a basic operation 3.3, 3.3.3; 3.5.5, 3.5.8, 3.5.10,
3.6.2, 374,382, 742, 1212
for a generic formal type 12.1.2
not available for a (Imited typs 7.4.4
of an array aggrepate 4.3.2
of an initial value to an object 3.2.1
to an array variable §.2,1; 6.2
to a loop parameter 5.6
to an object designatsd by an access valus 3.8
to a shared varlable 9,11

Assignmant statement 5.2, D
[see also: staterment]
as a simple statemant 5.1

Associated duclarative reglon of a declaration or statement
8.1

Assogiation
[ses: componant association, discriminant association,
generic association, parameter assoclation]

Attribute 4.1.4; O
[sen alsu: pradefined attrlbute, representation attribute]

as a basic operation 3.3.3
as & name 4.1
as a primary 4.4
in a length clausa 13,2
in a static axprassion in a generic unit 12,1
of an access type 3.5.8
of an array type 3.8.2
of a derived type 3.4
of & discrete type or subtype 3.6.5
of an entry 9.9
of a tixed point type 3.5.10
of a floating point type 3.5.8
of an object of a task type 9.9
of a private type 7.4.2; 3.7.4
of a record type 3.7.4
of & static subtype in a static expreasion 4.9
of a task type 9.9
of a type 3.3
of a type as a generlc actual function 12.3.6
of a type with discriminants 3,7.4
renamead as a function 8.5
that is a function 3.6.8

Attribute designator 4.1.4

Bar
[see: vertical bar

BABE (predefined attribute) 3.3.3; A
for an access type 3.8.2
for an array type 3.8.2
for a disurate type 3.5.6
for a fixed point type 36,10
for a floating point type 3.6.8
for a private type 7.4.2
for u record type 3.7.4

Base type (of a subtype) 3.3
as @ static subtype 4.9
as target type of a conversion 4.6
due to elaboration of a type definition 3.3.1
name (see: name of a base type)
of an array type 3.8; 4.1.2
of a detived subtype 3.4
of a discriminant dstarmining the set of choices of a
variant part 3.7.3
of a fixed point type 3.5.9
of a floating point type 3.5.7
of a formal parameter of a generic formal sub-
program 12.1.3
of an Integer type 3.5.4
of a parent subtype 3.4
of a qualified expression 4.7
of 5 type mark 3.3.2
of a type mark In a membership test 4.5.2
of the discrete range In a loop parametsr spacifica-
tion B.5
of the exprassion ih a case statement 5.4
of the result of a generic formal function 12.1.3
of the result subtype of a function 5.8
of the subtypae indicatlon In an accesa type definition
3.8

of the type in the daclaration of a generic formal
object 12.1.1

of the type mark in a renaming declaretion 8.5

Based literal 2.4.2; 14.3.7
[see also: colon character, sharp character]
ag 8 humeric literai 2.4

Array aggregate ® Rased literal

v,
lcl

.
.
‘.
.

>

.

.

.

'
o

I

‘

* _—
g b o4

et

g
R |
'

Basic character 2.1
{sae also: basic graphic character, character]

Basic character set 2.1
Is sufficient for a program text 2.10

Basic declaration 3.1
as a basic declarative item 3.9

Basic declarative item 3.9
in a package spaclfication 7.1; 7.2

Basic graphic character 2.1
|see also: basic character, digit, graphic character, space
charactor, spacial character, uppar case letter

Basic operation 3.3.3
[see aiso: operation, scops of..., visibllity...]

accuracy for a real type 4.8,7
implicitly declered 3.1, 3.3.3
of an access type 3.8.2
of an array type 3.6.2
of a derived type 3.4
of a discrete type 3.5.6
of a fixed point type 3.8.10
of a floating polnt type 3.5.8
of a Himited type 7.4.4
of a private type 7.4.2
of a record type 3.7.4
of a task type 9.9
propagating an exception 11.8
raising an exception 11.4.1
that is an attribute 4.1.4

Belong
to a range 3.6
to a subtyps 3.3
to a subtype of an access type 3.8

Binary adding operator 4.8; 4,53, C
[see also: arithmetic operator, overioading of an operator}
for time predefinad type 9.8
in & simple expression 4.4
overloaded 6.7

Binary operation 4.6

Bit
[see: storage bits)

Blank skipped by a text_iu procedure 14.3.8

Block name 5.6
declaration 5.1
implicitly declared 3.1

Block stutement 5.6; D

(see also: complated block statement, statement)
as a compound statement 8,1
88 a declarative region 8.1
entity denoted bv an expanded name 4.1.3
having dependent tasks 9.4
including an exception handler 11.2; 11
including an implicit declaration 8.1
including & suppress pragma 11.7
raising an exception 11.4.1, 11.4.2

Body 3.9: D
[see also: deciaration, generic body, generic packagse body,
generic subprogram body, library unit, package body,
proper body, subprogram body, task body]
as a later declarative item 3.9

Basit character & Cancelation

ANSI/VIIL=2 1 U-T 07 JIA AUA neTeronce ivianuail

Body stub 10.2; D
acting as a subprogram declaration 6.3 o
as a body 3.9 R,
as a portion of a declarative region 8.1 S
must be in the same declarative reglon as the)
declaration 3.9, 7.1 s

BOOLEAN (predafined type) 3.8.3; C N
derived 3.4; 3.6.3
result of a condition 5.3
result of an explicitly declared equality operator 8.7

Boolean expression ol
[sea: condition, expression) i

Boolean operator
|see: logical operator)

Boolean type 3.8.3
(see also: derived type of & boolean type, predefined type] :
operation 3.5.5; 4.5.1, 45,2, 4.5.8 -
oparation comparing real operands 4.5.7 R

Bound
[sew: arror bound, first attribute, last attribute)

Bound of an array 3.8, 3.6.1

(see also: index range, siice) SN
aggregate 4.3.2 BO
ighored dus to Index_.check suppression 11.7 IR
initialization in an allocator constrains the allocated y
object 4.8 .

that is a formal parameter 6.2
that is the result of an operation 4.5.1, 4.56.3, 4.6.6

Bound of a range 3.8; 3.64
of a discrate rangs In a slice 4.1.2
of a discrete range is of universal_integer type 3.6.1
of a static discrete range 4.9

Bound of a scalar type 3.8
Bound of a slice 4.1.2

Box compound delimiter 2.2
in a generic purameter declaration 12.1, 12.1.2,
12.1.3; 12.3.3
in an index subtype definition 3.8

Bracket
(see: label bracket, left parenthesls, parenthesized expres-
sion, right perenthesis, string bracket]

-8
-parnay

CALENDAR {predefined Ilbrary package) 9.8; C

Call RS
[see: conditional entry call, entry oall statement, functiun
call, procedure call statement, subprogram call, timed St

entry call}

CALLABLE (predefined attribute) e
for an abnormal task 9.10 .
for a task object 9.9; A Coe

Calling conventions
[see: subprogram declaration)
of a subprogram written in another language 13.9

Cannelation of an entry call statement 9.7.2, 9.7.3 —

Index

Carriage return format effector 2.1

Cass of 8 letter
[ses: lettar, lower case letter, upper cese letter]

Cass statement 5.4
(ses also: statement}
as a compound statement 5.1

Case statement alternative 5.4

Catenation operation 4.8.3
for an arr:y type 3.8.2
in 8 replacemenit of a string literal 2,10

Catenation operator 4.56; 2.6, 3.6.3, 4.6.3, C
|see also: predefined operator|

Charagter 2.1

{see also: ampersand, apostroghe, basic character, coion,
divide, dot, equal, exclamation mark character, graphic
character, greater than, hyphen, less than, minus, other
special character, paranthesls, percent, period, plus, point
character, pound steriing, quotation, ssmicolon, sharp,
space, special character, star, underiine, ver:lcal bar)

in a lexical elemant 2, 2,2

namea of characters 2.1

replacament in program text 2,10

CHARACTER (predefined typs) 3.8.2; C
as the component type of the type string 3.8.3

Character literal 2.8; 3.5.2, 4.2

[see also: acope of.., space character literal, vislbllity of...)
as a basic operation 3.3.3
as an enumeration (iteral 3.6.1
as a name 4.1
as a selector 4,1.3
declared by an enumerstion literal specitication 3.1
in a static expression 4.9
In homograph declarations 8.3
must be visible at the placa of a string literal 4.2

Character typs 3.5.2; 2.8
operation 3.5.5

Check
(wee: suppress pragma}

Choice 3.7.3
(aee also: exception cholos)

in an aggregate 4.3
in an array apgregate 4.3.2
In a case statement alternative 8.4
In & component assnciation 4.3, 4.3.1, 4.3.2
in a record aggregate 4.3.1
in & varlant of a record type dsfinition 3.7.3

Cirgularity in dependences betwean compliation units 10.8

Class of type 3.3; 12.1.2
[ses also: aucess typo, composite type, private type, scalar
typs, task type)
of a derived type 3.4

Clause
[se0: addrass clause, alignmaent clause, component clause,
context clause, esnumaration representation clause, length
clause, racord reprassentation clauss, representation
clause, use clause, with clause)

CLOCK (predefined function) 9.0
[sen also: system.tickl]

CLOBE (input-output procedure)
in an instance of direct_lo 14.2.1; 14.2,5
in an instance of sequentiai_io 14.2.1, 14.2.3
in text_io 14.2,1; 143,10

Clossd alternative (of a selective wait) 9.2.1; 11.1
|see aiso: sitarnative|

Closed file 14.1

Cods statament 13.8
|see also: statament)
as a simple statement 6.1

COL (text_lo function) 14.3.4; 14.3.10
raising an exception 14.4

Collection (0! an access type) 3.8; 48, D
|ses also: mccess type, aliocator, length clause, object,
storags units allocated, storage_size attribute)
of a derlved access type 13.2; 3.4

Colon character 2.1
[see a'so: based literal)
replacing sharp character 2,10

Colon delimiter 2.2
Column 14.3.4

Comma
character 2.1
delimiter 2.2

Comment 2.7;: 2.2
in a conforming construct 8.3.1

Communication
between tasks [see: accept statement, entry,
rendezvous)
of values between taske 9.8, 8,11

Comparison
isee; relational operator]

Compatibility (of constraints) 3.3.2
[soe also: constraint]

failure not causing constralnt_srror 11.7
of a discrete range with an Index subtype 3.6.1
of discriminant constraints 3.7.2
of fixed point constraints 3.5.9
of floating point constraints 3.8.7
of index constraints 3.6.1
of range constraints 3.8

Compilation 10.1; 10, 10.4
as a sequence of {exical slements 2
including an inline pragma 6.3.2

Complistion order
[see: order of compilation]

Compilation unit 10.1; 10, 10.4, D
|see also: library unit, sscondary unlt)
complled after library units named in its context
clause 10.3
followed by an inline pragma 6.3.2
with a context clauss 10.1.1
with a use clause 8.4

Complie time evaluation of sxpressions 10.8; 4.9

Complier 10.4

Carriage return ® Compller

P .

Compiler listing
|see: list pragma, page pragma)

Compiler optimization
(sse: optimization, optimize pragmal

Completed block statement 9.4
Compieted subprogram 9.4

Complsted tesk 9.4, 9.9
[see also: tasking_error, terminated task}
as racipient of an sntry call 8.5, 8.7.2, 9.7.3
becoming abnormal 8.10
complation during activation 9.3
due to an exception In the task body 11.4.1,11.4.2

Component (of a composite type) 3.3: 3.6, 3.7, D

(see also: component assoolation, component clause,
component [ist, composite type, default expression,
dependence on a discriminant, diseriminant, indexed com-
ponent, objact, record type, selected component, subcom-
ponent|

combined by aggregate 4.3

depending on a discriminant 3.7.1; 11.1

name starting with a prefix 4.1

of an array 3.6 [ses also: array type]

ANSI/MIL-STD-1815A Ada Reference Manual

Composite type 3.3; 3.6, 3.7, D
{aee also: array type, class of type, component, discrimi-
nant, record type, subcomponant]
including a limited subcomponent 7.4.4
including a task subcomponent 9.2
abject Initialization 3.2.1 [ses also: Initial value
of an aggregate 4.3
with a private type component 7.4.2

Compound delimiter 2.2
|see also: arrow, assignment, box, delimiter, doubls dot,
double star, exponentiation, groater than or aqual, in-
equality, left label bracket, less than or squal, right la-
bel bracket
names of delimiters 2.2

Compound statement 5.1
(see also: statement]
Including the destination of a goto statement 5.9

Concatenation
[see: catenatlon]

Condition 6.3
[see also: exprassion)
determining an open aiternative of 8 selective walt
9.7.1

of a constant 3.2.1 in an exit statement 5.7

o of a derived type 3.4 in an If statoment 5.3
- T of an object 3.2 in a while iteration scheme 8.6 it
- of a private typs 7.4.2 L
o of a record 3.7 [ses also: record type| Conditional compilation 10.8 S
o of u varlable 3.2.1 KR
R simple name a¢ a choice 3.7.3 Conditional entry call 9.7.2; 9.7 .
b, subtype 3.7) and renamed entries 8.8 ORI .
o subtype itsslf 8 composite type 3.6.1, 3.7.2 subject 10 an address clauae 13.8.1 S
G ! that is a task object 9.3 : s
Lt whose type Is a limited type 7.4.4 Conforming 6.3.1

discriminant parts 8.3.1; 3.8.1, 7.41

Component assoclation 4.3
in an aggregate 4.3
szclx;dlno un expression that is an array aggregate
la‘
named component assoclation 4.3
named component association for selective visibllity

positional component assoclation 4.3
Component clauss (In a record representation clause) 13.4

Component declaration 3.7
[see also: declaration, renord type definition)

as part of a basic declaration 3.1
having an extended scope 8.2
in a component list 3.7
of an array object 3.8.1 .
of a record object 3.7.2
visiblliity 8.3

Component list 3.7
in a record type detinition 3.7
In a variant 3.7.3

Component subtype definition 3.7
|see almo: dependence on a discriminant]
in a componant declaration 3.7

Component type
catenation with an array type 4,63
object Initlallzation [see: initlal value]
of an expression in an array aggregate 4.3.2
of an expression In a record aggregate 4.3.1
of a generic formal array type 12.3.4
operetion detarmining a composite type operation
451, 482

Compller listing ® Constrained array type

formal parta 8.3.1 b Z,'..._

tormal parts in entry declarations and sccept state-
ments 8.5

subprogram specifications 6.3.1; 8.3

subprogram spacifications In body stub and subunit
10.2

type marks 8.3.1; 7.4.3

Conjunction
{see: logical operator|

Constant 3.2.1; DO
(see also: deferred constant, loop parameter, object)

access object 3.8
formal parameter 6.2
generic formal object 12.1.1, 12,3
in a static expression 4.9
renamad 8.5
that ia a stice 4,1.2

Constant declaration 3.2.1
(see also: deferrad constant declaration)
as a full declaration 7.4.3
with an array typs 3.8.1
with a racord type 3.7.2

CONSTRAINED (predefined attribute)
for an object of a type with discriminants 3.7.4; A
for a private type 7.4.2, A

Constrained array definition 3.0
in an object declaration 3.2, 3.2.1

Constrained array type 3.6
[see also: array type, constraint)

YR

a2

Rty o i -

=
SR T

6

T

Pt S

N .“J.,'_

PRAMSSAR

-
=

DDA R Ry
3 o o

Index

Constrained subtype 3.3; 3.2.1,3.8,3.8.1,3.7,3.7.2, 8. 4.1,
12.3.4
lue]ulsu: constraint, subtyps, type, unconstrained sub-
type
due to elaboration of a type definition 3.3.1
due to the elaboration of a derived type definition
34
object declarations 3.2.1
of a subtype Indication In an allocator 4.8

Constraint {on ar object of & type) 3.3, 3.3.2; D

[see also: accuracy constraint, compatibility, constrained
subtype, dependence on a dlscriminant, discriminant con-
straint, elaboration of..., fixed point constraint, floating
polint constraint, index constraint, range constraint, satlsty,
subtype, unconstrainad subtype)

explicitly specified by use of a qualification 4.7

in a subtype indication In an allocator 4.8

not considersd In overload resolution 8.7

on a derived subtype 3.4

on a formal parameter 6.2

on o formal parameter of a genaric formal sub-

program 12.1.3

on a generic actual parameter 12,3.1

on a generic formal object 12.1.1

on a generic formal parameter 12.1; 1231

on an object designat.d by an access value 3.8

on a renamed oblect 8.5

on a subcomponant subject 1o a component clause

must be static 13.4

on a subtype of a generic formal type 12,1.2

?n a typs mark In a generic paramater declaration

231
on a variable 3.2.1, 3.3, 3.0
on the result of a generlc formal function 12,13

CONBTRAINT_ERROR (predsfined exception) 11.1
(nes also: suppress pragma)
raised by an accept statement 8.8
raised by an actual paramaeter not in the subtype of
the formal parameter 8.4.1
raised by an aliocator 4.8
raised by an assignment 6.2;: 3.5.4
raised by an attribute 3.8.5
raised by a component of an array aggragate 4.3.2
raised by a companent of a record aggregate 4.3.1
raised by an entry call statement 8.8
raised by a formal parameter not in the subtype of
the actual parameter 8.4.1
raised by an index value out of bounds 4.1.1, 4.1.2
raised by a logical oparation on arrays of ditfersnt
lengths 4.5.1
ralsod by a name with a prefix avaluated to a null
access value 4.1
roised by » qualification 4.7
raised by a rosult of & conversion 4.0
raised by a return statement 8.8
raised by incompatible constraints 3.3.2
raised by integer exponentiation with a negative
exponent 4.5.8
raisad by matching fallure In an array sssignment
5.2.1
raised by naming of a variant not present in a record
2
raised by ths elaboration of a generic Instantiarlon
12.3.1, 12.3.2, 1234, 12.3.8
raisacl by the Initialization of an object 3.2.1
raised by the result of a catenation 4.8,3

Context clause 101.1: D
[see also: use cluuse, with clause)
determining order of elaboration of compliation
unite 10.56
in @ compliation unit 10,1

Including a use clause 8.4
insertad by the snvironment 10.4
of a subunit 10.2

Context of ovarload resolution 8.7
|see also: overloading]

Control form
[yee: short circuit control form]

CONTROLLED (predefined pragma) 4.8; B

Conversion operation 4,6
[see also: explicit conversion, implicit converslon, numeric
typs, subtype sonvarsion, typa conversion, unchecked
conversion|
applied to an undefined value 3.2.1
as & basic coeration 3.3.3; 3.3, 3.6.5, 3.6.8, 3.56.10,
3.6.2, 3.74, 382, 74.2
between array types 4.6
between numeric types 3.3.3, 3.5.8, 4.6
from universal_fixed type 4.5.8
in a static expression 4.8
of a universsl type expreassion 5.2
of the bounds of a loop parameter 5.6
to & derived typs 3.4
to a real type 4,67

