
fMANUAL FOR-THE

R* .~~RAM~INGLANGUAGE

ANSI/M iL.STD-1815A

United. States De~partmeint of Defense

".4M

Systems and Research~rCenter
2600 R idg~way Parkway,.
Midneapoltis "MN:55413"

and,

7817 Avenue de Versailles EL E CT~
710La Celle Saint Cloud, France

JANUARY 1983
83 06 23 049

thl- !I.- 6-vern wniAda Jo in ip2mO f-

REFERENCE MANUAL FOR THE Ai

Ada®
PROGRAMMING LANGUAGE

ANS I/M I 4.SD. 1815 A

United States Department of Defense

,eR,#?03- 77-C -0 -313

Honeywell
Systems and Research Center

2600 Ridgway Parkway
Minneapolis, MN 65413

and .-

29 Avenue de Versailles
78170 La Celle Saint Cloud, France

,i

JANUARY 1983

Ada is a registered trademark of the U. S. Government, Ada Joint Program Office

"'0

Copyright (r) 1980, 1982, 1983 owned by the United States Government as represented by the Under
Secretary of Defense, Research and Enginuering. A/l rights reserved. Provided that notice of copyright Is

* included on the first page, this document may be copied/In Its entirety without alteration or as altered by (1)
adding text that Is c/early marked as en Insertion; (2) shading or highlighting existing text,- (3) deleting "
exam p/es. Permission to publish other excerpts should be obtained from the Ada Joint Program Office,
OUSDRE(R&A T. The Pentagon, Washington, DC. 20307, U.S.A.

Thm, loreword is riot part of the standard definition of the Ada programming language I

Foreword

Ada is the result of a collective effort to design a common language for programming large scale and real-
time systems.

The common high order language program began in 1974. The requirements of the United States Depart-
merit of Defense were formalized in a series of documents which were extensively reviewed by the Ser-
vices, industrial orgqanlzations, universities, and foreign military departments. The Ada language was
designed in accordance with the final (1978) form of these requirements, embodled In the Steelman
specification.

The Ada design team was led by Jean D. Ichblah end has Included Bernd Krleg-Brueckner, Brian A.
Wichmann, Henry F. Ledgard, Jean-Claude Hellard, Jean-Loup GaIlly, Jean-Raymond Abritl, John G.P.
Barnes, Mike Woodger, Olivler Roubine, Paul N. Hilfinger, and Robert Firth.

At various stcges of the project, several people closely associated with the design team made major con-
tributions. They Include J.B. Goodenough, R.F. Brander, M. W. Davis, G. Ferran, K. Lester, L. MacLaren, E.
Morel, I.R. Nassi, IXC. Pyle, S.A. Schuman, and S.C. Vestal,

Two parallel efforts that were started In the second phase of this design had a deep influence on the
language. One was the development of a formal definition using denotational semantics, with the participa-
tion of V. Donzeau-Gouge, G. Kahn, end B. Lang, The other was the design of a test translator with the par-
ticipation of K. Rlpken, P. Boullier, P. Cadlou, J. Holden, J.F. Hueras, R. G. Lange, and D. T. Cornhill. The
entire effort benefitted from the dedicated assistance of Lyn Churchill and Marion Myers, and the effective
technical support of B. Gravem, WL. Helmrdlinger, and P. Cleve. H.G. Schmltz served as program
manager.

Over the five years spent on this project, several intense week-long design reviews were conducted, with
the participation of P. Belmont, B. Brogol, P. Cohen, R. Dewar, A. Evans, G. Fisher, H, Harte, A. L. Hisgen,
P. Knueven, M. Kronentel, N. Lomuto, E. Ploedereder, G. Seegmusller, V. Stenning, D. Taffs, and also F.
Betz, R. Converse, K. Correll, A.N. Habermann, J. Semmet, S. Squires, J. Teller, P, Wagner, and P.R.
Wetherall.

Several persons had a constructive influence with their comments, criticisms and suggestions. They Include
P. Brinch Hansen, G. Goos, CA.R. Hoare, Mark Rein, WA. Wulf, and also E, Boebert, P. Bonnard, H.
Clausen, M. Cox, G. Dismukes, R. Eachus, T. Froggett, H. Ganzinger, C. Hewitt, S. Kamin, R. Kotler, 0,
Lecarme, J.A.N. Lee, J.L. Mansion, F. Minel, T. Phinney, J. Roehrlch, V. Schneider, A. Singer, D. Slosberg,
"I.C. Wand, the reviewers of Arda-Europe, AdaTEC, Afcet, those of the LMSC review team, and those of the
Ada Tokyo Study Group.

These reviews and comments, the numerous evaluation reports received at the end of the first and second
phase, the nine hundred language Issue reports and test and evaluation reports received from fifteen dtf-
ferent countries during the third phase of the project, the thousands of comments received during the ANSI
Canvass, and the on-going work of the IFIP Working Group 2.4 on system Implementation languages and
that of the Purdue Europe LTPL-E committee, all had a substantial influence on the final definition of Ada.

The Military Departments and Agencies have provided a broad base of support Including funding, extensive
reviews, and countless Individual contributions by the members of the High Order Language Working Group
and other interested personnel. In particular, William A. Whitaker provided leadership for the program dur-
ing the formative stages. David A. Fisher was responsible for the successful development and refinement of
the language requirement documents that led to the Steelman specification.

This language definition was developed by Cl Honeywell Bull and later Alsys, and by Honeywell Systems
and Research Center, under contract to the United States Department of Defense. William E. Carlson, and
later Larry E. Druffel and Robert F. Mathis, served as the technical representatives of the United States
Government and effectively coordinated the efforts of all participants In the Ada program.

~I = . ..

,0

.9.

"A.

This reference manual was prepared with a formatter specialized for A da texts. It was developed by Jon F.

1-fueras foe Mu/tics, using the Cii Honeywell Bull photocomposition system.

. ,Ii

Table of Contents

1. Introduction
1.1 Scope of the Standard 1- 1
1.1.1 Extent of the Standard 1- 1
1.1.2 Conformity of an Implementation with the Standard 1- 2
1.2 Structure of the Standard 1- 3
1.3 Design Goals and Sources 1- 3
1.4 Language Summary 1- 4
1.5 Method of Description and Syntax Notation 1- 7
1.6 Classification of Errors 1- 8

2. Lexical Elements
2.1 Character Set 2- 1
2.2 Lexical Elements, Separators, and Delimiters 2- 2
2.3 Identifiers 2- 4
2.4 Numeric Literals 2- 4
2.4.1 Decimal Literals 2- 4
2.4.2 Based Literals 2- 5
2.5 Character Literals 2- 6
2,6 String Literala 2- 6
2,7 Comments 2- 7
2.8 Pragmas 2- 7
2.9 Reserved Words 2- 9
2,10 Allowable Replacements of Characters 2- 9 A

3. Declarations and Types
3.1 Declarations 3- 1
3.2 Objects and Named Numbers 3- 2
3.2.1 Object Declarations 3- 3
3,2.2 Number Declarations 3- 5
3.3 Types and Subtypes 3- 6
3.3.1 Type Declarations 3- 7
3,3.2 Subtype Declarations 3- 8
3,3.3 Classification of Operations 3- 9
3.4 Derived Types 3..10
3,5 Scalar Types 3-12
3.5.1 Enumeration Types 3.13
3.5.2 Character Types 3-14
3.5,3 Boolean Typos 3-15
3.5.4 Integer Types 3-15
3.5.5 Operations of Discrete Types 3-16
3.5.6 Real Types 3-19
3,5.7 Floating Point Types 3-20 -

3.5.8 Operations of Floating Point Types 3-22
3.5.9 Fixed Point Types 3-24
3.5.10 Operations of FNxed Point Types 3-26
3.6 Array Types 3-27
3.6.1 Index Constraints and Discrete Ranges 3-29
3.6.2 Operations of Array Types 3-31
3.6.3 The Type String 3-32
3,7 Record Types 3-33
3,7,1 Discrimlnants 3-34
3.7.2 Discrimlnant Constraints 3-36
3.7.3 Variant Parts 3-38
3.7.4 Operations of Record Types 3-39
3.8 Access Types 3-40
3.8.1 Incomplete Type Declarations 3-41
3.8,2 Operations of Access Types 3-42
3.9 Declarative Parts 3-43