Convaertible universal operand 4.8
Copy (parameter passing) 6.2
COUNT (predefined attrlizute) for an entry 0.8; A

COUNT (predefined integer typs) 142, 14.2.8, 14.3.10;
14.2.4, 143, 1433, 1434, 144

CREATE (input-output procedure)

in an instance of direct_jo 14.2,1; 14,2.8

in an instunce of sequentisi.io 14.2,1; 14,23

in text_io 14.2.1, 143.1; 14310

raising an exception 14.4
Current column number 14.3; 14,.3.1, 14,34, 14,28, (43,8
Currant index of a direut access file 14,2, 14.2.1; 1424
Current line number 14.3; 14.3.1, 143.4, 1438

Current mode of a tile 14,1, 14.2.1; 1422, 1424, 143,
14,35, 144

Current page number 14.3; 14.3.1, 143.4, 143.8
Current size of a direct access file 14.2
CURRENT_INPUT (text_io function) 14.3.2; 14.3.10
CURRENT_OUTPUT (text_lo function) 14.3.2; 14.3.10

'

DATA_ERROR fuput-output exception) 14.4; 14,22
14.2.3, 1424, 1425, 1438, 1437, 1438, 1439
143.10, 14,6

Date
|veo: day, month, time, yaar]

DAY (predsfined function) 9.8

Dead code elimination
[see: conditional compliation)

Constrained subtype ® Dead code elimination

‘;' A G
4 . - -
P P S
'y s

PRy

.
s<"e “n

L r e s

| ST
et

P sy

<
L

[AR
L I AP T Lt

z

EY

Deallocation
|see: access type, unchecked_deallocation)

Decimal litersl 2.4.1; 14.3.7, 143.8
a8 a numeric literal 2.4

Decimal number (In text_io) 14.3.7

Decimal point
{sse: tixed point, fioating point, point character]

Declaration 3.1; D

(see also: basic declaration, block name declaration, body,
component declaration, constant declaration, deferred
constant declaration, denote, discriminant specification,
entry declaration, anumaration literal speoification, excep-
tion daclaration, exception rgised during.., generlc
declaration, generic formal part, generic Instantlation,
generic parameter declaration, generic specification,
hiding, implicit declaration, incomplete type declaration,
label deciaration, local declaration, loop name declaration,
loop parameter specification, numbsr declaration, object
declaration, package declaration, package spacification,
parsmeter specification, private type declaration, renam-
ing deciaration, representation clause, scope of...
specification, subprogram declaration, subprogram
spacification, subtype declaration, taek declaration, task
specification, type declaration, visiblity)

ss an overload resolution context 8.7

determined by visibility from an identifler 8.3

made directly visible by a use clause 8.4

of an enumeration literal 3.5.1

of a formal parameter 8.1

of a loop parameter 5.8

overioaded 6.6

raising an exception 11.4.2; 11.4

to which a representation clauss spplies 13.1

Declarative item 3.9
(see rlso: basic declarative item, later declarative Item]
in a code procedurs body 13.8
In & declarative part 3.9; 8.3.2
In a package specification 6.3.2
In a visible part 7.4
that is & use clause 8.4

Declarative part 3.9; D
(see niso: elaboration of...)

In a block statement 8.8
in a package body 7.1; 7.3
in » subprogram body 6.3
in a task body 98.1; 8.3
including a generic declaration 12.2
including an inline pragma 8.3.2
including an interface pragma 13.9
including a representation clause 13.1
inciuding a suppress pragma 11,7
includin a task deciarstion 9.3
with impioit declarations 8.1

Declarative region 8.1; 8.2, 8.4
|ses also: scope of..)
determining the visibility of a declaration 8.3
formed by the predefined package standerd 8.8
in which a declaration is hidden 8.3
including a full type definition 7.4.2
including & subprogranm declaration 8.3

Declared immediately within
|aew: occur immediatsly within)

Default determination of a representation for an entity 13.1

Deallocation ® Dalay alternative

ANSI/MIL-STD-1815A Ada Reforence Manual

Default expression

[see: default initial value, default Initlslization, discriminant
specification, formal parameter, generic formal object,
initial value)

cannot Include a farcing occurrence 13.1

for a component 3.3; 7.4.3, 7.4.4

for a component of a derived type object 3.4

for a discriminant 3.7.1; 3.2.1, 3.7.2, 123.2

for a formal parameter 8.1, 6.4.2;: 0.4, 8.7, 74.3

for a formal parameter of a generic formal sub-

program 12.1; 7.4.3

for s formal parameter of a renamed subprogram or

entry 8.6

for a ganeric formal objeot 12.1, 12.1.1; 12.3

for the discriminants of an allocated object 4.8

in a component declaration 3.7

in a discriminant specification 3.7.1

including the name of a private type 7.4.1

Defoult file 14.3.2; 14,3
Default generic formsl subprogram 12.1; 12.1.3, 12.3.6

Default initial value (of a type) 3.3
[see also: default expression, initlal value)
for an access type object 3.8; 3.2,1 [see also: null
access value)
for a record type object 3.7; 3.2.1

Default initialization (for an object) 3.2.1, 3.3
lu|o ;llOt default expression, default initial value, Initial
value

Default mode (of a file) 14.2,1; 14.2.3, 14.2,8, 14.3.10

Default_aft (field length)
of fixed..io or fioat_lo 14.3.8; 14,310

Default_base
of integer_io 14,3.7; 143,10

Default_exp (field length)
o fixed_io or fioat_io 14.3.8: 143,10

Default. fore (field length)
of fixed_lo or floatlo 14.3.8; 14310

Default_setting (letter case}
of snumeration_io 14.3.9; 143.10

Defeult_width (fleld length)
of enumeration_lo 14.3.9; 14.3.10
of integer_lo 14.3.7; 143,10

Dueferred constant 7.4.3
of a limited type 7.4.4

Deferred constant declaration 7.4; 7.4.3
[sse also: private part (of a package), visible part (of »
package)}
oe & basic declaration 3.1
is not a forclng ocourrence 13.1

Datinition
(ses: access type definition, arrav type definition, compo-
nent subtype definition, constiained array definition,
derived type definition, enunieration type definition,
generic type definition, Index subtype definition, Integer
type definition, real type definition, record type definition,
type definition, unconstralned srray definition)

Delay aiternative (of a selective wait) 9.7.1

Index

Delay expression 9.8; 9.7.1
|see also: duration]
in a timed entry call 8,.7.3

Delay statement 9.8
|see also: statement, task
as a simple statement 5.1
In an abnormal task 9,10
In & select aiternative 9.7.1
in a timed entry call 9.7.3

DELETE (input-output procedure)
In an instance of direct_lo 14.2.1; 14.2.5
in an instance of sequential_lo 14.2.1, 14.2.3
in text.lo 14.2.1; 14.3.10

Delimiter 2.2
(ses aiso: ampersand, apostrophe, arrow, sssignment,
colon, compound delimiter, divide, dot, double dot, equal,
axclamation mark, exponantiation, greater than or egqusl,
greater than, inequality, label bracket, less than or equsl,
leas than, minus, parenthesis, period, plus, point,
semicolon, star, vertical bar)

Delta (of a fixed point type) 3.8.9
|see also: fixed point typa)
of universal.fixed 4.8,8

DELTYA (predefined attribute) 3.8.10; 4.1.4, A

Denote an entity 3.1, 4.1; D
[ses also: decleration, entity, name)

Depandence betwaon compliation units 10.3; 10.8
[see also: with slwuse)
ciroularity implying lilegality 10,8

Dependence on a discriminant 3.2.1; 3.7
[see also: componant subtype definition, componant, con-
straint, discriminant constraint, discriminant, index con-
straint, suboomponent, subtype definition, varlant part)
sffecting renaming 8.8
by a subcomponant that is an sctual paremeter 8.2
sffect on compatiblliity 3.7.2
sftect on matching of components 4.8.2
for an assignment 8.2

Dependant task 8.4
delaying exception propagation 11.4.1
of an abnormal task 8,10

Derivable subprogram 3.4
prohibiting representation clauses 13.1

Derived subprogram 3.4
as an operation 3.3.3
implicitly declared 3.3.3

Derived type 3.4; O
[sew ulso: parent type}

converaion to or from a parent type or related tvpe
46
of an access type [sse: access type, collection)
of an access type designating » task type determin-
Ing task dependence 9.4
of a boolean type 3.4, 3.6.3
of & limited type 7.4.4
of a private type 7.4.1
subject to a repressntation clause 13.1, 13.8

Derived type definition 3.4; 3.3.1
[sew also: elaboration of.)

Designate 3.8, 9.1, D
|see a'so: access type, allocator, object designated by...,
task designated by.., task object designated by .|

Designeted subtype (of an access type) 3.8 [
Designeted type (of an access typs) 3.8 '
Designator (of a function) 6.1

(soe nlso: attribute designator, operator, overloading of ...]
in a function declaration 4.5

in a subprogram body 6.3 T
in a subprogram specification 6.1; 8.3 TR
of a generic formea| subprogram 12.3.8; 12.1,12.1.3 o

of a library unit 10,1
overloaded 8.8

DEVICE.ERROR (input-output sxception) 14.4; 14.2.3,
14,25, 143,10, 148 T

Digit 2.1 .
see lllm: basic graphlc character, extanded digit, letter or R
digit IR
in & based literal 2.4.2
in 8 decimal literal 2.4.1
in an identifler 2.3

Digits {of a fioating point type) 3.8.7
vee also: fioating point type|

DIGITS (predefined attribute) 3.8.8; 4.1.4, A
Dimensicnality of an arrey 3.6

Direct sccess flle 14,2; 14.1, 14.2.1

Dirsct Input-output 14.2.4; 14.2.1

Direct visibllity 8.3; D
|sse alno: basic operation, character literal, operation,
operator symbol, salected companent, visibllity)
due to a use clause 8.4
of & llbrury unit dus to a with clause 10.1,,
within 8 subunit 10.2

DIRECT_IO {precefinad Input-output gensric psokage) 14.2, v

14.2.4; 14, 14,1, 1428, C y
axceptions 144; 14,5
specification 14.2.6

Discrete range 3.8, 3.6.1 G e
[ses also: range, static discrete range) AR
us 8 cholce 3.7.3
as a cholce In an aggregate 4.3
for a Ioop parameter 5.5
in a choice in a case statement 5.4
in & generic formal array type declaration 12.1.2;
1234
in an index conatraint 3.8
in a loop paramater spacification 8.8
In & slice 4,1.2
of sntry indices In an entry declaration 9.8

Disciate type 3.6, D
(see also: basic oparation of.., enumeration type, Index,
intager type, iteration scheme, operation of..., scalar type]
as a gensric actual parameter 12.3.3
as a generio formal type 12.1.2
axprassion in a case statement 8.4
of a discriminant 3,7.1
of a loop parameter 8.6
of index values of an array 3.6
operation 3.6.8; 4.6.2

Delay exprassion e Discreie type

e YT T

PPN -

Discriminant 3.3, 3.7.1; 3.7, D
[see also: component clause, component, composite type,
default expression, dependence on..., record type, salected
componant, subcomponent)
in a racord aggregate 4.3.1
initialization in an aliocator constrains the sllocated
object 4.8
of a darived type 3.4
of a formal parar.etor 8.2
of & generic actual typs 12.3.2
of a generic formal type 12.3, 12.3.2
of an implicitly initlalized object 3.2.1
of an object designated by an access value 3.7.2;
6.2
of a private type 7.4.2; 3.3
of & varlant part must not be of a generic formal
type 3.7.3

ANSI/MIL-STD-1815A Ada Refarence Manual

t

[see: doubis dot|
character 2.1 [ase also: double dot, point character}
delimiter 2.2
delimiter of a seiected component 8.3; 4.1.2

Double dot compound delimiter 2.2
Double hyphen starting a comment 2.7

Double star compound delimiter 2.2
|see also! exponantiation compound delimiter}

DURATION (predefinad type) 9.6; C
[see also: delay expression, fixed point typel
of alternative delay statenvents 9.7.1

simple name in a varlant part 3.7.3 .
subcomponent of an object 3.2,1 .

o with @ default expression 3.7.1; 3.2.1 o
i Etfect N
{ Discriminant association 3.7.2 (sae: alaboration has no other etact] -

in a discriminant constraint 3.7.2

: named disariminant association 3.7.2 ELABORATE (pradefined pragma) 10.8; B PR
N named discriminant asscciation for selective At
XN visibility 8.3 Elsborated 3.9 R
L positional discriminant agsoclation 3.7.2 shorate R
Elsboration 3.9; 3.1, 3.3, 10.1, D Y
. Discriminant constraint 3.7.2; 3.3.2, D [see alsc: exception raised during.., order of slaboration) R
i [sse slso: dependence on 2 discriminant] optimized 10,6
g ignored due to access_check suppression 11,7 ; .
- in an aliocator 4.8 Elaboration has no other effect 3.1
e on an access type 3.8
- violated 11.1 Elaboration of neltion 3.8
- an acceas type definition 3, >
) Discriminant part 3.7.1; 3.7 an array typs definition 3.8 et
X (see also: slaboration of..| a body stub 10,2 e
. absent from a record type declaration 3.7 a component doclaration 3.7 RPN
a8 & portion of a declarative reglon 8.1 a component subtype definition 3.7 g
‘I conforming to another 3,8.1, 8.3.1, 7.4, a constrained array definition 3.8
- in & generlc formal type declaration 3.7.1; 12.1 2 declaration 3.1 o
in an Incomplets type decisration 3.8.1 a declarative item 3.9
in a private type declaration 7.4, 7.4.1 a declarative part 3.9 B
= in & type declaration 3.3, 3.3.1 a deferred constant declaration 7.4.3 R
must not include & pragma 2.8 & derlved type definition 3.4 R

of & full typs declaration is not elabcrated 3.3.1 a discriminant constraint 3.7.2

8 discriminant part 3.7.1

Disgriminant specification 3.7.1
[see also: default expression|
as part of a basia declarstion 3.1
declaring a component 3.7
having an extended scope 8.2

a discriminant specification 3.7.1

&n entry declaration 8.8

an enumeration literal specification 3.5.1
an enumeration type definition 3.8.1

8 fixed point type decleration 3.5.9

in & discriminant part 3.7.1 ¢ flonting point typs declaration 3.8.7 N
w vialbility 8.3 a formal part 8.1 .

a full type declaration 3.3.1 o
o Discriminant_check s generic body 12.2 NG
. [sse' constraint_error, suppress| a generic declaration 12,1 g
o a generic Instantiation 12.3 Oy
w Disjunction an incomplete typs deciaration 3.6.1 LT
N (sen: logical operator] an index constraint 3.8.1 S
o an integer type definltion 3.8.4 o

Divide a library unit 10.6

character 2.1
delimiter 2.2

Division operation 4.8.8
accuracy for a real type 4.8.7

Division operator
[see: multiplying oparator]

Division..check
|see: numeric_arror, supprevs)

Discriminant » Elaboration of

8 loop parametar spacification 5.5
an object declaration 3.2.1

a package body 7.3

a package decluration 7.2

paramator specification 6.1

a private type decisration 7.4.1
a range constraint 3.5

a real type definition 3.85.8

s record type definition 3.7

a renaming declaration 8.8

a represantation clause 13.1

-10

g ey s

Index

subprograrn body 8.3

subprogram doclurstion 8.1
subtype declaration 3.3.2

subtype Indication 3.3.2

task body 9.1

tosk declaration 9.1

lask specification 9.1 .
type daeclaration 3.3.1, 3.8.1, 7.4.1
type definition 3.3.1

an unconstrained array definition 3.6
8 usy clause 8.4

2R -3 B 3B - K W 1

Elaborstion._check
[sse: program.srror excaption, supprass)

Elament in a file 14, 14.1; 14.2
in & diract acoess tile 14.2.4
in a sequential access file 14.2.7

ELEMENT.TYPE [generic formal type of oi i o) 14.2.8;
141, 1424

ELEMENT.TYPE (gensric formal type of sequential_to)
1423 14.1, 14.22

E'ss pant ‘

of a nondiilona) sntry call 8.7.2
of an if statement 5.3

of & selective wait 8.7.1; 11,9

EMAX (predefined attribute) 3.8.8; A
[see also: machina,.xmax|

Emin
(see: machine._emin)

Empry atring literal 2.6

End of line 2.2
os a separator 2.2
dite 10 @ format effuctor 2.2
terminating a comment 2.7

END_ERROH (input-output exception) 14.4; 14.2.2, 14.2.3,
14.2.4, 14.2.8, 1434, 1438, 14.3.6, 143,10, 148

END_OF_FILE {input-output function)
in an instance of direct.lo 14.2.4; 14.2.8
in an Instance of sequential_lo 14.2.2;: 1423
in text_jo 14,3.1, 14.3.i0

END_OF_LINE (text_io function) 14.3.4; 14.3.10
raising an exceptiun 14.4

END_OF_PAGE (taxt_io function) 14.3.4; 14,310, 14.4

Entry (of a task) 9.8: 9, 9.2, D
[ses als0: actual paramator, addross attribute, attribute of...,
formal paramaeter, Interrupt entry, overloading of...,
parsmeter and result type profile, parameter, subprogram)
ceclared by instantiation of a generic formal
psrameter 12,3
deaoted by an indexed camponant 4.1.1
denoted by a selected component 4.1.3
name |see: name of an entry)
name starting with a prefix 4.1
of a derived task type 3.4
of a task designated by an object of » tusk typs 9.8
renamed 8.5
subject to an address clause 13.8, 13.5.1
subject to & representation clause 13,1

Entry call 0.8, 9, 9.7.1, 8.7.2, 9.7.3
(see wiso: actual parametet, conditional entry call, sub-

program call, timad entry call]
10 4n abrormal jask 9.6, 9,10, 11.5; 9.6
to communicata velues 9.11

Entry call statement 9.8
{ses nlg0: accept statamant, actual parameter, statament,
task declaration, task]
as a simple stutemsnt 5.1
i an abnormal task 9.10
in & conditional entry call 9.7.2; 8.5
in a timed entry cail 9.7.3; 9.5

Entry Jdeclaration 9.8
|see also: eiahuration of.)

4s an overloaded declaration 8.3
us part uf 8 busic daclaration 3.1
cannot includa a forcing ocourrance 13.1
tiaving an extended scope 8.2
in a task wpecification 9.1
including the name of & private typs 7.4.1
visibility 8.3

Entry family 0.6
ronnted by a ealected componont 4.1.3
name starting with @ prefix 4,1

Eni:y indox (in the name of an entry of a family) A.B
fur an opan accept alternative 9.7.1
in a conditional entry call 9.7.2
In & timed entry oall 9.7.3

Entry queus (of calls awaiting acceptance) 9.8
count of oalls in the queus 6.9
due to queusd interrupts 13.6.1
of an abnormal task 8.10

Enumaeration literal 3.8.1, 4.2
(see aiso: overioading of..., pradefined function)

#s an operation 3.3.3
os an operator 3.5.8
as rasult for image attribute 3.5.8
as the paramater for value attribute 3.8.8
implicitly declarad 3.3.3
in a static expression 4.9
In pragms system._name 13.7
of a derived type 3.4
overioaded 8.3
renamed as a funotion A.5
rapregentation 13.3

Enumeration litecel specification 3.8.1
as part of a basic declaration 3.1
made directly visible by & uass clause 8.4

Enumeration represantation olause 13.3
as 4 repressntation clause 13.1

Enumeration type 3.8.1; 3.3, 38, D
|see also: disorote type, scalar type)
as a character type 3.5.2
ss 8 genaric formal type 12.1,2
as a gensric patameter 12.3.3
boolean 3.5.3
operation 3.5.8

Enumeration type definition 3.8.1; 3.3.1
|sae also: elaboration of..]

lggh:!RATION_IO (taxt_io Inner genaric package) 14.3.9;
14.3.10

Environment of a program 10.4
snvironmant task calling tho maln progrem 10.1

Elaboration_chack ® Environment

ANSI/MIL-STD-1815A Ada Refarence Manual

R

=

- EPSILON (predefined attribute) 3.8.8; A of the bounds of a loop parameter 5.8

" of the conditions of a selective wait 8.7.1
N Equal

W character 2.1 Evaluation order

delimiter 2,2 |se@: order of svaluation) -
Equality operator 4.8; 4.5.2
{sae aiso: limited type, relational operator)
axplicitly declared 4.8.2, 8.7; 7.4.4
for an access typs 3.8.2
for an array type 3.6.2

Exception 11;: 1.6, D L
|sme also: constraint_error, numaric_error, predefined .., L
program_error, ralse statement, ralsing of .., storage_error, .
tasking_error, time_arror)

causing o loop to be exited 5.5

for a generic formal type 12.1.2 causing a transfar of control 8.1 v

for a limited type 4.5.2, 7.4.4 due to an exprassion evaluated at compile time I

for a real type 4.5.7 108 B

for a record type 3.7.4 implicitly declared in a generlc instantiation 11,1 N

In input-output 14.4; 14,8 ST

renamad 8.5 R

Erroneous exeoution 1.8

due to changing of a discriminant velus 8.2, 8.2
due to dependence on puarameter-passing
mechaniam 6.2

?;asto multiple address clauses for ovariaid entities
due to suppreacion of an exception check 11.7
due to uae of an undefined value 3.2 1

as a basic declarstion 3.1

Exception handler 11.2; D

in an abnormal task 9.10
in a biock statoment 8.6
in o package body 7.1; 7.3
in a subprogram body 6.3

3 {sae also: program._error) suppress pragma 11,7 L
b due to an sccess to a deallocated object 13.10.1 Dl

N due to an unchacked conversion violating properties Exception choice 11,2 S
L of objects of the result type 13.10.2 Do

: due to assignment to a shared variable 9.11 Exception declaration 11.1: 11 S

- in a task body 9.1
. Error bounds of a predefined operation of a resl type 3.8.9, Including 8 raise statement 11,3 ’
:_‘1 48.7; 3.8.8 3.6.7 including the destinution of a goto statament 5.9
M including the name of an sxception 11.1 e
N Error detected at not sllowed in & code procedurs body 13.8 RIS
- compilation time 1.8 ralsing an exception 11.4,1 TR
! run time 1.8 selected to handle an exception 11.4.1; 11,8 e
. Ervor situation 1.8, 11, 11.1; 11.8 Exception handling 11.4; 11.4.1, 1142, 11.B ;' N
" Dl
b | Error that may not be detected 1.8 Exception propagation 11 t
N delayed by a dependent task 11.4.1 .
v Evaluaiion (of an sxpression) 4.8; D from s deciaration 11.4.2
4 {swe aiso: compile time evaluation, expression) from a predefined operation 11,8 "
X at compile time 4.8, 10,6 from a otatement 11.4.1 v
N of an sctual paramaeter 8.4.1 to & communicating task 11.8
of sh aggregoie 4.3; 3.3.3 “
. of an allocator 4.8 Exception raised during exesution or elaboration of
N of an array aggregute 4.3.2 an accept statement 11.8
N of a condition 8.3, 8.8, 5.7, 9.7.1 an allocator of a task 9.3 »
. of a defsult expression 3.7.2 a conditional entry 9.7.2
Bt of a defauit sxpreasion for a formal parameter 8.4.2; a declaration 11.4.2; 11.4
. 8.1 a declarative part that declares tasks 9.3
of a disorete range 3.5; 8.8 a goneric Instantiation 12.3.9, 123.2, 123.4,
of a discrete range used in an index conatraint 3.8, 1 1235
of an entry Index 9.8 a selective wait 9,7.1 P s e I

of an expression in an sssignment statement 8.2 a statement 11.4,1; 11.4

of an sxpression In & constraint 3.3.2 » subprogram call 6.3; 6.2, 88 L
of un exptession in a generic actual parameter 12,3 a task 11.5

of an indexed component 4.1,1 a timed entry call 8.7.3 R
: of an Initial vaive [see: default sxpression] task sctivation 9.3 ;

> of a literal 4.2; 3.3.3

of a logical operation 4.8.1 Exceptions and optimization 11.0 .
of a name 4.1; 41,1, 4,12, 41,3, 4.1.4 S
b of a name in an abort statement 9.10 Exclamation characte: 2.1 T
R of a name in & renaming declaration 8.8 replacing vertical bar 2,10

% of a name of a variable 8.2, 6.4.1, 12,3
of a primary 44

of s qualified expression 4.7; 4.8

Exclusive disjunction
(see: logical operator]

3 of a range 3.5
r~ of a record sggregate 4.3.1 Exscution :

of a short circult control form 4.8.1 |see: sequence of statemants, statement, task body, task) b @
N of a static expression 4.9 oo
. of & typo conversion 4.8 Exit statement 8.7

of a universal expreasion 4,10 |see also: statement]

Epsifon ® Exit statement -12 -

o
e
o
b,
C]
]

Index

as a simple statement 5.1

causing a loop to be exited 5.5

causing a transfer of control 6.1
completing block statement exscution 9.4

Expanded name 4.1.3; D
denoting a loop 5.6
in a static expression 4.8
of a parent unit 10.2
replecing o simple name 6.3.1

Explicit conversion 4.8
|see also: conversion operation, implicit conversion, sub-
type convarsion, type conversion)
from universal_fixed type 4.5.5
to a real type 4.85.7

Explioit deciaration 3.1; 4.1
[sae also: declaration)

Explicit initislization
[see: allocator, object daclaration, quallfied expression]

Exponent of a floating point numbsr 3.8.7; 13.7.3

Exponent part
in output of real values 14.3.8
of a based literal 2.4.1, 2.4.2
of a decimal literal 2,41

Exponentiating operator 4.8; 4.5.6
[see also: highest prececsnce operator)
in a factor 4.4
overloaded 8.7

Exponentistion compound delimiter 2,2
[see also: double star compound delimiter}

Exponentiation operation 4.5.8

Expression 4.4; D
(see also: complle time ovaluation, default expression,
delay expression, svaiuation, qualified expression, simple
exprassion, static expression, universal type expression|
as an actual parameter 6.4, 8.4.1
as a condition 5.3
as & generlc actual parameter 12.3: 12,3.1
as the argument of a pragmas 2.8
Ln 12 actusl parameter of a conditional entry call
7.
lon an actual peramae.vr of an entry call statement
8

In an actuai parameter of a timed entry call 8.7.3
in an allocator 4.8

in an assignment statement 8.2

in an attribute designator 4.1.4

In & cuse statement 8.4

in a cholce in & case stetement 8.4
In a componaent assoclation 4.3

In a component declaration 3.7

In a constraint 3.3.2

in & convarsion 4.8

in a discriminant assoclation 3.7.2
In a disoriminant specification 3.7.1
in a generic formal part 12,1

Itv an indexsd component 4.1.1

In a length clause 13.2

in a name of a varlable 8.2, 6.4.1,123
in a number daclaration 3.2

In an object declaration 3.2, 3.2.1
in & parameter spacification 6.1

in a primary 4.4

in a qualified expression 4.7

in & representation clause 13,1

in & return statement 5.8

in a specification of a derlved subprogram 3.4
in a type conversion B,7

including the name of a private type 7.4.1
specifying an entry in a family 4.1.1
specifying the value of an index 4.1.1

with a boolean resuit 4.6.1, 452, 46.8

Extended_digit in a based literal 2.4.2

Externsi file 14.1

(see also: file]
Factor 4.4
in a term 4.4

FALSE boolean enumeration litersl 3.8.3; C

Family of entries
{see: entry family]

FIELD (predefined integer subtype) 14.3.8; 14.3.7, 14.3.10

File (object of & file type) 14.1
(see also: external file}

File management 14.2.1
in text.lo 14.3.1

File terminator 14.3; 14.3.1, 14.3.4, 14,3,8, 14,3.6, 14.3.7,
1438, 1439

FILE_MODE (input-output typo)
in an inatance of direct_io 14.1, 14.2,1; 14,28
in an instance of saquential_lo 14.1,14,2,1:14.2.2
in text_io 14,1, 14.2,1; 143,10

FILE_TYPE {input-output type)
{n wn instance of direct.lo 14.1, 14,21 14.2,
14.2.4, 1425
in an instance of sequentialio 14,1, 14.2.1; 14.2,
14.2.2, 14.23
in text_lo 14,1, 14.2.1: 14,2, 1433, 1434,
14,3.6, 14.3.7, 1438, 1439, 143.10

FINE_DELTA
|see: syatem.fine_dsital

FIRST (pradsfined attribute) A
(seo also: bound!
for an accass value 3.8.2
for an array type 3,8.2
for a scalar typs 3.5

First named subtype 13.1
|see also: anonymous base typs, representation clause)

FIRST_BIT (predefinod attribute) 13,7.2; A
(vwe also: record rapressntation clause)

Fixed mocuracy definition 3.8.9

Fixed point constraint 3,8.9; 3.56.8
on a derived subtype 3.4

Fixed point predsfined type 3.8.8

Fixed point type 3.8.9; D
lsse also: basic oparation of.., duration, numetlc type,
operation of..., real type, scalar typs, smalli,
system.fine_delta, systam.max_mantissaj

Expanded name ® Fixed point type

accuracy of bn operation 4.5.7

a8 a generic actual typs 12.3.3

as a generic formal type 12.1.2

error bounds 4.5.7; 3.5.8

operation 3.6.10: 4,6.3, 4.6.4, 45,6

result of an operation out of range of the type 4.6.7

FIXED_IO (text._lo inner generic package) 14.3.8; 14.3.10
FLOAT (pradefined type} 3.8.7; C
FLOAT_IO (text_lo inner generic package) 14.3.8; 14.3.10
Floating accuracy definition 3.8.7

Floating point constraint 3.8,.7; 3.5.8
on a darived subtyps 3.4

Floating point predefined typs
lsse: FLOAT, LONG.FLOAT, SHORT_FLOAT)

Floating point type 3.8.7; D
[see also: numeric type, real type, scalar type,
system.max_digits|
accuracy of an operation 4.5.7
as a genetic actusl type 12.3.3
as a generic formal type 12.1.2
error bounds 4.6.7; 3.8.6
operotion 3.5.8; 4.8.3, 4,8.4, 48,5, 4.8.0
result of an operation out of rangs of the type 4.5,7

Font design of graphical symbols 2.1

Fur loop
(sse: icop statement)

Forting ocourrence (of 8 name leading to default determina-
tion of repressntation) 13.1

FORE (predelined attribute) for a fixed polnt type 3.8,10; A
Fore Held of text..io input or output 14.3.8, 14.3.10; 14,3.5

FORM (input-output fungtion)
in an inotance of direct_lo 14.2.1; 14,2.8
in an Instance of sequentiaiio 14.2.1, 14.2,3
in text_lo 14.2.1; 14.3.10
raising an exception 14.4

Form fsed format sffector 2.1
Form atring of a fils 14,1; 14,2,1, 142.3, 1425, 143,10

Forma! object
lsee: ganeric formal object]

Formal parainater 8.1; D; (of an entry) 9.5; 3.2, 3.2.1; (of a
function) 8.5; {of an operator) 8.7; (of a subprograrn) 8.1,
82 84:3.2 3.21, 83
[see also: actual parameter, default expression, entry,
generic formal paramaeter, mode, object, subprogram)
as a constant 3.2.1
as an object 3.2
as a varlable 3.2.1
names and overload resolution 6.6
of a derivad subprogram 3.4
of a generic formal subprogram 12,1, 12.1.3
of o main program 10.1
of un operatior 3.3.3
of & renamed entry or subprogram 8.8
whoee type Is an array type 3.6.1
whose type is a8 limited type 7.4.4
whose type Is a racord type 3.7.2
whose type is a task type 9.2

Fixed Jo e Generic actual parameter

ANSI/MIL-STD-1815A Ada Reference Manual

Formal part 8.1; 6.4
|see also: ganeric fcermal part, paramster type profiie]
conforming to another 8.3.1
in an accept sintament 9.5
in an entry declaration 9.5
in a subprogram specification 8.1
must not include a pragme 2.8

Formal subprogram
|see: ganeric formal subprogram)

Formal type
|sen: generic tormal typel

Format efiector 2.1
{sam also: carriage return, form feed, horizontal tabulation,
line feed. vertical tabulation]
as a saparator 2.2
in gn end of line 2,2

Format of text_io input or output 14.3.8, 14.3.7, 14.3.8,
1439

Formula
|s0e: expression)

Frame 11.2
and optimization 11.8
in which an axception is ralsed 11.4,1, 1142

Full decinration
of a deferrad constant 7.4

Full type declatation 3.3.1
discriminant part is not elaborated 3.3.1
of an incomplate type 3.8.1
of a limited private typs 7.4.4
of a private type 7.4,1; 7.4.2

Function 8.1, 6.5; 8, 123, D

|see also: opurator, pasrameter and resuit typs proflle,
parameter, predefinad function, result subtype, return
statement, subprogram|

as a main program 10,1

renamad 8.5

result [see: returned value)

that is an attrlbute 4.1.4; 12.3.8

Function hody
|see: subprogram bodyl

Function call 64; 6
|see elso: actual parameter, subprogram oull]
as a prefix 4,1, 41.3
as a primary 4.4
in a static expression 4.9
with a parameter of a derived type 3.4
with a tesult of a derlved typs 3.4

Function specification
{see: subprogram apecification)

Garbage coliection 4.8

Ganeric actual object 12.3.1; 12,11
[see algo: generic actual parsmeter|

Genetic actual parameter 12.3; 12
|see also: generlc actual object, generic actual sub-
program, generic actual type, generic association, generic
formal parametar, generic instantiation, matching)

-14

pachglbiodagh | sioghis B o\ ol dpail b R as gy

Index

cannot be a universal_fixed operation 4.8,5
for a generic formal access typs 12.3.6

for a generic formal array type 12.3.4

for a generic formal object 12.1.1

for a generic formal private type 12.3.2

for a generic formal scalar type 12.3.3

for a generic formal subprogram 12.1.3; 12,3.8
for a generic formal type 12,1.2

Is not static 4.9

that is an array aggregate 4,3.2

that is a loop parametsr 5.6

that is @ task typs 9.2

Generic actus! part 12.3

Generic autual subprogram 12.1.3, 12.3.8
[see also: generic actual parameter)

Genetic actusl! type
|see: generic actual parameter)

for a generic formal access type 12.3.8
for o generic formal array typs 12,3.4
for o generlc tormal scalar type 12.3.3
for a generic formal type with discriminants 12.3.2
for a gensric private formal type 12.3.2
that is a private type 7.4.1

Generic association 12.3
[see also: generlc actual parameter, generlc formal
paromatar)
named gensric assoclation 12.3
namaed ganeric assoclation for seleotive vislbiiity 8.3
positional generic ansoclation 12.3

Generic body 12.2; 12.1, 12.1.2, 12,22
(see also: body stub, elaboration of..)

in a package body 7.1
including an exception handler 11.2; 11
including an exit statemaent §,7
including a goto statement 8.9
including an implicit declaration 8,4
must be in the same declarative region as the
dociaration 3.8, 7.1
not yet elaborated at an instantiation 3.9

Generic declaration 12.1; 12, 12,1.2, 122

(see also: elsboration of..|
and body as a duclarative region 8.1
and proper body In the same compliation 10,3
a3 a basic declaration 3.1
an a Iater decliarative item 3.9
as a lbrary unit 101
in a package specification 7.1
recompiled 10,3

Generic formal object 12,1, 12.1,1; 3.2, 12,3, 12,311
Isee also: default expression, gensric formal parameter)
of an array type 3.8,%
of a record type 3.7.2

Generic tormal parameter 12,1, 12.3; 12, D

[ses also: generlc actual parameter, genaric assoclatlon,
generic formal objent, genarle formal subprogram, generic
tormal type, matching, object]

#s 8 congtant 3.2,1

as a variable 3.2.1

of a limitad type 7.4.4

of a tesk type 9.2

lsee aiso: goneric formal pnrametarl
formal function 12.1.3
with the same namae as another 12.3

Generic formal types 12,1, 12.1.2; 12.3
{see also: conatraint on,.., discriminant of..., generic formal
parameter, subtype Indication...)
as index or component type of a generic formal
atray type 12.3.4
formal access type 12.1.2, 12.3.6
formal array type 12,1.2, 12.3.4
formal array type (constrained) 12.1.2
formal discrete type 12,12
formal enumeration type 12,1.2
formal fixad point type 12.1.2
formal tloating point type 12,1.2
formal integer type 12.1.2
formal limited private type 12.3.2
tormal limited type 12.1.2
formal part 12,1.2
formal private typs 12,1.2, 12.3.2
formal private type with discriminants 12.3.2
formal scalar type 12.1.2, 12.3.3

Ganeric funation
(ses: generic subpragram)

Generic instance 12.3; 12, 12,1, 12,2, D
[see also: genaric instantiation, scops of..)
infined In place of each call 8.3.2
of a generic package 12.3
of o generic subprogram 12,3
ralsing an exception 11.4.1