4. Name and Expressions
4.1 Names 4- 1
4.1.1 Indexed Components 4- 1
4.1.2 Slices 4- 3
4, 1.3 Selected Components 4- 3
4.1.4 Attributes 4- 5
4.2 Literals 4- 6
4.3 Aggregates 4- 7
4.3.1 Record Aggregates 4- 8
4.3.2 Array Aggregates 4- 9
4.4 Expressions 4-11
4,5 Operators and Expression Evaluation 4-12
4.5,1 Logical Operators and Short-circuit Control Forms 4-13
4.5.2 Relational Operators and Membership Tests 4-14
4,5,3 Binary Adding Operators 4-16
"4.5.4 Unary Adding Operators 4-18
4.5.5 Multiplying Operators 4-17
4.5.6 Highest Precedence Operators 4-19

. 4,5.7 Accuracy of Operations with Reel Operands 4-4 0
i 4,6 Type Convercions 4-21

4.7 Qualified Expresclions 4-24
4.8 Allocators 4-24
4.9 Static Expressions and Static Subtypes 4-26

, 4.10 Universal Expressions 4-27

5. Statements
5,1 Simple and Compound Statements- Sequences of Statements 5- 1
5.2 Assignment Statomernt 5- 2
5,2.1 Array Assignments 3- 3
5.3 If Statements 5- 45.4 Case Statements 5- 5 ..
5.5 Loop Statements 5- 7
5.6 Block Statements 5- 9
5.7 Exit Statements 5-10
5.8 Return Statements 5-10
5.9 Goto Statements 5-11

6. Subprograms
.81 Subprogram Declarations 6-1

6.2 Formal Parameter Modes 6- 3
8.3 Subprogram Bodies 6- 4
6.3.1 Conformance Rules 6- 5
6.3.2 Inline Expansion of Subprograms - 6.
6.4 Subprogram Calls 6- 7
6.4,1 Parameter Associations 6- 8
8,4.2 Default Parameters 6- 9
6.5 Function Subprograms 6-10
6.6 Parameter end Result Type Profile - Overloading of Subprograms 6-10
6.7 Overloading of Operators 6-11

- 7. Packages
7.1 Package Structure 7- 1
7,2 Package Specifications and Declarations 7- 2
7.3 Package Bodies 7- 3
7.4 Private Type and Deferred Constant Declarations 7- 5
7.4,1 Private Types 7- 5
"7,4,2 Operations of a Private Type 7- 6- 7.4.3 Deferred Constants 7- 9
7.4,4 Limited Types 7- 9
7,5 Example of a Table Management Packbge 7-11
7,6 Example of a Text Handling Package 7-12

II

.m. ,.. &.S.a.....,&..A. .. - I * , I '- .. ,. .. ,.,

8. Visibility Rules 8- 1
8.1 Declarative Region
8.2 Scope of Daclarations 8- 2
8,3 VIalbillty 8- 3

8.4 Use Clauses 8- 6

8.5 Renaming Declarations a- 8

8.6 Tho Package Standard 8-10

8.7 The Context of Overload Resolution 8-11

9. Toaks
9.1 Task Specifications and Task Bodies 9- 1
9.2 Task Types and Task Objects 9- 3
9.3 Task Execution - Task Activation 9- 5
9.4 Task Dependence - Termination of Tasks 9- 6
9.5 Entries, Entry Calls, and Accept Statements 9- 8
9.6 Delay Statements, Duration, and Time 9-10
9.7 Select Statements 9-12
9.7.1 Selective Waits 9-12
9.7.2 Conditional Entry Calls 9-14
9.7.3 Timed Entry C' II. 9-15
9.8 Priorities 9-1 .
9,9 Task and Entry Attributes 9-17
9.10 Abort Statements 9-18
9.11 Shared Variables 9-19
9.12 Example of Tasking 9-20

10. Program Structure and Compilation Issues
10,1 Compilation Units - Library Units 10- 1
10.1.1 Context Clauses - With Clauses 10- 2
10.1.2 Examples of Compilation Units 10- 4
10.2 Subunits of Compilation Units 10-86
10.2.1 Examples of Subunits 10- 7
10.3 Order of Compilation 10- 9
10.4 The Program Ubrary 10-11
10,5 Elaboration of Library Units 10-11
10.6 Program Optimization 10-12

11. Exceptions
11.1 Exception Declarations 11-1
11.2 Exception Handlers 11- 3

*11.3 Raise Statements 11- 4
11,4 Exception Handling 11- 4
11.4.1 Exceptions Raised During the Execution of Statements 11- 4

1 1.4.2 Exceptions Raised During the Elaboration of Declarations 11- 7

11.5 Exceptions Raised During Task Communication 11- 8
1 1.6 Exceptions and Optimization 11- 9
11.7 Suppressing Checks 11-10

I ill

* * A .4i.. ~ "4

12. Generic Units
12.1 Generic Declarations 12- 1
12.1,1 Generic Formal Objects 12- 3
12.1,2 Generic Formal Types 12- 4
12.1,3 Generic Formal Subprograms 12- 6
12.2 Generic Bodies 12- 6
12.3 Generic Instantiation 12-8 8
12.3,1 Matching Rules for Formal Objects 12-10
12.3.2 Matching Rules for Formal Private Types 12-11
12.3.3 Matching Rules for Formal Scalar Types 12-11
12.3,4 Matching Rules for Formal Array Types 12-12
12.3,5 Matching Rules for Formal Access Types 12-13
12.3,6 Matching Rules for Formal Subprograms 12-14
12.4 Example of a Generic Package 12-15

13. Representation Clauses and Implementation-Dependent Features
13.1 Representation Clauses 13- 1
13.2 Length Clauses 13- 3
13.3 Enumeration Representation Clauses 13- 5
13.4 Record Representation Clauses 13- 5
13.5 Address Clauses 13- 7
13,5.1 Interrupts 13- 8
"13.6 Change of Representation 13- 9
13.7 The Package System 13- 9
13.7.1 System-Dependent Named Numbers 13-11
13,7.2 Representation Attributes 13.12
"13,7.3 Representation Attributes of Real Types 13-13
13.8 Machine Code Insertions 13-14
"13,9 Interface to Other Languages 13-15
"13.10 Unchecked Programming 13-16
13.10.1 Unchecked Storage Deallocation 13-16
13,10.2 Unchecked Type Conversions 13-17

14, Input-Output ..
14.1 External Files and File Objects 14- 1
14.2 Sequential and Direct Flies 14- 2
14,2.1 File Management 14- 3
14.2,2 Sequential Input, Output 14- 5
14.2.3 Specification of the Package Sequentlal..IO 14- 6
14,2,4 Direct Input- Output 14- '1
14.2.5 Specification of the Package Direct-lO 14.. 8
14.3 Text Input- Output 14- 9
14.3.1 File Management 14.11
14.3.2 Default Input and Output Files 14-11
14,3,3 Specification of Line and Page Lengths 14-12
"14.3.4 Operations on Columns, Lines, end Pages 14-13
14.3.5 Get and Put Procedures 14-17
14,3,6 Input-Output of Characters and Strings 14-19

4 14.3.7 Input-Output for Integer Types 14-20 . ,0
14.3.8 Input-Output for Real Types 14-22
14.3.9 Input-Output for Enumeration Types 14-24
14.3.10 Specification of the Package Text_lO 14-26
14,4 Exceptions in Input-Output 14-30

S14.5 S,,eciflcstlon of the Package 1OExceptlons 14-32
14.6 Low Level Input-Output 14-32
14,7 Example of Input-Output 14-33

"IIV

Annexes 0

A. Predefined Language Attributes

B. Predeflned Language Pragmas

C. Predefined Language Environment

Appendices

D, Glossary

E. Syntax Summary

F. Irmpiemantation-Dependent Characteristics

Index

Postscript: Submission of Comrnments

.4I

Acoealtton, For

NT I S GrA•.I
[)TIC T.,V ! -

D~utr
Avaiil.-i liY C odO U

,.0,, Q I PAii (d/or
Dist / p/ia1

74,ta

SVJ

1. Introduction

Ada is a programming language designed In accordance with requirements defined by the United
States Department of Defense: the so-called Steelman requirements, Overall, these requirements
call for a language with considerable expressive power covering a wide application domain. As a
result, the language includet, facilities offered by classical languages such as Pascal as well as
facilities often found only In specialized languages, Thus the language Is a modern algorithmic
language with the usual control structures, and with the ability to define types and subprograms, It
also serves the need for modularity, whereby data, types, and subprograms can be packaged. It
treats modularity in the physical sense as well, with a facility to support separate compilation.