Generic instantiation 12,3; 12,1, 12,1.3, 12,2, D
|see also: dociaration, elaboration of.., genetic actual
parameter)
#s a basic deciaration 3.1
as a lator declarative item 3.8
a8 & library unit 101
befora slaboration of the body 3.9, 11.1
implicitly declaring an exception 11,1
invoking an operation of a generic actual type 12.1,2
of a predefined input-output packege 14.1
recompiled 10.3
with a formal sccess type 12.3.5
with a formal array type 12.3.4
with a formal scalar type 12,3.3
with a formal subprogrem 12.3.8

Generic package 12.1; 12
for input-output 14
inatantiation 12.3; 12, 12,1 [ses aiso: ganeric
instantlation|
spocification 12.1 [see also: generig spacification)

Generic pankage body 12,2; 121
(see also: package body)

Generic parameter declaration 12,1;12.1.1,12.1.2, 12,1.3,
12,3
|swe also: generic formal parameter|
an a declarative reglon 8.1
having an extended scops 8.2
vislbility 8.3

Generic procedurs
|see: generic subprogram|

Generia formal part 12.1; 12, 0 Genetic specificetion 12,1; 12.3.2)

- . [see also: genorlc package specification, genstlc sub- O
"t‘- 16‘3?:“ formal subprogram 12.1, 121.3; 121.2, 12.3, program specification] R
r I-18 Generic actual part ® Generfc specification |

Generic subprogram 12.1; 12
body 12.2; 12.1 [see also: subprogram body)
instantiation 12.3; 12, 12.1 [sse aiso: generic
instantiationl
Interface pragma (s not defined 13.8
specification 12,1 [see also: generic specification]

Genazic type definition 12.1; 12.1.2, 12.3.3, 12.34

Generic unit 12, 12.9; 12,2, 123, D
(sme also: generic declaration, program unit)
including an sxception declaration 11.1
Including a raise statement 11.3
subject to a suppress pragma 11.7
with a separataly complled body 10.2

Generic unit body
(soe: generic body)

Generic unit spacification
(see: generio spacification)

(1!451’3 ‘(Boxt..lo procedurs) 14.3.8; 143, 143.2, 1434,
for character and string types 14.3.8
for enumaration types 14.3.9
for intager types 14.3.7
for raal types 14.3.8
ralsing an exception 14,4

QET..LINE (text_lo procedurs} 14.3.8; 143,10

Global declaration 8.1
of a variable shared by taske 8.11

Goto statement 8.9
(sew also: statement)
as 8 simple statemaent 8.1
causing a loop to be exited 8.8
causing a transfer of control 8.1
completing block statement exsoution 9.4

Graphic character 2.1
(ses alvo: basic graphlc sharacter, character, lowsr case
lotter, other special character)
in a churacter literal 2.8
in ® atring literal 2.6

Qraphical symbul 2.1
lsve also: ancii)
not avallable 2.10

Greater than
charactar 2.1
delimiter 2.2
operatar [see: relationsl operator}

Greater than or equal
compound delimiter 2.2
operator [see: relational operator)

Handler
(vee: exception handler, excaption handling)

Miding {of & declaration} 8.3
[swe also: visibllity)
and ranaming 8.5
and use clauses 8.4
due to an Implicit declaration 8.1
of a generic unlt 121
of a library unit 10.1

Genaric subprogram e |dentifier

ANSI/MIL-STD-1815A Ada Refsrsnce Manual

of a subprogram 6.8

of or by a derived subprogram 3.4
of the package standard 10.1
within e subunit 10,2

Highest precedence opurator 4.8
{zea also: abs, arithmetic operator, exponentiating
operator. not unary operator, overioading of an operator,
pradefined operator)
as an operation of a discrete type 3.6,5
as ah operation of a fixed point type 3.6.10
as an operation of a floating point type 3.6.8
overloaded 6.7

Homograph (dsclaration) 8.3
|see aino: overioading)
and use clauses 8.4

Horizontal tabulation
48 a separetor 2.2
character in a commant 2,7
format effector 2,1
In text.io input 14.3.8

H1phon character 2.1
se8 also: minun character|
starting & commaent 2.7

Identitier 2.3; 2,2
(see alwo: direct visibility, loop paramaeter, name,
ovetloading of..., scope of.., imple name, visibliity)
and an adjacent separator 2,2
as an attribute cdeslgnator 4.1.4
as 8 designator 6.1
as a resstved word 2.9
as a simple name 4.1
can be written In the basio character set 2,10
denoting an objact 3.2,1
denoting a value 3.2.2
in a deferred constant declaration 7.4.3
In an antry declaration 9.8
in an uxception declaration 11.1
In a generlc Instantiation 12.3
in an Incomplete type decisrction 3.8.1
in a number declaration 3.2.2
in an objsct deoleration 3.2
in a package speolfication 7.1
in a privats type daclaration 7.4; 7.4.1
In a renaming declaration 8,8
In a subprogram spucification 6.1
In a taak specification 9.1
In & type deciaration 3.3.1; 7.4.1
In its own declaration 8.3
In pragms system_nama 13.7
of nn argument of a pragma 2.8
of an enumeration value 3,5.1
of a formal parameter of a generic formal sub-
program 12,13
of a generlo formal object 12,1, 12,14
of a ganerlc formal subprogram 12,1; 12.1.3
of a generio formal type 12.1; 12,1.2
of a generic unit 121
of a library unit 101
of a pragma 28
of a subprogram 8.1
of a mubtype 3.3.2
of a subunit 10.2
of homograph declarations 8.3
overloaded 8.8
versus aimple name 3.1

1-16

Index

Identifier hat 3.2
in a component decleration 3.7
in a defarred constant declaration 7.4
in a discriminant specification 3.7.1
in a generic parameter declaration for ganeric for-
mal objects 12.1
in A numbar declaration 3.2
in an object declaration 3.2
in a parameter specification 6.1

Identity operation 4.5.4

If statement 5.3
(see also: stutement]
as 8 compound statament 5.1

llegal 1.6
IMAGE (predefined attribute) 3.8.8; A
immadiate scope 8.2; 8.3

Immadiately within {a declarative reglon}
[see: oceur immediately within)

implementation defined
{see: system dependent]

implementation defined pragma F

Implementation dependent
[see: system dependent)

Implicit conversion 4.6
[see also: convarsion oparstion, explicit conversion, sub-
type converalon]
of an Integer literal to an integer type 3.6.4
of a real literal to 4 real type 3.5.8
of a universal expression 3.6.4, 3.5.8
of a universal real exprassion 4.5.7

Implicit declaration 3,1; 4.1
{use also: scope of..]

by a type daclaration 4.5
hidden by an axpilcit declaration 8.3
of a basic operation 3.1, 3.3.3
of a block name, loop name, or label 5.1; 3.1
of & derived gsubprogram 3.3.3, 3.4
of an enumeration literal 3.3.3
of an aquality oparator 6.7
of an exception due to an instantiation 11.1
of a library unit 8.8, 101
of a predefined operator 4.5
of universal_fixad opsrators 4.56.6

Implicit initialization of an object
|see: ullocator, default Initial value]

Implicit reprasentation clause
for a derived type 3.4

In membership test
|4es: membership test]

In mode
(see: mode in)

In out mode
[see: mode in qut]

IN_FILE {input-output file mode enumaeration literal) 14.9

inclusive disjunction
[see: logical operatot]

-17

Incompatibility (of constraints)
|see: compatibility]

Incomplete type 3.8.1
corresponding fuli typs declaration 3.3.1

Incomplete type dsclaration 3.8.1; 3.3.1, 7.4.1
as a portion of a declarative region 8,1

Incorrect order dspendence 1.8
|see also: program error]

assignment atatsment 5.2
bounds of a range constraint 3.6
componsnt assoclation of an array aggregate 4.3.2
component assoctation of a record aggregate 4.3.1
component subtype Indication 3.6
default expresaion for a component 3.2.1
default expression for a discriminant 3.2.1
expression 4.5
index constraint 3.8
library unit 10.6
parameter association 8.4
prefix and discrate range of a slice 4.1.2

Index 3.68; D
[see also: array, discrete tyno, entry index)

INDEX (input-output function)
In an instance of direct_io 14.2.4; 14.2.8

Iindex constraint 3.6, 3.6.1; D
|see also: dependence on a discriminant]

ignored due to Index.check suppression 11.7
In an allocator 4.8
in a constrained array deflnition 3.8
in a subtype indication 3.3.2
on an accoss type 2.8
violated 11.1

index of an element In a ditect access fils 14.2; 14.2.4

index range 3.8
matching 4.5.2

Index subtype 3.8
Index subtype definition 3.8

index type
of a choice In ar array aggregate 4.3.2
of a generic formal array type 12.3.4

Index_check
[see: constraint_error, sunpreas|

Indexed omponent 4.1.1; 3.6, D
#s a basic operation 3.3.3; 3.3, 3.6.2, 3.8.2
as & name 4.1
as the name of an entry 9.5
of a value of a generic formal array type 12.1.2

Indication
[see: subtype indication]

Inagquality compound delimliter 2.2

Inequality operator 4.8; 4,5.2
isee also: limited type, relational operator)

cannot be explicitly declared 8.7
for an access type 3.8.2
for an array type 3.68.2
for a genoric formal type 12.1.2
for a real type 4.6.7
for a racord type 3.7.4
not available for a limited type 7.4.4

Identifier list ® Inequality operator

-Hlls Fr.-T. -

Poe "o . "EEEEg ."... .

. e s e N . e ans a 2t LD

d

SR .

R

CE FLA_T LT T

S R

Tt 3

MR- X A L .t

Initial value (of an object) 3.2.1
[see also: allocator, composite type, default expression,
defauit initial value, default initialization)
in an allocator 4.8; 3.8, 7.4.4
of an array object 3.68.1
of a constant 3.2.1
of a constant in & static expression 4.9
of a discriminant of a formal parameter 6.2
of a discriminant of an object 3.7.2
of a limited private typs objsct 7.4.4
of an object daclared in a package 7.1
of an out mode formal parameter 6.2
of a record object 3.7.2

Initialization
[see: assignment, default sxpression, default initialization,
initlal value)

INLINE (predefined pragma) 8.3.2; B
creating recompilation dependence 10.3

INOUT_FILE {input-outout file.mode snumeration literal)
141

Input-output 14
sae also! direct_lo, io_exceptions, low._laval_io, sequon-
tial.lo, text_io]
at device level 14,8
exceptions 14.4; 14,6
with a direct access tile 14.2.4
with a ssquantial flle 14.2.2
with a text file 14,3

Instance
[see: genaric inctanca)

Instantiation
|see: genaric Instantlation]

INTEGER {(predefined type) 3.8.4; C
« base type of a loop parameter 5.5
as default type for the bounds of a discrete range
3.6.1, 856

Integer literal 2.4
[ses also: based Integer literal, universal_integer type)
as a bound of a discrete runge 9.6
as a unlversal_inteqer literal 3.5.4
in based notation .;.4.2
in decimal notation 2.4.1

Integer pnrt
us a base of a Lused literal 2.4.2
of a decimal literal 2.4.1

Integer predefined type 3.5.4
(eee also: INTEGER, LONG_INTEGER, SHORT.INTEQER|

Integer subtype
[sae: priority]
due to an Integer type dafinition 3.5.4

integer typs 3.64; 3.3, 3.5, D
lsse also: discrete type, numeric type, predefined type,
scalar type, system.max_int, system.min_int, univer-
sal_Integer type)
as a generic formal typs 12.1.2
as a generic parameter 12,3.3
operation 3.6.6: 4,5.3, 4.6.4, 455, 4.6.8
result of a conversion from a numaeric type 4.8
rasult of an operation out of range of the type 4.5

Intager type declaration
[sea: Integer type deflnition]

Initial value ® Layout._error

ANSI/MIL-STD-1815A Ada Reference Manual

integer type definition 3.8.4; 3.3.1
[ses also: elaboration of...

Integer type expreseion
In a length clause 13.2
In a record reprasentation clause 13.4

INTEGER_IO (text_lo inner generic package) 14.3.6; 14.3.10

INTERFACE (predefined pragma) 13.9; 8
Interface to other languages 13.9
Interrupt 1.3.5

Intarrupt entry 13.6.1
[seq also: address attribute)

Interrupt queue
|see: entry qusue)

I0__EXCEPTIONS (predafinad input-output {ackage) 14.4;
14, 141, 1423, 1425, 13,10, C
spucification 14.6

IS_OPEN (input-output function)
in an Instance of direct_io 14.2,1; 14,26
in an instance of sequential.io 14.2.1, 14.2.3
in text_lo 14.2,1; 14.3,10

180 (international organization for standardization) 2.1
{80 seven bit coded character set 2.1

Item
|sea: basic declarstive item, |uter declarative ltem)

iteration scheme B.6
|see also: discrete type)

Label 5.1
(see also: addraess attribute, name, statement}
declaration 6.1
imnlicitly declared 3.1
target of a goty statement 6.9

Label benihet
compound dellmiter 2.2

Labe'«s stateme::t 5.1
In a code statement 13.8

LARGE (prodefined attribute) 3.8.8, 3.8.10; A
LAST (predefined attribute) A
lsee also: bound)
for ¢n access value 3.8.2

for an array type 3.6.2
for a scular type 3.5

LAST_BIT (predefinad attribute) 13.7.2; A
[see also: record reprasentation clause]

Later declarative item 3.9

Layout recommended
|sea: paragraphing recommandad)

LAYOUT_ERROR (input-output exception) 14.4: 14.3.4,
14.3.5, 14.3.7, 14,38, 1439, 14.3.10, 145

|18

L R T N N e R R O R N o N T S L N N S T AT S N VR S S B L NP SR - . [M

- -
[SURYIv

4

Index

Leading zeros in a numeric literal 2.4.1
Loft iabsl bracket compound dalimiter 2.2

Left parenthesis
character 2.1
delimiter 2.2

Legal 1.8

LENGTH (predefined attribute) 3.8.2; A
for an access value 3.8.2

Length clause 13.2
as a reprasentation clause 13.1
for an access typs 4.8
specifying small of a fixed point type 13.2; 3.5.9

Langth of a string litera! 2.6

Length of the result
of an array comparisnn 4,6.1
of an array loglcal negation 4.5.6
of a catonation 4,63

Length_check
(see: constraint_arror, supprass)

Less than
character 2.1
delimiter 2.2
operator (see: relational operator)

Less than or equal
compound delimiter 2,2
operator [see: relational operator]

Letter 2.3
[ses also: lower case lettar, upper case letter]
e or E in a decimal literal 2.4.1
In a based llteral 2.4.2
in an identitier 2.3

Letter_or_digit 2.3

Lexical element 2, 2,2: 2.4, 2.5, 2.6, D
as a point in the program text 8.3
in a conforming construct 8.3.1
tr:nnfarred by a text.lo procedure 14.3, 14.3.5,
14.3.9

Lexicographic order 4.6.2

Library package
|aee: library unlt, package)
having dependent tasks 9.4

Library packege body
[see: library unit, package body)
raiging an exception 11.4.1, 11.4.2

Library unit 10.1; 10.6
[see also: compilation unit, pradefined package, predefined
subprogram, program unit, secondary unit, standard
pradefined package, subunit}
compiled before the corresponding body 10.3
followed by an inline pragma 6.3.2
inciuded in the nredefined package standard 8.6
must not be subject to an address clause 13.6
named In a use clsuse 10.6
named in a with cleuse 10.1.1; 103, 10.8
recomplled 10.3
scope 8.2
subject to an Interface pragma 13.9

that is a package 7.1

visibility due to a with clause 8.3

whose name I3 needed in 8 compliation unit 10.1.1
with & body stub 10,2

Limited private type 7.4.4
{see also: private type)
as a genaric actual type 12,3.2
as a generic formal type 12,1,2

Limited type 7.4.4; 9.2, 12.3.1, D
[see also: assignment, equality operator, inequality
operator, predefined operator, task type)
as a full type 7.4.1
component of a racard 3.7
generic formal object 12.1.1
in an object declaration 3.2.1
limitad record type 3.7.4
operation 7.4.4; 4.5,2
pa;ameters for axplicitly declared squality operators
6.

Line 14.3, 1434

LINE (text._io function) 14.3.4; 14.3.10
raising an exception 14.4

Line feed format effactor 2,1
Line length 14.3, 14.3.3; 14.3.1, 14.3.4, 14.3.5, 14,38

llzw terminator 14.3; 14,3.4,14,2,8, 14,3,8, 14.3.7,14.3.8,
14,39

%l:lg-l.ENGTH {tent_io function] 14.3.3, 14.3.4; 14.3.3,
310
ralsing an excaption 14.4

List
[see: component liat, identifler_list)

LIBT ipradefined pragms) B

Listing of program text
[sme: liat pragma, page pragmal)

Literal 4.2; D

[sae also: based literal, character literal, decimal iiteral,
snumeration literal, integer lite:al, nuil lteral, numaeric
literal, overloading of.., real literal, string literal]

as a basic operation 3.3.3

of a derived typs 3.4

of universal_intager type 3.5.4

of universal_real type 3.56.6

specification [see: anumeration literal spacification}

Local decleration 8.1
in a generic unit 12,3

Logical negstion operation 4.5.8

Logics! operation 4.6.1

Logice) operator 4.6; 4.4, 45,1, C

[see also: overloading of an operator, predefined opsrator)

as an operation of hoolean typs 3.5.5
for an array type 3.8.2
in an exprassion 4.4
overloaded 8.7

Logical processor 9

LONG._FLOAT (prudefined type) 3.8.7; C

LONG_INTEGER (predafined type) 3.8.4: C

Leading zeros ® Long._integer

A

Sramais s ot mad o < no i ml ot e ke

Witnnat

Loop nams 5.6
declaration 6.1
implicitly declared 3.1
in an exit statement 5.7

Loop parameter 5.5
[swe aiso: constant, object|
as an object 3.2

Loop parameter specilication 3.8
{see also: elaboratinn of...
as an overload rasolution context 8.7
Is a declaration 3.1

Loop statement 5.6
Isee also: statement]
as a compound statement 8.1
a8 a declarativa region 8.1
denoted by an expanded nams 4.1.3
including an exit statemeant 8.7

LOW_LEVEL_IO (predefined Input-output package) 14.8;

»

Lower bound
(see: bound, first attribute)

Lower cuse latter 2.1
|see also: graphic character)
atof in a basad literal 2.4.2

e in a deaimal literal 2.4.1
in an identifier 2.3

Machine code insertion 13.8
Machine dependent attribute 13.7.3

Machine representation
{see: representation)

MACHINE_CODE (pradefined package! 13.8; C
MACHINE_EMAX (predefined attribute) 13.7.3; 3.5.8, A
MACHINE_EMIN (predefined attribute) 13.7.3; 3.6.8, A
x‘ACHINE._MANTIssA (pradefined attribute) 13.7.3; 3.8.8,

MACHINE_OVERFLOWS (predefined attribute) 13.7.3;
368 3.6.10 A

MACHINE_RADIX (predefinad attribute} 13.7.3; 3.5.8, A

MACHINE_ROUNDS (predefined attribute) 13,7.3; 3.8.8,
3510 A

Main program 10.1
execution requiring elaboration of llbrary units 10.5
included in the predefined package standard 8.6
including a prlority pragma 9.8
raising an excaption 11.4.1, 11.4.2
termination 9.4

MANTISSA (predefined attribute) 3.8,8, 3.8.10; A
Mantissa

of a fixed point number 3.5.9

of a floating point number 3.5,7; 13.7.3

Mark
|aee: type_mark|

Loop name ® Mode

ANSI/MIL-STD-18154 Ada Reference Manual

Master (tosk) 9.4

Matching componenta
of arrays 4.5.2; 45,1, 5.2.1
of records 4.5.2

Matching generic formal
and actual parameters 12.3
access typs 12.3,5
array type 12,34
default subprogram 12.3.8; 12.1.3
object 12.3.1; 12,11
private type 12.3.2
scalar type 12,3.3
subprogram 12.3.8; 12.1.3
type 12.3.2, 12.3,3, 12,34, 12,3.5; 12.1.2

Mathematically correct result of a numeric operation 4.8;
5.7

MAX_DIGITS
[sen: system.max_digita)

MAX_INT
[see: system.max_int|

MAX_MANTISBSA
[see: system.max_mantissa)

Maximum line length 14.3
Maximum page length 14.3

Membership test 4.4, 4,82
canhnot be overloadad 8.7

Memburship test operation 4.8
[see also: overloading of...|
as 8 basic operation 3.3.3; 3.3, 3.5.5, 3.8.9, 3.6.10,
3.6.2, 3.74, 3.8.2, 74.2
for a real typs 4,6.7

MEMORY_8IZE (predefined named number)
[see: system.memory_size]

MEMORY_SIZE (predsfined pragma) 13.7; 8

MIN_INT
[see: system.min_int]

Minimization of storage
|see: pack predefined pragmal

Minus
charactar [see: hyphen charactet)
character In an exponent of a numerlo literal 2.4.1
delimiter 2.2
operator [ses: binary adding operator, unary adding
operator|
unary operation 4.5.4

Mad operator 4.8.5
[see also: multiplying operator]

MODE (input-output function)
in an inatance of directio 14.2,1; 14.2.8
in an instance of sequantial_lo 14.2,1; 14.2.3
in text_lo 14.2.1; 143.3. 14.3.4, 14.3.10

Mode (of a fila) 14,1; 14.2.1
of a diract access file 14.2; 14.2.8
of a sequential access flle 14.2; 14.2.3
of a text.lo file 14.3.1; 14.3.4

-20

Index

Mode {(of a formal paremeter) 8,2; 6.1, D
(see also: formal parameter, generic formal parameter|
of a formal parameter of a derived subprogram 3.4
of a formal parameter of a renamed sntry or sub-
program 8.5
of a generic formal object 12.1.1

Mode in for a formal parameter 6.1, 8.2; 3.2.1
of a function 6.5
of an interrupt entry 13.5.1

Mode in for a generic formal object 12.1.1; 3.2.1, 12.3,
1231

Mads in out for a formal parametsr 6.1, 6.2; 3.2.1
of a function Is not allowsd 6.6
of an interrupt entry is not allowed 13.6.1

Mode in out for a gensric formal objoct 12.1.1; 3.2.1, 12.3,
12.3.1

Mode out for a formal parameter 8.1, 6.2
of & function is not allowed 6.8
of an interrupt entry |s not aliowed 13.8.1

MODE_ERROR (input-output sxception) 14.4; 14.2.2,
1423, 1424, 1426, 143.1, 1432, 1433, 1434,
14.3.8, 14.3.10, 14,86

Mods! interval of a gubtype 4.8.7

Model number (of a real typs) 3.8.8; D
(see al3c: real type, safe numbar)
accuracy of a real operation 4.6.7
of a fixed point type 3.8.9; 3.6,10
of a floating point typs 3.5.7; 3.5.8

Modulus oparation 4.5.8
MONTH (predefined functlon) 8.0
Multidimensional array 3.0

Multiple
component declaration 3.7; 3.2
deferred constant dacig/stion 7.4; 3.2
discriminant specification 3.7.1; 3.2
genatic parameter declaration 12.1; 3.2
number declaration 3.2.2: 3.2
object declaration 3.2
parameter spacification 8.1; 3.2

‘

Multiplication operation 4.8.8
accuracy for a real type 4.6.7

Muitiplying operator 4.8; 4.58.5, C
[wee also: arithmetic operator, overloading of an operator)
in a term 4.4
overloadad 8.7

Must (legality requiremaent) 1.8

Mutually recursive types 3.8.1; 3.3.1

NAME (Input-output function)
in an instance of direct.lo 14.2.1
in an Instance of sequentlal_.io 14.2.1
in text_io 14.2.1

NAME (predefined type)
(see: system.name]

1-21

e Rl ey g

Nama (of an entity) 4.1; 2.3, 3.1, D

[see aiso: attribute, block name, denote, designator,
evaluation of..., forcing occurrences, function call, identifier,
Indexed component, label, loop name, loop parameter,
operator symbol, renaming declaration, selected compo-
nent, simple name, slice, type_mark, visibllity)

as a prefix 4.1

as a primary 4.4

as the argument of a pragma 2.8

as the expression In a case statement 5.4

conflicts B.b

declared by renaming is not aliowad as prafix of cer-

tain expanded names 4.1.3

daclared in a genaric unit 12.3

denoting an entity 4.1

denoting an objsct designated by an access value

4,1

generated by ai implemantation 13.4

starting with s prefix 4,1; 4.1,1,4,1.2,4.1.3, 4,14

Name string (of a file) 14.1; 14.2.1, 14.2.3, 14.2.8, 14,3,
143,10, 144

NAME_ERROR (input-output exception} 14.4; 14.2.1,
14.2.3, 14.2.5, 14.3.10, 145

Named sssociation 6.4.2 D
[vee also: component assaciation, discriminant sssocia-
tion, generic association, paramster assoclation]

Named block statement
{sse: block name]

Namod loop statement
(see: loop name|

Namat number 3.2; 3.2.2
as an sntity 3.1
as a primary 44
in & static expression 4.9

NATURAL (pradefined integer subtype) C

Negation
[swe: logical negation operation}

Negetion operation (numerlc) 4.8.4

Negative exponent
In a numerlc literal 2.4.1
10 an axponentlistion operutor 4.5.0

NEW_LINE (text_io procedure) 14.3.4: 14238, 1438,
143.10
rulsing an exception 14.4

NEW..PAGE (text_io procedure) 14.3.4; 14.3.10
ralsing an exception 14.4

No other effect
[ses: sluboration ias no other wHect)

Not equal
compound delimiter [see: Inequality compound
delimiter]
operator (see: relational operator]

Not in mambership test
[sce: mombership test)

Not unary operator
{see: highest precedence operator]
as an operation of an array type 3.6.2
as an operation of boolean type 3.8.8
in a factor 4.4

Mode e Not unary operator

AL TR X IR

.
93
kA
o
) .
.
b !

A

.

1,

.

- T,
T r oy
St ';.‘-'j_ ~

.
‘.
)

’
AP

.
i

3
DR
-,

Not yet elaborated 3.9

Null access value 3.8: 3.4, 4.2, 6.2, 11.1
(see also; default Initial value of an access type object]
causing constraint_error 4.1
not causing constraint_error 11.7

Null array 3.8.1; 3.6
aggregate 4.3.2
and relational operation 4.8.2
as an aperand of a catenation 4.5.3

Null component list 3.7

Null literal 3.8, 4.2
|see slso: overloading of...}
as a basic operation 3.3.3; 3.8.2
as a primary 4.4
must not be the argument of a conversion 4.6

Null range 3.8
as 8 choice of a varlint part 3.7.3
for a lcop parameter 5.8

Nuil record 3.7
and ralational opiration 4,8.2

Null alice 4.1.2
[sce nlso: array type)

Null statement 5.1
|see olso: statement|
as & simpla statement 8.4

Null string literal 2.8

Number
Isee: based literal, dacimal literal]

Number declaration 3.2, 3.2.2
a8 a besic declaration 3.1

:J‘Ugl?ERJASE (predefined integer subtype) 14.3.7;
3.10

Numeric literal 24, 4.2: 2.2, 24,1, 24.2

Inee also: universal type expression)
and an adjacent separator 2.2
as @ basic operation 3,3.3
as a8 primary 4.4
ac the paramater of value attribute 3.5.8
as the result of image attribute 3.8.8
assigned 5.2
can be written in the baslo character set 2,10
In & co. ;orming construct 6.3.1
in a static expression 4.9
in pragma memory_size 13.7
in pragma storage_unit 13.7

Numeric operation of a universal type 4,10
Numeric typs 3.8
[see also: conversion, fixad point tvro, fiosting polnt type,
integer type, real type, scelar type
operation 4.5, 46.2, 4.8.3, 4,84, 458 458

Numeric type oxpression
In u langth clause 13.2

Numaeric vaiue of a named number 3.2
NUMERIC_ERROR (pradefined exception) 11.1

Isee also: suppress pragmal)
net raised due to lost overfiow conditions 13.7.3

Not yet elaborated e Cperation

ANSI/MIL-STD-1815A Ada Reference Manual

not raised due to optimizstion 11.8

raised by a numeric operator 4.5

raised by a predefined integer operation 3.5.4
raised by a reasl result out of rangs of the safe
numbers 4.6.7

raised by a univarsal expression 4,10

raised by Integer division ramainder or modulus
45656

raised due to a conversion out of range 3.5.4, 3.5.6

Object 3.2: 3.21, D

[see also: address attribute, allocator, collection, compn-
nent, constant, formal parameter, genaric formal
parametsr, initisl valus, loop paramater, size attribute,
storage bits allocated, subcomponent, variable)

as an actual parameter 6.2

as a genaric formal parameter 12.1.1

created by an allocator 4.8

craated hy elaboration of an object declaration 3.2.1

of an accees type [sve: access type object]

of a file type (sae: flle)

of a task type [see: task object)

renamed 8.5

sublect to 4n address clause 13.8

subject to a representation clause 13.1

subject to a suppress pragma 11.7

Object deciaration 3.2, 3.2.1
(swe also: elaboration of..., generic parameter declaration]

as o basic declaration 3.1
as a full decleration 7.4.3
Implied by a task deciaration 8.1
in a package spacitication 7.1
of an array object 3.8,1
of a record object 3.7.2
with a limited type 7.4.4
with a task type 8.2; 9.3

Object designated
by an access value 3.2, 3.8, 4.9; 41,3, 8.2, 9.2,
11.1 [see aiso: task object designated...)
by an access valuo denoted by & name 4.1
by s access-to-array type 3.8.1
by an access-to-record type 3.7.2
by a generic formal access type valus 12.3.8

Object module
for a subprogram written In another language 13.8

Obsolete compiiation unit (due .0 recompliation} 10.3

Oceur immadiately within (a declarative region) 8.; 8.3,
8.4, 10.2

Owitted paramaeter assodiation for & subprogram call 6.4.2

OPEN (Input-output procedure)
in an instance of direct_lo 14.2.1: 141, 14.2.8
in an instance of sequential_loc 14.2.1; 14.1,14,2,3
in text_io 14.2.1; 14,1, 1431, 143,10
taising an exception 14.4

Open aiternative §.7.1
{see alao' alternativel
accopting a conditional entry osil 9.7.2
accepting a timad antry call 9.7.3
Open file 14.1

Operation 3.3, 3.3.3; D
[see also: basic operation, direct visibllity, operator,

22

predefined opsration, visibility by selsction, visibility)
classification 3.3.3
of an access type 3.8.2
of an array type 3.6.2
of a discrete type 3.5.5
of a fixed point typs 3.5.10
of a floating point type 3.5.8
of a generic actual typs 12,1.2
of a generic formal type 12,1.2; 123
of a limited type 7.4.4
of a private type 7.4.2; 7.41
of a record type 3.7.4
of a subtype 3.3
of a subtype of a discrete type 3.5.0
of a type 3.3
of a univarsal type 4.10
propagating an exception 11.8
subject to a suppross pragma 11.7

Operator 4.6: 44, C, D

|see also: binary adding operator, designator, exponen-
tiating operator, function, highest pracedence operator,
logical operator, muitiplying operator, overioading of...,
predefined operator, relational oparator, unary adding
opsrator]

as an opsration 3,3.3 [see also! operation)

impilicitly declared 3.3.3

in an expression 4.4

in a static exprassion 4.9

of a derived type 3.4

of a generlc actual type 12,12

overioadad 8.7; 6.8

renamed 8.5

Operator declaration 8.1; 4.5, 8.7

Opaerator symbol 6.1
|sos aiso: direct vislbility, overloading of ., scope of...,
visibility by selection, visibllity)
as a designator 8.1
as & designator in a function declaration 4.8
as a name 4.1
befors arrow compound delimiter 8.3
declared 3.1
declared in a generle unit 12.3
in & renaming declaration 8.8
in a selector 4,1.3
In & otatie sxprassion 4.9
not vllowed as the designator of a library unit 10.1
of a generic formal function 12,13, 12.3
of homograph declarations 8.3
overloadsd 8.7; 6.6

Optimization 10.8
[see also: optimize pragmal
and exceptions 11.0
OPTIMIZE (predefined pragma) B

Or else control form
[swe: short circuit control form)

Or operator
|see: logicel operator)

Order
(ses: Lexicographic urder|

Order not defined by the language
[see: incorrect order dependence)

Ovder of spplication of operators in an expression 4.8

1-23

Order of compilation (of compliation units) 10.1, 10.3;
10.1.1, 104
creating recompilation dependence 10.3

Order of copying back of out and in out formal psrameters
64

Order ol slaboration 3.9
{sme alsn: incorract order dependencal; {of compliation
units) 10.6; 10.1.1

Ordet of avaluation 1.8

Isoe also: incorrest order dependence)
and exceptlons 11.6
of conditions in an if statsment 5.3
of default expressiona for components 3.2.1
of sxpressions and the name in an assignment
statement 5.2
of oparands in an expraasion 4.8
of parameter sssociations in & subroutin~ vall 8.4
of the bounds of a range 3.8
of the conditions in a selective weii 8.7.1

Order of execution of statemants 8.1
[see also: incorrect order dependerice|

Ordering operator 4.5; 4.8,2

Ordering relation 4.8.2
[see also: relational operator)
for a real type 4.6.7
of an enumaration type preserved by a representa-
tion clause 13.3
of a scalar type 3.5

Other effect
|see: slaboration haa no other stfect)

Other speciat charucier 2.1
[ses miso: graphic ~harscter)

Others 3.2.3
as & choloce In an array aggregate 4.3.2
ay a cholce In » case statement alternative 5.4
as a cholce In & component association 4.3
a8 & choice in a record aggragate 4,3.1
as & choice in a variant part 3.7.3
as an exception choice 11,2

Out mode
[see: mode out|

OUT_FILE (input-output file mode snumaeration literal) 14,1
Overfiow of rasl operations 4.8.7; 13.7.3

Ovsrfiow_check
{see: numetic_error, suppress}

Overlapping scopes
[swe: hiding, ovarloading)

Overlapping slices in array assignment 8.2.1
Ovarlaying of objects or program units 13.8

Overloading 83; D
|sea also: designator, homograph declaration, identifier,
operator symbol, scope. simple name, subprogram,
visibllity]
and vislbillty 8.3
in an assignment statement 5.2

Operator & Qverloading

it et
2 e Ty a

(eaNg —~

L AL AT & Ve F
AN Y PRSPy

R

S SRS NG
aa®astal"atn

in an expression 4.4

resolution 6.6

resolution contaxt 8.7

resolved by explicit qualificetion 4.7

Ovarioading of
an aggregate 3.4
an aliocator 4.8
a declaration 8.3
a designator 6.8; 6.7
an entry 9.6
an anumaration literal 3.5.1; 3.4
a generic formal subprogram 12.3
a generic unit 12,1
an identifier 8.6
a library unit by a locaily declared subprogram 10,1
a library unit by means of renaming 10.1
» literal 3.4
a membaership test 4.5.2
an operator 4.5, 6.7; 4.4, 6.1
an operator symbol 6.8; 6.7
a subprogram 6.6; 6.7
& subprogram subject to an Intertace pragma 13.8
the expression in a case statement 8.4

PACK (predefined pragma) 13.1; B

Package 7, 7.1; D

|ses also: deferred constant decluration, Iibrary unit,
pndluﬂnod package, private part, program unit, visible
part

as a generic instance 12.3; 12

Including a raise statement 11.3

namad in & use clavse 8.4

renamod 8.6

subject to an address clause 13.6

subject to representation clause 13,1

with o separately complled body 10.2

Packege body 7.1, 7.3: D

[nee also: body stub]
as & generic body 12.2
as a proper body 3.9
as a sscondary unit 10,1
as a secondary unit complled after the oor-
responding library unit 10.3
in another package body 7.1
including an exception handler 11.2; 11
including an exit statement 8,7
including # goto stutemant 5.9
including an implicit declaration 8.1
must ba in the sams declarative region as the
declaration 3.9
ralsing an excoption 11.4,1, 11.4.2
recompilad 10.3
subject to a suppress pragma 11.7

Package declaration 7.1, 72.2: D
and body as a decierative region 8.1
as a basic declaration 3.1
as a later declarative item 3.9
as o library unit 101
determining the visibllity of another declsration 8.3
eluoboration reising an exception 11.4.2
in & package spucification 7.1
recompiled 10.3

Package identifier 7.1

Package spevifioation 7.1, 7.2
in & genaric declaration 12.1

Overioading of ® Parenthesis

ANSI/MIL-STD-1818A Ada Reference Manual

including an inline pragma 8,3.2
Including an interface pragma 13.9
Including a representation clause 13.1
Including a suppress pragma 11.7

Page 14.3, 1434
PAGE (predefined pragma) 8

PAGE (text_lo function) 14.3.4; 143.10
raising an exception 14.4

Page length 14.3, 14.3.3; 14,3.1, 14,34, 144
Page terminator 14.3; 14.33, 14.3.4, 1436

PAGE_LENGTH (text_io funation) 14.3.3; 14.3.10
raising an exception 14.4

Paragraphing recominended for the lsyout of programs 1.8

Paraliel execution
|swe: task]

Parameter D
{sew also: actual parumeter, default exprasalon, entry, for-
mal parameter, formal part, function, gensric actual
parameter, generic formal parameter, loop perameter,
mode, procedure, subprogram)
of a main program 10.1