In addition to these aspects, the language covers real-time programming, with facilities to model
parallel tasks and to handle exceptions. It also covers systems programming; this requires
precise control over the representation of data and access to system-dependent properties, Finally,
both application-level and machine-level Input-output are defined

1.1 Scope of the Standard

This standard specifies the form and meaning of program units written In Ads, Its purpose Is to
promote the portability of Ada programs to a variety of data processing systems,

1.1.1 Extent of the Standard

This standard specifies:

(a) The form of a program unit written In Ada,

(b) The effect translating and executing such a program unit.

(c) The manner In which program units may be combined to form Ada programs, 4

(d) The predefined program units that a conforming Implementation must supply.

(e) The permissible variations within the standard, and the manner In which they must be
specified.

(f) Those violations of the standard that a conforming Implementation is required to detect, and
the effect of attempting to translate or execute a program unit containing such violations,

(g) Those violations of the standard that a conforming Implementation Is not required to detect,

" 1,1 EExteot of the Sta,•drrd 1, 1. 1

ANSI/MIL-STD- 16 i ,, Adi Reference Manual

SThis standard does riot specl'y:

10 (h) The means whereby a program i-nit written in Ada Is transformed into object code executable
by a processor.

ej
(i) The means whereby translation or execution of program units is invoked and the executing .

units are controlled.

(j) The size or speed of the object code, or the relative execution speed of different language con-
structs.

U (k) The form or contents of any listings produced by Implementations; in particular, the form or
contents of error or warning maosages.

14 (I) The effect of executing a program unit that contains any violation that a conforming
implementation is not required to detect,

(m) The size of a program or program unit that will exceed the capacity of a particular conforming
Implementation,

* ~ Where this standard specifies that a program unit written In Ads has an exact effect, this effect Is
the operational meaning of the program unit and must be produced by all conforming implementa-
tions, Where this standard specifies permissible variations In the effects of constituents of a
program unit written In Ada, the operational meaning of the program unit as a whole Is understood
to be the range of possible effects that result from all thes,3 variations, and a conformingI
Implementation Is allowed to produce any of these possible effects, Examples of permissible varla-

tions are:

The represented values of tixed or floating numeric quantities, and the results of operations
upon them.

t e The order of execution of statements In different parallel tasks, In the absence of explicit syl-
chronization,

1.1.2 Conformity of an Implementation with the Standard

A conforming Implementation Ie one that:

9 (a) Correctly translates and executes legal program units written In Ada, provided that they are Qi

not so large as to exceed the capacity of the implementation,r

(b) Rejects all program units that are so large as to exceed the capacity of the Implementation,

4 (c) Rejects all program units that contain errors whose detection Is required by the standard,

.5 (d) Supplies all predefined program units required by the standard.

6 (e) Contains no variations except where the standard permits,

(f) Specifies all such permitted variations In the manner prescribed by the standard,

, 1,.2 Conforni-/ty of an /Inplementat/on with the S, tandard 1-2

1.2 Structure of the Standard

This reference manual contains fourteen chapters, three annexes, three appendices, and an index.

Each chapter is divided into sections that have a common structure. Each section introduces its S
subject, gives any necessary syntax rules, and describes the semantics of the corresponding
language constructs. Examples and notes, and then references, may appear at the end of a sec-
tion.

Examples are meant to Illustrate the possible forms of the constructs described, Notes are meant
to emphasize consequences of the rules described in the section or elsewhere, References are '"
meant to attract the attention of readers to a term or phrase having a technical meaning defined in
another section.

The standard definition of the Ada programming language consists of the fourteen chapters and .
the three annexes, subject to the following restriction: the material in each of the items listed
below is informative, and not part of the standard definition of the Ada programming language: .

Section 1.3 Design goals and sources 5

* Section 1.4 Language summary .

* The examples, notes, and references given at the end of each section 7

0 Each section whose title starts with the word "Example" or "Examples" -

1.3 Design Goals and Sources

Ada was designed with three overriding concerns: program reliability and maintenance, program- .
ming as a human activity, and efficiency.

The need for languages that promote reliability and simplify maintenance is well established,.,
Hence emphasis was placed on program readability over ease of writing, For example, the rules of
the language require that program variables be explicitly declared and that their type be specified.
Since the type of a variable Is invariant, compilers can ensure that operat',ons on variables are com-
patible with the properties Intended for objects of the type. Furthermore, error.-prone notations
have been avoided, and the syntax of the language avoids the use of encoded forms In favor of
more English-like constructs, Finally, the language offers support for separate compilation of
program units In a way that facilitates program development and maintenance, and which
provides the same degree of checking between units as within a unit.