Parameter and resuit type profile 6.8

Parameter association 8.4, 6.4.1
for a derived subprogram 3.4
named parameter assoclation 8.4
named parameter association for sslective visibility

omitted for a subprogram csl! 6.4.2
positional parameter assacistion 8.4

Parameter declaration
(see: generic parameter declaration, parameter
specification]

Parameter part
[sew: nctuai parameter part)

Patameter specification 8.1
|seo also: loop paramater spocification)
as part of a basic declarstion 3.1
having an extended acope 8.2
In & formal part 8.1
vislbility 8.3

Parameter type profile 6.8
Parent subprogram (of a derived subprogram) 3.4
Parent subtype (of a derived subtyps) 3.4

Parent type (of a dorlved typs) 3.4; D
[sse also: derived type)
declared In a visible part 3.4
of a generic actual type 12,1,2
of a numeric type Is predefined and anonymous
3564 367, 388

Patent unit (of a body stub) 10.2
compiled before its subunits 10.3

Parenthesis

character 2.1
delimiter 2.2

|-24

£

Parenthesized expression
as a primaiy 44; 48
in a static expression 4.9

Part
[ses: actual paramaeter part, declarative part, discriminant
part, formal part, generic actual part, generic formal par,
varlant part|

Partial ordering of compilation 10,3

Percent character 2.1
[see also: string literal)
replacing quotation character 2,10

Period character 2.1
[ses also: dot charactar, point character)

Physical processor 9; 9.8

Plus
character 2.1
delimiter 2.2
operator (see: binary adding opurator, unary adding
operator|
unary operation 4.5.4

Point character 2.1
|see aiso: dot
in & based literal 2.4.2
in a decimal literal 2.4.1
in & numeric litersl 2.4

Point delimiter 2.2

Pointer
(see: acceas type)

Portability 1.1
of programs using real types 13,7.3; .86

POB (predefined attribute) 3.8.8; 13.3, A

POSITION (predefined attribute) 13.7.2; A
(see sino: record reprasentation clause)

Position number
as paramaeter to vai attribute 3.8.8
of an enumaration literal 3.5.1
of an integer vaiue 3.5.4
of » value of a discrete type 3.5
returned by pos attribute 3.8.8

Position of & component within a record
(see: record reprasentation clause)

Position of an elemant in a direct access file 14.2
Positional association 6.4; 6.4.2, D
(ses atso: companent association, discriminant wssocia-
tion, generic assoclation, parameter assoclation)
POSITIVE (predefined integer subtype) 3.8.3; 143.7,
14.3.8, 1438, 14210, C
as the index type of the string type 3.6.3

POSITIVE_COUNT (predefined Integer subtyps) 14.2.8,
14.3.10; 1424, 143, 1434

Potentially visible declaration 8.4
Pound steriing chavacter 2.1

Power operator
(see: exponentiating operator)

I-26

Pragme 2.8; 2, D

(see also: predefined pragma)
applicable to the whols of & compilstion 10.1
argument that is an overloaded subprogram name
8.3.2, 8.7, 13.9
for the specification of a subprogram body in
another langusge 13.9
for the specification of program overlays 13.8
in a code proosdure body 13.8
recommanding the representation of an entity 13.1
specitying implemantation conventions for code
statements 13.8

Precedence 4.6

Precision (numeric)
lsee; deita, digits|

PRED (predefined attribute) 3.8.8; 13.3, A

Predecessor
(see: pred attributs|

Predefined attribute
(see: address, basa, callable, constrained, count, first,
first_bit, image. last, last._bit, pos, pred, range, aize, small,
storage.size, suce, terminated, val, vaiue, wlidth)

Predefined constant 8.6; C
(see also: system.system..name)
for CHARACTER values [see: sscii)

Predetined exception 8.6, 11.1; 11.4.1, C
|see also: constraint_error, lo_axceptions, numeric.error,
program_error, tasking_srror, tims_srror}

Predetined function 8.8; C

[see aiso: attribute, character literal, enumsration literal,
predefined generic library tunction)

Predefined genuric library function 8.8; C
(sew also: unchecked..convarsion]

Predefined generio library package 8.8; C
(see also: direct_lo, input-output package, sequential_lo)

Predefined gensrio library procedure 8,6; C
|see also: unchecked_dealiocation)

Predefined generia Nbrary subprogram 8.8; C

Predefined identifier 8.8; C '

Predefined library package 8.8; C
{see aiso: predefined gensrio library package, prede’ined
package, ascll, calendar, input-output package, lo_excep-
tions, low.level..io, machine_code, system, text.io)

Predefined library subprogram
|swe: predefined generlc llbrary subprogram]

Predetfined named number

[nes: system.fine_deita, system.max_digits, system.max_int,

system.max_mantiesa, system.memory_size,
system.min_int, system.storage..unit, system.tick}

Predefined operation 3.3, 3.3.3; 8.6
|uee also: operation, predefined operator)

accuracy for a real type 4.8.7
of a discrete type 3.5.6
of a tixed point typs 3.5.10
of a floating point typs 3.5.8
of a universal type 4,10
propagating an exception 11.8

Parenthesized expression ® Predefined operation

B
"~y
3

L.

T

Lk
Pl

b SR8 M Jie b
$ e 5 T > X

»

Predefinad opsrator 4.5, 8.6; C

|see also: ahs, arithmatic operator, binary adding operator,
catenation. equality, exponentlating operator, highsst
precedence oparator, Inequality, limited type, logicel
operator, multiplying operator, operator, predefinad opera-
tion, relational operator, unary adding operator)

applied to an undefined value 3.2.1

as an operation 3,3.3

for an access type 3.8.2

for an array type 3,62

for a racord type 3.7.4

implicitly declarad 3.3.3

in a static expression 4.9

of a derived type 3.4

of a fixed point type 3.5.9

of a floating point type 3.5.7

of an integer type 3,54

raising an exception 11.4.1

Predefined package 8.8; C
(sew also: ascii, library unit, predefined library package,
stendard)
for input-output 14

Predefined pragma
|see: controliad, elsborate, Inline, Interface, llst,
memory_size, optiinize, pack, page, priority, shared,
storage._unit, suppross, systam_name}

Predefined subprogram 8.6; C
Ises also: input-output subprogram, library unlt,
predefinad generic library subprogram|

Predefined subtyps 8.8, C
[see also: field, natural, number_bass, positive, priority)

Predefined type 8.8: C
|see also: boolean, character, sount, duration, tloat,
integer, long..float, iong_integer, priority, short_flost, short..
intuger, string, system.address, system .name, time,
universul_intager, universal_reel

Profix 4.1 D
|see also: appropriate for a type, funotion call, name,
selectad component, selector]
in an attribute 4.1.4
in an Indexed component 4,1.1
in a selacted component 4.1.3
in a sllce 4,12
that is a function call 4.1
that is & name 4.1

Primary 4.4
In a factor 4.4
In a static expression 4.9

PRIORITY (praciatined integer subtype) 9.8; 13.7, C
[see alwo: Task priority

PRIORITY (predefined pragma) 9.8; 13.7, 8
[see also: Task priority)

Private part (of a package) 7.2; 7.4.1, 7.4.3, D
|see also: datetred constant declarstion, private type
declaration]

Privete type 33, 74, 74.1; D
jsen alsno: class of type, derived type of a privete type,
limited private typs, typs with dllcﬂmlnlMlY
as a genaric actual type 12,3.2
as a genarlc format type 12.1.2
an a parent type 3.4
corresponding tull typs declaration 3.3.1
formal parameter 8.2

Predefined operator ® Program_arror

ANSUMIL-STD-1815A Ada Reference Manual

of a defarred constant 7.4; 3.2.1
operation 7.4.2

Private type declaration 7.4; 7.4.1, 7.4.2
|see also: private part (of a package), visible part (of a
puckage)
as a ganeric type declaration 12,1
as a portion of a declarative reglon 8.1
including the word ‘limited’ 7.4.4

Procedure 6.1: 6, D
|seu also: parameter and result type profile, paramater,
subprogram|
as a main program 10,1
as a renaming of an entry 9.6
ranamed 8.5

Procedurs body
|see: subprogram body]
including code staterents 13.8

Procedure call 8.4. 8, D
|see also: subprogram call)

Procedure call statement 6.4
lsse also: actual paramatar, statument]
as a simpla atatement 8.1
with a parameter of a derived type 3.4

Procedure specification
|see: subprogram specification)

Processor 9

Profile
|sse: paramstar and result type profils, parameter type
protile]

Program 10; D
|see also: main program)

Program legality 1.6

Program library 10,1, 10.4; 10,5
creation 10.4; 13,7
tmanipulation und status 104

Program optimizetion 11.6: 10.6
Program text 2.2, 10.1; 2.10

Program unit 8, 7. 9, 12;: D
[see also: address attribute, generic unit, Hbrary unit,
package, subprogram, task unit
body separately complled |see: subunit)
including a declaration denoted by an expanded
name 4,1.3
including 8 suppress pragma 11.7
subject to an uddreos clause 13.8
with a separatoly compiled body 10.2

PROGRAM_ERROR (predefined exception) 11.1
{see alno: erroneous execution. suppress pragraa)

raised by an erronsous program or Incorrect order
dependence 1.8; 11.1
raised by a ganeric instantistion before elahoration
of the body 3.9; 12,1, 12.2
ralsed by a selective walt 9,71
ralsed by a subprogram oall before alaboration of
the body 3.9; 7.3
raised by a task activation before elabaration of the
body 3.9
raised by reaching the end of a function body 6.8

1-28

Fropagation of an sxception
(see: axception propagation]

Proper body 3.9
as a body 3.9
in a subunit 10.2
of a library unit separately compiled 10.1

PUT (text_io procedure) 14.3, 14.3.8; 14.3.2, 14.3.10
for character and string types 14,.3.8
for anumaration typea 14.3.9
for intager types 14,3.7
for real typas 14,3.8
raising an exception 14.4

Qualification 4.7
as 8 basic operation 3.3.3; 3.3, 3.8.5, 3.8.0, 3.6.10,
3.6.2, 374, 38.2, 74.2 .
go'lsn1o a name of an enumeration type as qualifier

Quaiified axpression 4.7; D
as a primary 44
in an allocator 4.8
in a case statement 8.4
in a static expression 4.9
qualitication of an array sgyregate 4.3.2
to resolve an overloading ambigulty 6.8

Quaue of entry calls
(sea: entry queus)

Quaue of interrupts
(se0: ontry queue)

Quotation character 2.1
in a string literal 2.8
replacement by percent character 2,10

Radix of a floating polnt type 3.8.7; 13.7.3

Raise statement 11.3; 11
(see also: exception, statement|
as a simpls statemaent 8.1
Including the name of un exception 11.1

Raising of an exception 11, 11.3; D
|sw® niso: oxception)
ceusing a tranafer of control 8.1

Range 3.8; D
(sew also: discrete rungs, null rengel

as a discrete range 3.0
In a record representation cisuse 13.4
in a relation 4,4
of an index subtype 3.6
of an integer typa containing the result of an opera-
tion 4.8
of a predefined intager typs 3.5.4
of u real type containing the result of an operation
457
yisldad by an attribute 4.1.4

RANGE (pradefined attilbute) 3.8.2; 4.1.4, A
for an access value 3.8.2

Range constraint 3.8; D
|see mlso: elaboration of..]

I-27

ignored due to rangs.check suppress.on 11.7
in a fixed point constraint 3.5.9

in a floating point conatraint 3.6.7

in an Integer typs definition 3.6.4

in & subtype Indication 3.5; 3.3.2

on a derived subtype 3.4

violated 11.1

Range_chetk
{see: constr. At_arror, suipress]

READ (input-output procedurs)

in an instance of direct.io 14.2.4; 14,1, 14.2,

14.2.6
in an instance of sequentlai_lo 14.2.2; 14.1, 14.2,
14,23

Reading the valus of an object 6.2, 9.11

Raal literat 2.4
(see also: universal..real type)
in based notation 2.4.2
in decimal notation 2.4.1
is of type universal_real 3.5.6

Real type 3.8.8; 33, 385, D
lese also: fixed point type, Hosting point type, model
number, numeric typs, safs number, scalar typs, univer-
sal.real type)
accuracy of an oparation 4.8.7
repressntation attribute 13.7.3
result of a conversion from a numerlc type 4.5.7;

ro'uult of an oparation out of range of the type 4.8.7

Raal type definition 3,8.8; 3.3.1, 3.8,7, 3.5.9
(vae also: slaboration of..)

RECEIVE_CONTROL {low_level_lo procedurs) 14.8

Reciprocal oparation in sxponentiation by a negative intsger
488

fRecompliation 10.3

Record aggregate 43.1; 4.3
(sew also: aggregatel
as a baslc operation 3.3.3; 3.74
in a coda statemant 13.8

Record compenent
(sew: component, record type, selected component]

Record representation olause 13.4
(sew also: first_bit attribute, last bit attribute, position
sttribute)
88 a represantation clause 13.1

Mecord type 3.7: 33, D
(swe slso: componant, composite type. disoriminant,
matohing components, subcomponant, type with diseriml-
nants, variant]
formal parameter 8.2
including a limited subcomponent 7.4.4
oparation 3.7.4

Record type declaration
[sse: racord tyue definition, type declaration)
as a declarative reglon 8.1
determining the visibility of another deciaration 8.3

Record type definition 3.7; 3.3.1
(sem also: component declaration)

Propagation ® Record type definition

“
.
",
f
ot
o
J]
&
B 0.
SN
‘e
X
w
b
=
R
-
Rl
PR
sy
oy WA
CR
AR
e
et
Tt
o
e
R
Cate
[N
DN
Vo
LI
.
o -
-
o eenpan
.
[,
0.
Vi e
.
o
DN
v
3
e
- .-.,
)
l

@

oy

IR

S AL g

g -

o e et

2fata’s

Recursive
call of a subprogram 8.1, 12.1; 6,3.2
generic inatantlation 12,1, 12.3
types 3.8.1; 3.3.1

R. entrent subprogram 6.1
Reference (pocameter passing) 8.2
Rolation {in an axpression) 4.4

Relational expression
|ces: relation, rataiional operator)

Relationsl operation 4,5.2
of a boolean type 3.6.3
of a discrete typs 3.5.6
of a fined point type 3.8.10
of a floating point type 3.5.8
of a scalar type 3.8
result for real operands «.8.7

Relational operator 4.8; 4.8.2, C
{ses also: equality opurator, ineguality oparator, ordering
telation, overloading of an operator, predefined operator)
for an access type 3.8.2
for an array typs 3.6,2
for a private type 7.4.2
for a record type 3.7.4
for tims pradefined type 8.3
in a relation 4.4
ovetloaded 8.7

Relative address of a component within a record
|swe! record repressntation clauss)

Rem operator 4.5.8
(nee also: muitiplying operator

Remainder oparation 4.58.8

Renaming deciaration 8.8; 4.1, 12,13, D
(oo also: name)

as a basic deciaration 3.1
as a declarative reglon 8,1
gannot renamae a universal_fixed operation 4.5.8
for an array object 3.6.1
for an entry 8.5
for a record object 3.7.2
name declared is not allowed as a prefix of curtaln
axpanded namnas 4,1.3
to overload s library unit 10,1
to overload a subunit 10.2
to resolve an overloading ambigulty 8.0

Rendervous (of tusks) 9.8; 8, 8.7.1, 9.7.2, 9.7.3, D
during which an exception is ralsed 11.8
priority 8.8
prohibited for an abnormal task 9,10

Replacement of characters In program text 2,10

Representation (of a type and its objects) 13.1
recommendation by a pragma 13.1

Representation attribute 13.7.2, 13.7.3
as a faracing vocurrence 13,1
witti a prefix that has a null value 4.1

Representation clause 13.1; 13,8, D
[see Biso: address clsuse, eleboration of.., enumaeration
reprasentation clause, first named aubtype, langth clauss,
racord represantation clause, type)

as a basic daclarative item 3.9

Recursive ® Safe number

S0 T R R e aTEe ey e v e R ¥ VR T ITE WITW 'Y HY T

as & portion of a declarstive region 8.1
cannot Include a forcing occurrence 13.1
for a derived type 3.4

for a private type 7.4.1

implied for a derived type 3.4

in an overioad resolution context 8.7

in a task specification 9.1

Ressrved word 2.9; 2.2, 2.3

RESET (Input-output procedure)
in an instance of direct_io 14.2,1; 14.2.5
in an Instance of sequential_lo 14.2.1; 14.2.3
In text_io 14.2.1; 14.3.1, 14,3.10

Resciution of overlioading
|see: overloading]

Resuit subtype (of a function) 8.1
of a raturn expression 5.8

Resuit type profile
{swe: parameter and..|

Resuit type and overload resolution 8.8

Result of a tunation
[swe: returned valua)

Return
[see: carriage return)

Return statement 5.8
(see also; function, staternent)

as 8 simple statamant 8.1
causing a loop to be exited 8.8
causing a tranafer of control B.1
completing block statement exeoution 8.4
completing subprogram exeoution 9.4
exprassion that (s an array sggregate 4,3.2
In a function body 6.8

Asturned valus

[swe: tunction call] ‘
of a function call 5.8, 6.5; 8.8
of an Instance of » generic formal function 12,13
of a main program 10,1
of an operation 3.3.3
of a pradefined operator of an Integer type 3.8.4
of a predefined operator of a real type 3.5.6, 4.8.7

Right lubel bracket compound delimiter 2,2

Right parenthesis
character 2.1
delimiter 2.2
Rounding
in & 1enl-to-integer convarsion 4.8
of resuits of real operations 4.8.7: 13.7.3

Run time cheok 11.7; 11,4

Sufe interval 4.6.7

Safe number (of a real type) 3.8.8; 48,7
(vee alao: model numbar, real type representation
attribute, real type]
limit to the result of a real operation 4.8.7
of a flxed point type 3.8.9; 3.5.10
of a floating point type 3.8.7; 2.8.8
resu't of unlvarsal expression toc large 4.10

1-28

v
g

o ea

e

R PRy)

PRy, -
Ay~ 3

Rt
.

SAFE_EMAX (predefined attribute) 3.8.8; A
BAFE_LARGE (pradefined attribute) 3.8.8, 3.5.10; A
BAFE_SMALL (pradefinad attribute} 3.8.8, 3.6.10; A

Batisty (a constraint) 3.3; D
[see also: constraint, subtype)
a discriminant constraint 3.7.2
an index constraint 3.8.1
& range constraint 3.5

Scelar type 3.3, 3.8; D

[see also: class of type, discrete typs, enumeration type,
fixed point type, floating polnt type, Integer type, numeric
type, real type, static exprassion)

as u generic paramater 12.1.2, 12.3.3

formal parameter 8.2

of » range In & membaership test 4.8,2

operation 3.8.6; 4.8.2

Soheduling 9.8; 13.8.1

Scheme
|see: iteration schemel

Soope 4.2; 8.3, D
(see also: basic operation, character literal, declaration,
declarative reglon, generic instanice, identifier, Immediate
scope, Impiicit declaration, operator symbol, overioading,
vislbility)
of a use clause 8.4

Segondary unit 10,1
(wee siso: compilation unit, library unit)
complied after the corresponding library unit or
parent unit 10.3
subject to pragma elaborate 10.8

SECONDS (predefined function) 9,8
Select alternative (of a selective wait) 9,7.1

Solect statement 9.7; 9.7.1, 9.7.2, $.7.3
(vee also: statemant, task, terminate altarnative)
as a gcompound statement 8.1
in an abnormal task 9.10

Selected component 4,1.3; 8.3, D
(swa aiso: direct visibliity, prefix, selector, visibility by
selection, visibility]
as a basic operation 3.3.3;: 3.3, 3.7.4, 3.8.2, 74.2
as &4 name 4.1
as the name of an entry or entry famlly 9.8
for selective visibllity 8.3
In a conforming construct 8.3.1
starting with standard 8.8
using @ block name 5.8
using a loop name B.8
whose prefix denotes » package 8.3
whoue prefix denotes a regord object 8,3
whoso prefix denotes a task object 8.3

Selection of an exception handier 11.4, 11.4.1, 11.4.2; 11,8

Salective vislbility
[see: visibility by selection)

Belestive walt 8.7.1; 9.7
[vew alio: terminate siternative)
accepting a conditional entry call 8.7.2
accepting a timed entry call 9.7.3
ralsing program_arror 11.1

I-29

Selector 4.1.3; D
[see also: prefix, selected componant)

8emicolon charaoter 2.1

Semivolon delimiter 2.2
followed by a pragma 2.8

BEND_CONTROL (low_level_io procedure) 14.8

Separate compliation 10, 10.1; 10.5
of a proper body 3.9
of a propsr budy declared In another compliation
unit 10.2

Separator 2.2

Sequence of statements 8.1

in an accept atatement 8.5

in a basic loop 5.8

in a biock statement 8.6; 9.4

in & case statement aiternative 6.4

in a conditional entry csll 9.7.2

in an exception handler 11,2

in an it statement 8,3

in a package body 7.1; 7.3

in » selagtive walt statement §.7.1

in a subprogram body 0.3; 9.4, 13.8

in a task body 8.1; B.4

in a timed entry call 9.7.3

including a ralse statement 11.3
ments 13.8

raising ‘an sxception 11.4.1

Saquential access file 14.2; 14.1, 14,24

Ssquential execution
|ses: sequence of statements, statement)

Soquential input-output 14,.2.2; 14.2.1

SEQUENTIALIO (predofined input-output generic package)
142, 1422;: 14, 141, 1429, C

exceptions 14.4; 14.8

specification 14,2.3

SET.COL (text_io procedure} 14.3.4; 143,10
Al

SET_INDEX (input-output procedure)
in an Instance of direct.lo 14.2.4; 14.2.8

SET_INPUT (text_io procedure) 14.3.2; 14.3.10
ralging an exception 14.4

SET_LINE (text_io procedure) 14.3.4; 14.3.10

SET_LINE_.LENGTN (text_io procedurs) 14.3.3; 143,10
ralsing an exception 14.4

SET_OUTPUT (text_lo procedure) 14.3.2; 14.3.10
raising an exoeption 14.4

SET_PAGE._LENGTH (text_lo procedure) 14.3.3; 14.3.10
raising an excaption 14.4

SHARED (predefined pragma) 9.11; B

Shared variable (of two tasks) 9,11
|sew aluo: task)

Sharp character 2.1
(see also: based literal)
replacement by colon character 2,10

Safe_emax ® Sharp character

Bhort circuit control form 4.8, 4.5.1; 44
as a basic nperation 3.3.3; 3.8.5
in an expression 4.4

BHORT_FLOAT (predefined typs) 3.8.7; C
SHORT._INTEGER (pradefined type) 3.8.4; C
8Bign of u fixed point number 3.8.9

8ign of a floating point number 3.8.7
Signiticant decimal digits 3.5.7

Simple expression 4.4
as a choice 3,7.3
as a cholce in an aggregats 4.3
as & range bound 3.8
for an entry Index In an accept statement 9.8
In an address clause 13,8
in a delay statement 9.6
In a tixed sccuracy definitior, 3.8.8
in a floating accurscy definition 3.5.7
in a racord representation claune 13.4
in a relation 4.4

Simple name 4.1; 2.3, D
|[ses also: block name, identifler, labsl, loop name, loop
simple name, nama, averioading, vislbility)
as a rholce 3.7.3
os a formal parameter 8.4
o8 a label 5.1
us a name 4.1
before arrow compound delimiter 8.3
In an accapt statemaent 9.8
in an address clause 13.8
In sn attribute designator 4.1.4
in @ conforming construct 8.3.1
in a discriminant assoclation 3.7.2
" in an enumaration representation clause 13.3
. in a package body 7.1
N in a puckage specification 7.1
g; in & record representation clause 13.4
1

In « selactor 41,3

"
" in a suppress pragma 11,7
0 in & task body 8.1
in a varlant part 3.7.3

ot in & with cluuse 10.1.1
LR versus identifler 3.1
o Simple statement 8.1
R |see also: statement|
i Single task 9.1

K $I2E (input-output funaction)

K In an Instance of direct_lo 14.2.4; 14.2,8
- 8IZE (precefined attribute) 13.7.2; A

{seo slsc: storage bits
apecified by a length clause 13.2

P SKIP_LINE (text.lo procedure) 14.3.4; 143,10
raising an exception 14.4

K SKIP_PAGE (text_io procsdure} 14.3.4; 14.3.10
L ralsing an sxcaption 14.4

Slice 4.1.2

O [see aiso: array type)

ss a basic operation 3.3.3; 3.8.2, 3.8.2
as a name 4.1

as destination of an assignment 8.2,1
of a constant 3.2.1

Short clrcuit @ Static constraint

ANNOI/IVIIL=2T =10 T OA AUG RATOISNCE Ivianueal

of a derlved typs 3.4

of an objsct as an object 3.2

of a value of a gensric formal array type 12.1.2
of a variable 3.2.1

starting with a prefix 4.1, 4.1.2

SMALL (predefined attribute) 3.8.8, 3.8.10; A
[se® also! fixed point type)
specifiod by a length clausa 13.2

Small of a fixed point model number 3.8.9

Some orider not defined by the language
|see: incorrect vrder dependsnce)

Space cheracter 2.1
|see also: basic graphic character)
as a separator 2,2
in a commant 2,7
not allowed Iin an |dentifier 2.3
not aliowed in a numarlo literal 2.4.1

Space charscter literal 2.8; 2,2

Special character 2.1
|sew also: basic graphic character, other spaclal character]
in a delimiter 2.2

Specification
lses: deciaration, discriminant specification, enumeration
litera! spacification, generlc specification, lvop parameter
specification, package speuification, parameter specifica-
tion, subprogram specification, task apecifivation)

STANDARD (predefined package) 8.8; C
(seu also! libeary unit]
as a doclarative reglon 8.1
encloaing the library units of a program 10.1.1;
101, 10.2
including implicit declarations of fixed point croes-
multiplioation and cross-division 4.5.8

STANDARDLINPUT (text.io function) 14.3.2; 14.3.10
STANDARD.OUTPUT (text_io function} 14.3.2; 14.3.10

tar

(see: doubla star|
character 2,1
delimiter 2.2

Statement 8.1, 5, D

|sse aluo: asbort statement, accept statement, address
attribute, assignment statement, block statemaent, case
atstemunt, code statement, compound statement, delay
statemant, entry oall stotement, exit statement, goto state-
ment, if statemant, label, loop statement, null statement,
procadure call statement, raise staternant, return state-
mant, selsct statemant, sequence of statemants, target
statement]|

allowed in an exception handler 11,2

as an overload resolution context 8.7

optimized 10,8

ralsing an exception 11.4.1; 11.4

that cannot be reached 10.0

Statement alternative
{nee: rase statement altemativel

Static vonstraint 4.9
on a subcomponent subject to 8 component clause
134
on a typo 3.6.4, 3.8.7, 3.8.8, 13.2

1-30

Indax

Static discrets range 4.9
as a choice of an aggrerate 4.3,2
as a cholce of a case ntatament 5.4
as a choice of a varlant par; 3,7.3

Static expression 4.9; 8.7
as a wbound In an Integer type dafinition 3.5.4
as a cholce In a case statemant 5.4
a: a cholce of a variant part 3.7.3
for a choice in a record sggregate 4.3.2
for a discriminant in a record aggregate 4.3.1
In an attribute designator 4.1.4
In an enumeration reprasentation clauss 3.3
In a fixed accuracy definition 3.5.9
In a floating accuracy definition 3 8.7
In a generic unit 12.1
In a length clause 13,2
in @ number declaration 3.2, 3.2,2
in a recnrd raoresentation clause 13.4
in priorit) pragma 9.8
whose type Is a universai type 4,10

Static others choice 4.3.2

Static subtype 4.9
of a discriminant 3.7.3
of thie expresalon in a case statement 8.4

STATUS_ERROR (input-output exceotion} 14.4; 14.2.1,
1422, 1423, 1424, 1425, 1432, 1433, 1434,
14.3.6, 14.3.10, 145

Storage address of a component 13.4
[3ee aloo: address clause)

Storage bits
alloTatad to an object or type 13.2; 13.7.2 [see also!
size
of a record component relative to a storage unit
13.4
sizo of a storage unit 13,7

Storage deallocation
[sse: unchecked_deallocation]

Sturage minimization
{see: pack pragmal

Storage reclamation 4.8
Storage representation of a record 13.4

Storuge unit 13.7
offset to the start of a record componant 13.4
size of a storago unit in bits 13.7

Btorsge units allocated
[see: storaga_size|
to a collection 13.2; 4.8, 11,1, 13.7.2
to a task activation 13.2: 3.9, 11.1, 13.7.2

Storaye_check
{ege: program_error exception, suppress)

STORAGE_ERROR (predefined exception) 11.1
|see also: suppress pragma]

raised by an allocator excesding the allocated
storage 4.8, 11.1
ralsed by an elabaoration of a declarativa item 11.1
ralsed by a task activation exceeding the allocated
storage 11.1
raised by the execution of a subprogram cail 11.1

[-31

MO

STORAGE_S!"F (pradefined attribute) 13.7.2; A
[see also: g:orage units allovated)
for an sccess type 3.8.2
for a tusk object or teak type 9.8
specified by a length olause 13.2

STORAGE_UNIT (predafined namcud number)
[see: system.storage_unit]

S8TORAGE_UNIT (predsfinad pragms) 13.7; B
[see also: system.storage_unit]

S8TRING (predefined type) 3.8.3; C
{see also: predefined type)
as the parameter of value attribute 3.6.6
as the result of image attribute 3.6.6

8tring bracket 2.8; 2,10

8ing litaral 2.6, 4.2; 4.2, 3.8.3
[see also: overioading of..., percent mark character, quota-
tion character|
as a basic operation 3.3.3, 4.2; 3.6.2
as an operator symbol 6.1
as a primary 4.4
must not ba the argument of a conversion 4.6
replaced by a catenation of baslc charactars 2.10

Stub
[eee: body stub)

Subaggregate 4.3.2

Subcomponent 3.3; D
[see alav: component, composite type, default expression,
discriminant, object)
depending on a disoriminant 3.7.1; 8.2, 6.2, 8.8
of a component for which a component clause is
given 13.4
renamed 8.5
that is a task abject 9.2; 9.3
whose typs is a limited type 7.4.4
whose type (s a private type 7.4.1

Subprogram 6; D

[see ulso: actual parameter, completed subprogram,
derived subprogram, entry, forinal parameter, function,
library unit, overloading of.., parameter and result type
profile, parameter, predsfined subprogram, procedure,
program unit]

as a generic instance 12.3; 12

as a main program 10.1

as an operation 3.3.3; 7.4.2

including a raise statemant 11.3

of a derived type 3.4

overioaded 6.6

renamad 8.6

subject to an address clause 13.8

subjoct to an inline pragma 6.3.2

subject to an Interface pragma 13.8

subject to a representation clause 13,1

subject to a suppress pragma 11.7

with a separately complled body 10.2

SBubprogram body 6.3; 6, D
|se® also: body atub)

as ¢ goneric body 12.2
8s a library unit 10.1
as a proper body 3.9
as a secondary unit 10.1
as & secondary unit compiled after the cor-
responding library unit 10.3

Static discrete range ® Subprogram body

p lagelisn s biw A

ot ondvndisr et ki b by b avall

[

e,

K -.F"!‘ ':;_-‘_'_ v

.. -
ooy ¢ v

[T P L

-.

having dependent tasks 9.4

in & package body 7.1

including an exoception handler 11.2; 11

including an exit statement 6.7

including a goto statement 5.9

Including an implicit declaration 8.1

including a raturn statement 5.8

including code statements must be a procedure
body 13.8

inlined in place of each call 8.3.2

inust be In the same declarstive region as the
doclaration 3.9, 7.1

not aliowed for a subprogram subject to an Interface
pragma 13.9

not yat nlaborated at & cail 3.9

raising an exception 11.4,1, 11.4.2

recomplled 1C.3

Subprogram call 84; 8, 6.3, 12,3

(see aiso: actual paramatar, entry call statemaent, entry csl-

I, function call, procedurs oall statement, procedurs calll
before elaboration of the body 38 .11.1
statement replaced by an Inlining of the body 8.3.2
statoment viith a default actual parameter 6.4.2
to a derived subprogram 3.4
to & generic Instance 12

Subprogram declaration 8.1; 6, D
and body as a declarative reglon 8.1
as a basic daclaration 3.1
us & later declarative ltem 3.8
as a library unit 10.1
as an overloaded declaration 8.3
implied by the body 3.3, 101
in a package spacification 7.1
made directly vislble by a use clanse 8.4
of an operator 6.7
recomplied 10.3

Subprogram spacification 6.5
and foraing ocourrences i3.1
conforming to another 8.3.1
for a function 6.6
in a body stub 10.2
in a generlc declaration 12.1; 12.1.3
in a renaming declaration 8.8
in a subprogram body 8.3
including the name of a privata type 7.4.1
of a derived wubprrgram 3.4

Subtraction operation 4.8.3
for a resl type 4.6.7

Subtype 3.3, 3.3.2; D
Isee also: attribute of... bass attribute, conatrrined sub-
type, constraint, first named subtype, operation of..,, result
subtype, satisty, size attribute, static subtype, type,
unconstrained subtype]
declared by a numeric type declaration 3.8.4, 3.8.7,
3569
in @ membership test 4.6.2
nam'e [see: namae of a subtype, type_mark of & sub-
type
not considered In overload resolution 8.7
of an access type 3.8
of an actual parameter 6.4.1
of an array type [see: constrained array type, index
constralntr
uf a component of an array 3.6
of a componant of & record 3.7
of a constant in a static expression 4.9
o1 a discriminant of a ganeric formal type 12.,3.2
of a formal Harameter 8.4.1

Subprogram call @ Synchronization of tasks

ANSIIMIL-STD-1815A Ada Raferonce Manual

of a formal parameter or result of @ renamed sub-
program or entry 8.5

of a guneric formal type 12.1.2

of an Index of a genaric formal array type 12.3.4
of an object (soe: alaboration of..]

of a private type 7.4, 7.4.1

of a real type 3.5.7, 3.5,9: 3.6.6, 4.5.7

of a record type |sea: constralned rucord type, dis-
criminant constraint]

of a scalar type 3.6

of a task type 9.2

of 8 variuble 5.2

subjrct to a representation clause 13,1

Sub.ype conversion 4.6
lsex alro: conversion operation, explicit convarsion,
implicit convarsiun, type conversion]
1N an array assignment 5.2.1; 6.2
to a real type 4,6.7

Bubtype declaration 3.3.2; 3.1
and forcing ocourrences 131
a8 « basic declaration 3,1
including the name of 1 private type V.41

Subtype definition
{see: comuonant subtype definition, dependence on a dis-
criminant, Index svbtypa definition]

Subtype indication 3.3.2
[see also: slaboratiuon of..}

as 8 componont subtype Indicatinn 3.7
as a discrete range 3.8
for a subtype of a generic formal type 12.1.2
in an access type definitlon 3.8
in an allocator 4.8
in an array type deflhition 3.6
in & component declaration 3.7
in a constrained array dsfinition 3.6
in a derived type definition 3.4
in a gonerlc formal part 12.4
in an object declaration 3.2, 3.2.1
in an unconatrained arrsy definition 3.8
including o flxad point constraint 3.5.9
including a floating point constraint 3.8.7
with & range constraint 3.5

Subunit 10.2; D
|see alsa* library unit}
us a cumpilation unit 10.4
a8 a llbrary unit 10.4
as a ssacondary unit 10.1
compiled after the corresponding parent unit 10.3
not allowed for a subpt ,gram aubject to an interface
pragma 13.9
(1”0 a compliation unit subject to a context clause
11
raising an exception 11.4.1, 11.4.2
racompiled (does not atfect other compllation units)
10.3

BUCC (predefined attribute) 3.6.8; 13.3. A

Successor
|see: succ attribute|

SUPPRESS (pradefined pragma) 11.7; 111, B

Symbol
|aee: graphical symbol, operator symbol)

Synchronization of tasks
|see: task synchronizetion)

|-32

"
[oTorp

. o7 o PR e AT S -

Indax

Syntactic category 1.8

Syntax notation 1.5

fSyntax rule 1.8; E

BYSTEM (predefined library package) 13.7; C, F

System depandent F
attribute 13.4
constant 13.7
named number 13.7, 13.7.1
record componant 13.4
type 13.7

SYSTEM.ADDRESS (predefined type) 13.7; 13.5
[see also: address attribute, uddrass clause)

SYSTEM.FINE_DELTA (predefined named number) 13.7.1

BYSTEM.MAX_DIQITS (predefined named number} 13.7.1
I;nélt_’on the significant digita of a floating point type

gYBSIEM.MAx..INT {pradefined named number) 13.2.1;

axceaded by the value of a universal expression

SZUTEM.MAX_MANTISSA {predetined named number)
1374

SYBTEM.MEMORY.SIZE (predefined named number) 13.7
BYSTEM.MIN_INT (predefined named number) 13.7.1