C-incern for the human programmer was also stressed during the design, Above all, an attempt
was made to keep the language as small as possible, given the ambitious nature of the application
domain. We have attempted to cover this domain with a small number of underlying concepts
integrated In a consistent and systematic way. Nevertheless we have tried to avoid the pitfalls of
excessive involution, and In the constant search for simpler designs we have tried to provide
language constructs that correspond Intuitively to what the users will normally expect.

Like many other human activities, the development of programs is becoming ever more
decentralized and distributed. Consequently, the ability to assemble a program from indepndent-
ly produced software components has been a central idea in this design. The concepts of
packages, of private types, and of generic units are directly related to this idea, which has ramifica-
tions in many other aspects of the language.

1-3 0esi'n Goals and Sources 1.3

ANSIIMIL-STD- 1815,A Ada Reference Manual

No language can avoid the problem of efficiency. Languages that require over-elaborate com-
pilers, or that lead to the Inefficient use of storage or execution time, force these inefficiencies on
all machines and on all programs. Every construct of the language was examined in the light of
present Implementation techniques. Any proposed construct whose implementation was unclear
or that required excessive machine resources was rejected.

None of the above design goals was considered as achievable after the fact, The design goals ,
drove the entire design process from the beginning. i

A perpetual difficulty in language design is that one must both identify the capabilities required by
the application domain and design language features that provide these capabilities, The difficulty -
existed in this design, although to a lesser degree than usual because of the Steelman require- .
ments. These requirements often simplified the design process by allowing It to concentrate on 7.i'
the design of a given system providing a well defined set of capabilities, rather than on the defini-
tion of the capabilities themselves. :i;

Another significant simplification of the design work resulted from earlier experience acquired by.... ,
several successful Pascal derivatives developed with similar goals. These are the languages "
Euclid, Lis, Mesa, Module, and Sue, Many of the key ideas arid syntactic forms developed In these
languages have counterparts In Ada. Several existing languages such as Algol 68 arid Slmula, and "
also recent research languages such as Alphard and Clu, influenced this language In several-,
respects, although to a lesser degree than did the Pascal family. , ,•

Finally, the evaluation reports received on an earlier formulation (the Green language), and on ..
alternative proposals (the Red, Blue, and Yellow languages), the language reviews that took place ,:
at different stages of this project, and the thousands of comments received from fifteen different ".°-
countries during the preliminary stages of the Ada design and during the ANSI canvass, all had a .,•
significant Impact on the standard definition of the language, ,":'•i .

1.4 Language Summary i

An Ada program Is composed of one or more prcgram units. These program units can be compiled "''
separately, Program units may be subprograms, (which define executable algorithms), package =.,••

units (which define collections of entities), task units (which define parallel computations), or
generic units (which define parameterized forms of packages and subprograms). Each unit nor-. . '-

mally consists of two parts: a specification, containing the Information that must be visible to
other units, and a body, c ontaining the Implementation details, which need not be visible to other ,.i.
units,'

2 This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written. and tested as a set of largely Independent software components.

3 An Ada program will normally make use of a library of program units of general utility, The
language provides means whereby Individual organizations can construct their own libraries. The
text of a separately compiled program unit must name the library units It requires. ,:

S Programn Units

5 A subprogram Is the basic unit for expressing an algorithm, There are two kinds of subprograms:
procedures and functions. A procedure Is the means of Invoking a series of actions. For example, it ,
may read data, update variables, or produce some output, It may have parameters, to provide a
controlled means of passing Information between the procedure and the point of call,

1.4 Language Summary 1-4

,°Introduction *0
A function is the means of Invoking the computation of a value. It Is similar to a procedure, but in 6

addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a
package can be used to define a common pool of data and types, a collection of related sub-
programs, or a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

A task unit is the basic unit for defining a task whuse sequence of actions may be executed In '
parallel with those of other tasks, Such tasks may be implemented on multicomputers, mul-
tiprocessors, or with interleaved execution on a single processor. A task unit may define either a
single executing task or a task type permitting the creation of any number of similar tasks,

Declarations and Statements 9

The body of a program unit generally contains two parts: a declarative part, which defines the io '.
logical entities to be used in the program unit, and a sequence of statements, which defines the
execution of the program unit,

The declarative part associates names with declared entities. For example, a name may denote a ,
type, a constant, a variable, or an exception, A declarative part also Introduces the names and
parameters of other nested subprograms, packages, task units, and generic units to be used in the
program unit.