B .
greater than the value of a universal expression

+

SYSTEM.KAME (pradefined type) 13.7

SYSTEM.8TORAGE_UNIT (predefined named number)
13.7; 134

S8YSTEM.BYSTEM_NAME (predefined constant) 13.7
|see als0: aystemonama)

SYSTEM.TICK (predefined named number) 13.7.1; 9.8

SYSTEM.NAME (praclefined pragma) 13.7; B
lsee also: system.aystem_name predefined constant)

Tehulstion
[see: horizontel tabulation, vertical tabulation)

Target statement {of a goto statement) 8.8
Target type of » conversion 4.8

Task 8; D

[sse also: abnor.nal tosk, abort statement, accept state-
ment, communication betwesn..., completed task, delay
statement, dspsndent task, entry (of a task), entry call
stutemen:, rendezvous, seleot statement, selective walk,
shared variable, single tusk, terminated task]

calling the main program 10,1

raising an exception 11.8

schaduling 8.8

suspension awaiting a rendezvous 9.8

suspension by a delay statement 9.8

suspension by a selective walt 8.7.1

suspension of an abnormal task 9.10

1-33

Task activstion 9.3
[see also: length clause, storage units allocated,
storage.size attribute]
befora elaboration of the body 3.9
causing synchronization 9,10, 8.11
not started for an abnormal task 9.10) @,
of 8 task with no task body 11.1 oot

Task body 0.; 9, D ORI
[ses also: body stub, slaboration of...) ST

as & proper body 3.9 STy
in a package body 7.1 SV
Including an exception handler 11,2; 11 et
including Bn exit statement 5.7
including a goto statement 5.9
including an implicit declaration 5.1
must be in the same declarative ragion as the
declacation 3.9, 7.1
not yet elaborated at an activation 3.9
ralsing un exception 11.4.1, 11.4.2
specifying the exscution of » task 9.2, 9.3

Task communicstion
(swe: rendezvous)

Task complstion
[sea: completed task)

Task daclaration 9.1
and body as a declarative region 8.1
#s a basic declarstion 3.1
as 0 later declarative ltem 3.9
elaboration raising an excaption 11.4.2
in a package specification 7.1

Task dependence
[see: dependent tesk|

Task dasighated
by a formal parameter 8.2
by a value of a task tyne 9.1; 8.2, 9.4, 9.8

Task ¢:pcution 9.3

Task object 9.2; 8.1, 9.5
(vee also: attribute of.., task activation)
designated by an access value 9.2
determining task dependence 9.4
ranamad B.5

Task priority 9.8
(see niso: priority pragma, priority subtype]
of a task with an Interrupt entry 13.8.1

Task specitication 9.1; 8, D
(see also: elaboration of..)
including an entry declaration 9.5
including a priority pragma 9.8
Including a representation clause 13.1

Task 'oynchronlmlon 9.5; 9.11

Tesk termination
[sae: terminated tawk)

Task type 9.1, 8.2, D
[see uiso: attribute of..., class of type, derived type of a task
type, limited type)
completing an Incomplets type definition 3.8.1
formal parameter 8.2
object Initialization 3.2,1
value designating a task object 3.2,1, 9.1, 9.2

Syntactic category ® Task type

Task unit 2.1; 9
[see also: program unit]

declaration determining the visibility of another
declarstion 8.3
including a ralse statement 11.3
subject to an address clause 13.5
subject to a representation clause 13.1
subjact to a suppress pragme 11.7
with a saparately compiled body 10.2

TASKING_ERROR (predefined exception) 11.1
{see also: suppress pragmal
;!ll;d hy an entry call to an abnormal task 9,10,
1.
raised by an entry call to a completad task 9.5,
272,973 118
ralsed by an exoeption in the teak budy 11.4.2
ralsed by faliure of an activation 9.3; 11.4.2

Template
(se0: generic unit)

Term 4.4
in a simple axpression 4.4

Terminate sltemnetive (of a selective walt) 9.7.1
(se0 uiso: sainct statement]
causing a transfer of control 8.1
In @ velact statement ceusing a loop to be exited 5.8
selsction 9.4
selaction in the presence of an accept aiternative for
an interrupt entry 13.8.1

TRERMINATED (predefinad attribute) for a task object 9.9: A

Terminated task 9.4; 8.3, 9.9
{sos also: compieted task}
not becoming abnormal 9,10
objact or subor.nponent of an object designated by
an access value 4.8
termination of a task during Its activation 8.3

Terminator
(see: file terminator, line terminator, page tarminator)

Text input-output 14.3; 14,21

Text of a program 2.2, 10.1

TEXT_IO (predefined input-output package) 14.3; 14, 14.1,
1439, 143,10, C

excaptions 14.4; 148
specification 14.3,10

TICK
[swe: systom.tick)

TIME (pradefined type) 9.8

[sew ulso: clock, date, day, make_time, month, system.tiok,

yourl
TIME_ERROR (predefined exception) 9.0
TIME_OF (predefined funouon) 9.8
T e - 07397

ad v wmed entrles 8.5
~l-ut to an address clause 13.8.1

T e ‘ator
. +ultiplying uperator)

ANSIMIL-STD-18154 Ada Refarence Manual

Transfer of contral 8.1
{swe also; exception, exit statement, goto stutement, return
statement, tarminate alternative]

TRUE boolesn enumeration literal 3.8.3; C

Typs 33: D

lsse alao: access typs, appropriate for a type, array type,
attribute of.., base attribute, bass typs, boolean type,
character type, class of type, composite type, constralned
type, derived type, discrete type, dlscriminant of..,
enumaration type, fixed point type, floating point typs,
forcing occurrenice, gensric actual type, generlc formal
type, (ntaeger :ype, limited private type, limiterd type,
numeric type, operation of..., parent type, predefined type,
private tyne, real type, recard type, repressntation clause,
scalar type, size attribute, storage allocated, subtyps,
unconstrained subtype, unconstrained type, universsi
type|

name 3.3, 1

of an actusl parameter 8.4.1

of un aggyragate 4,3.1, 4.3.2

of an array component of a generic formal array

type 12.3.4

of ;n“arrav index of a generic formal array type

12.3.

of a case statement expression 5.4

of a condition 6.3

of o declared object 3.2, 3.2.1

of & discriminant of a generlc formal private type
1232

of an exprassion 4.4

of @ file 14,1

of a formal parameter of a generic formal sub-
program 12,13

of a gennric actual objest 12.3.1

of a goneric formal object 12,1.1; 12.3.1

of an lndex 4.1.1

of 8 loop parameter 5.8

of & named number 3.2, 3.2.2

of an otject dusignated by a generic formal access
type 12.3.8

of & primary in an expression 4.4

of & shared variable 9,11

of o slice 4.1.2

of & string literal 4,2

of a task object 8.2

of a univarsal expression 4,10

of a value 3.3; 3.2

of discriminants of a generig formal object and the
matching actual objeat 12.3.2

of of the litersl nult 4,2

of the result of a generic formal function 12.1.3
renamed 8.6

subject to a repressntation clause 13.1; 13.0
subject to a suppress pragma 11.7

ylelded by an attribute 4.1.4

Type conversion 4.6
|see slso: convarsion operation, conversion, explicit aon-
version, subtype convarsion, unchecked-conversion]
as an sctual parameter 8.4, 8.4.1
as a primary 4.4
In a static axpression 4.9
to a rea type 4.5.7

Type declaration 3.3.1
(soe also: elaboration of.., Incomplete type declaration,
private type declaration)
as a basic declaration 3.1
as @ full daclaration 7.4.1
Implicitly declaring operations 3.3.3
In 8 package specification 7.1

Including the name of a private type 7.4.1

wsk unit @ Type daclaration 1-34 R

Index

of a fixed point typs 3.5.9
of a floating point type 3.5.7
of an integer type 3.5.4

of a subtype 13,1

Type definition 3.3.1; D
[see also: sccess typs dafinition, array type definition,
derived typs definition, elaboration of.., enumeration type
definition, generic typs definition, integer type definition,
resl type definition, record typs definition)

Type mark (denoting a type or subtype) 3.3.2
ns 8 generic actual parameter 12.3
in an allocator 4.8
in a code statement 13.8
in a conversion 4.8
In a deferred constant declaration 7.4
In a discriminant spscification 3.7.1
in a generic formal pert 12,1, 12.3
in & generic paramaeter declaration 12.3.1
in an index subtype definition 3.8
in a parameter spacification 6,1; 8.2
in & quallfied expression 4.7
in & relatlon 4.4
in 8 renaming declaration 8.8
in a subprogram specification 6.1
of a formal parameter of & generic formal sub-
program 12,1.3
of a generle formal array type 12.1.2
of a stetic scalar subtype 4.9
of the resuit of a generic formal funotion 12,13

Type with discriminants 3.3; 3.3.1, 3.3.2, 3.7, 3.7.1, 7.4,
'll.oo also: private type, record type)
as an actual to a formal private typs 12.3.2
as the somponsnt type of an array that s the
operand of & conversion 4.6

Unary adding operator 4.4, 4.8, C; 4.8.4
[see also: arithmetio operator, overloading of an opeiator,
predefined oparator]
ss an operstion of a discrate type 3.5.5
In 8 simple expression 4.4
overlnaded 6.7

Unary operator 4.8: 3.6.5, 3.5.8, 3.8.10, 3.8.2, 4,64, 4.8.5,
G

[see also: highest precedence oparator, unary adding
operator]

UNCHECKED_.CONVERBION (pradefinud generic library
tunction) 13.10.2; 13.10, C

UNCHECKED_DEALLOCATION (piedefined generio llbrary
procedurs) 13,10.1; 4.8, 13.10, C

Ungonditional termination of a task
|see: abnormal task, abort statement)

Unconstrained array definition 3.8

Unconstrained array type 3.6; 3.2,1
as an wotudl to ¥ formal private type 12.3.2
formal parameter 6.2
subject (o 2 length clause 13,2

Unconstrained subtype 3.3, 3.3.2

[swe also: constrained .ubtype, constraint, subtype, typs)
indication in a generic unit 12.3.2

I-36

Unconstrau.ed type 3.3; 3.2.1, 3.8, 3.6.1, 3.7, 3.7.2
formal parameter 8.2
with discriminants 8.4,1, 12.3.2

Unconatrained varlable 3.3, 3.8, 3.7; 12.3.1
#a & subcomponent [see: subcomponent)

Undefined value
of a scalar parameter 8.2
of a scalar variable 3.2.1

Underline character 2,1
in a based literal 2.4.2
in a decimal literal 2.4.1
in an identitier 2.3

Unhandied exception 11.4,1

Unit
(see: compiiation unit, generic unit, library unit, program
unit, storage unlit, task unit)

Universal expression 4.10
asslgned 8.2
in an attribute designator 4,1.4
of a real type Implicitly converted 4.5.7
that is atatic 4.10

Universal type 4.10
(ses aiso! cunversion, impliclt conversion)
expression (ses: axpression, numerlc literal)
of & namad number 3.2.2; 3.2
tesult of an aviribute [sea: attribute)

UNIVERSAL_FIXED (pradefined typs) 3.8.9
result of fixed point multiplying operators 4.8.8

UNIVERSAL.INTEGER (predefined typs) 3.8.4, 4.10; C
[see nlso: Integor litersl] .

argument of a conversion 3,.3.3, 4.8
attribute 3.8.8, 13.7.1, 13.7.2, 13,7.3;: 9.9
bounds of a discrete rangs 3.8.1
bounds of a loop parameter 8.8
codes repragenting enurmeration type vaiues 13.3
convarted to an Integer type 3.5.8
of integer litarals 2.4, 4.2
resiit of an operation 4.10; 4.8

UNIVERSAL_REAL (piedefined type) 3.8.0, 4.10
{see alno: real literai)

argument of a conversion 3.3.3, 4.8
stirlbute 13.7.1
converted to a fixed point typs 3.8,10
converted to a floating point type 3.5.8
of resl literals 2.4, 4,2
result of en operation 4,10; 4.6

Updating the velus of an abjoot 8.2

Upper bound
[see: bound, last attribute)

Upper care letter 2.1
[sew alsc: basic graphin character]
A to Fin a based liters) 2.4.2
E in a decimal (iteral 2.4.1
in an identifler 2.3

Urgency of a task
|eon: task priority)

Uwe visuse {to achieve direct vislbliity) 8.4; 8.3, D
[sew also: context clause)

Type definition & Use clause

.J"." RS

B 5 2h U A

L R S
"—A

» * 4

=~

s lzlalc?

a8 3 basic declarative item 3.9

as a later declarative item 3.9

in @ code procedure body 13.8

In a context clause of a compliation unit 10.1.1
in 8 context clause of a subunit 10.2

Inserted by the environment 10.4

USE_ERROR (input-output exception) 14.4; 14.2.1, 14.2.3,
14.2.5, 14.3.3, 143,10, 14.8

VAL (predefinad attribute) 3.8.8; A

Valve
{sen: assignment, evsluation, expression, Initial velue,
returned vaiue, subtype, task designated.., type)
in & constant 3.2,1; 3.2
in a task object 9.2
in a variable 3.2.1, 8.2; 3.2
of an access type [ses: object designated, task
cbject designated]
of an arruy type 3.6; 3.6.1 (ses also: array, slice)
of a based literal 2.4.2
of a boclean type 3.5.3
of @ charsoter literal 2.8
of a character type 3.8.2; 2.8, 2.8
of a decimal literal 2.4.1
of a fixed point type 3.8.9, 4.8,7
of a floating paint type 3.8.7, 4.8.7
of a record type 3.7
of a record type with disariminants 3.7.1
of a string literal 2.8; 2.10
of a task type (see: task designated]
returned by a funution csll [see: returned value]

VALUE (pradefined attribute) 3.8.8; A

Varleble 3.2.1; D

(sew aisv: object, shired variable)
as &1 actual peiumeter 8.2
declared In a packsge body 7.3
formal purameter 8.2
In an assignment statemaent 8.2
of en array type as destination ot an assignment
521
of a private type 7.4.1
tenamed 8.5
that Is a slice 4.1.2

Variable declaration 3.2.1
Variant 3.7.3; 4,1.3
[see slso: component clause, record type]
in » variant part 3,7.3
Variant part 3.7.3: D
(ses aleo: dependence on a disariminant]
in » component list 3.7
in a record aggregate 4.3.1

Vertics! har character 2.1
replucemaent by exclamation character 2,10

Vertigsl bar delimiter 2.2
Vertical tabulation format offector 2.9

Violation of a constraint
[new: constraint_srror sxception)

Use_orror © Year

ANSI/MIL-STD-1815A Ada Reference Manual

Visibility 8.3; 8.2, D

[see aiso: direct visibllity, hiding, identifier, name, opera-

tion, overloading)
and renaming 8.5
go;orgﬂnlno muitiple meanings of an identlfier 8.4,

7. 86

determining order of compilation 10.3
due to a use clause 8.4
of a basic operation 8.3
of 8 character literal 8.3
of & default for & generlc format subprogram 12,.3.6
of a genaric formal parameter 12.3
of a library uait due to a with clause 8.8, 10.1.1
of a name of an exception 11.2
of an operation deciared in a package 7.4.2
of an operator symbol 8.3
of a renaming decleration 8.8
of a subprogram declared in a package 6.3
of deciarations in a package body 7.3
of declarations In a package specification 7.2
of decliurations In the package system 13.7
within a subunit 10.2

Visibllity by selection 8.3
(see also: basic opsration, sharacter litaral, operation,
operator symbol, selected component}

Visible part (of & package) 7.2; 3.2.1, 7.4, 74,1, 743, D
(see also: deferred constant declaration, private type
declaration)

expanded name denoting & declaration in a visible
part B.2

scope of 8 declaration in a visible part 4.1.3

use clouse naming the package 8.4

visibllity of & declaration in a visible part 8.3

Wait
[seu: selactive walt, task suspension)

While loop

[ses: loop stetement]
WIDTH (pradefined attribute) 3.8.8; A

With clause 10.1.1: D
[see also: context clausa)

determining order of compllation 10.3
determining the implicit order of llbrary units 8.6
in a context clause of & compllation unit 10.1.1
in & context clause of s subunit 10.2
inserted by the anvironinent 10.4
leading to direst visibllity 8.3

WRITE (input-output procedure)
in an instance of directlo 14.2.4; 14,1, 14.2,14.2,8
|1n‘an alnmnno of ssquentlai_lo 14.2.2; 14.1, 14.2,
2,

Writing to an output Nis 14.1, 14,22, 14.2.4

Xor oparator
|see: logical operator|

YEAR (predetinad funotion) 9.8

1-36

iy
SR S BPL

Pl aiC
-

RIS G)

s

[This postscript ie nct part of the stendard definition of the Ads programming tangusge.|

Postscript : Bubmission of Comments

For submission of comments on this standard Ada refersnce manual, we would appreciate them being sent
by Arpanet to the gddress

Ada-Comment at ECLB

If you do not have Arpanet access, please send the comments by mall

Ada Joint Program Office

Office of the Under Sscretary of Defense Research and Enginsering RN
Washington, DC 20301 NN
United States of America. .o

For mall commaents, It wili assist us if you ars able to send them on 8-Inch single-sided single-dansity IBM

format diskette - but even If you can manage this, please also send us s papar copy, in case of problems
with reading the diskette.

All comments are sorted and processed mechanically in order to simplify their snalysis and tc facilitate glv-

ing them propar consideration. To aid this process you are kindly requested to precede each comment with
a three line headar

Isectlon ..
iverslon 1983
Itople ...

The section line includes the section number, the paragraph number enclosed in parentheses, your nama or
affillation (or both), and the date in ISO standard form (yesr-month-day). The paragraph number is the one
given in the margin of the paper form of this document (it is not contained in the ECLB files); paragraph

numbaers are optional, but very helpful. As an example, here is the section line of comment #1184 on &
previous version:

isection 03.02.01(12) D . Taffs 82-04-268

The version line, for commaents on the current standard, should only contain * Iversion 1983", Its purpose is
to distinguish comments that refer to different versions,

The topic line should contaln a one line summary of the commant, This line is essential, and you are kinaly
asked to avold topics such as "Typo” or "Editorlal commaent” which wlli not convey any information when
printad in a table of contents. As an example of an informative topic line consider:

ltoplc Subcomponents of constants are constants

Note also that nothing prevents the topic line from including all the information of a comment, as In the fol-
lowing tople line:

ftopic Insert: “... are {Implicitly} defined by a subtype declaration”
As a final example here is & complete comment received on a prior version of this manual:

{section 03.02.01(12) D . Taffs 82-04-28
Iversion 10

Itopic Subcomponents of constants are constants
Change “"component” to “subcomponaent” in the |ast sentence.

Otherwise the statement is inconsistent with the defined use of subcomponent in 3.3,

which says that subcomponents are exciuded when the term component is used instead
of subcomponent.