The sequence of statements describes a sequence of actions that are to be performed. The state-
ments are executed in succession (unless an exit, return, or goto statement, or the raising of an
exception, causes execution to continue from another place)

An assignment statement changes the value of a variable. A prooedur3 call Invokes execution of a ,
procedure after associating any actual parameters provided at the call with the corresponding for-
mal parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements 14based on the value of an expression or on the value of a condition.

The loop statement provides the basic Iterative mechanism In the language. A loop statement "

scheme, or until an exit statement Is encountered.

"A block statement comprises a sequence of statements preceded by the declaration of local 1 ,
* entities used by the statements,

Certain statements are only applicable to tasks. A delay statement delays the execution of a task ii

for a specified duration, An entry call statement Is written as a procedure call statement; it
specifies that the task Issuing the call Is ready for a rendezvous with another task that has this
entry. The called task Is ready to accept the entry call when Its execution reaches a corresponding
accept statement, which specifies the actions then to be performed, After completion of the
rendezvous, both the calling task and the task having the entry may continue their execution in
parallel. One form of the select statement allows a selective wait for one of several alternative
rendezvous. Other forms of the select statement allow conditional or timed entry calls.

1-5 Language Summary 1.4

ANSI/MIL-S7TD-8?15A Ada Reference Manuel

'0

,sExecution of a program unit may encounter error situations in which normal program execution
* cannot continue, For example, an arithmetic computation may exceed the maximum allowed
* value of a number, or an attempt may be made to access an array component by using an incorrect
* Index value. To deal with such error situations, the statements of a program unit can be textually

followed by exception handlers that specify the actions to be taken when the error situation arises ,
Exceptions can be raised explicitly by a raise statement.

to Data Types

20 Every object In the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are scalar types (comprising enumeration and numeric ..

Utypes), composite types, access types, and private types.""

S An enumeration type defines an ordered set of distinct enumeration literals, for example a list of
• ~states or an alphabet of characters. The enumeration types BOOLEAN and CHARACTER are i•
:, predefined.

S22 ~Numeric types provide a means of performing exact or approximate numerical computations. ':

Exact computations use Integer types, which denote sets of consecutive integers, Approximate
computations use either fixed point types, with absolute bounds on the error, or floating point
types, with relative bounds on the error, The numeric types INTEGER, FLOAT, and DURArION are
predefined.

=a Composite types allow definition. of structured objects with related components. The composite -
types in the language provide for arrays and records. An array is an object with indexed compo= :
nents of the same type. A record is an object with named components of possibly different types.
The array type STRING Is predefined.iI

•4 A record may have special components called discriminants. Alternative record structures that
depend on the values of discriminants can be defined within a record type.•:

• 2 Access types allow the construction of linked data structures created by the evaluation of
/ allocators. They allow several variables of an access type to designate the same object, and corn-

!? ' pone~nts of one object to designate the same or other objects. Both the elements in such a linked
" ' data structure and their relation to other elements can be altered during program execution.

26 Private types can be defined in a package that conceals structural details that are externally Irrele-
vant. Only the logically necessary properties (Including any discriminants) are made visible to the"-
users of such types.

S 27 The concept of a type Is refined by the concept of a subtype, whereby a user can constrain the set
I1• ~of allowed values of a type. Subtypes can be used to define subranges of scaler types, arrays with...

a limited set of Index values, and records and private types with particular discriminant values. "

29 = Other Facilties

So Representation clauses can be used to specify the mapping between types and features of an
underlying machine. For example, the user can specify that objects of a given type must be . .
represented with a given number of bits, or that the components of a record are to be represented
using a given storage layout. Other features allow the controlled use of low level, nonportable, or .•
implementation-dependent aspects, including the direct insertion of machine code.

30 Input-output is defined In the language by means of predefined library packages. FacilitIes are
provided for input-output of values of user-defined as weil as of predefined types. Standard means:..:•
of representing values in display form are also provided.

1.4 Language Summary 1-6

i IiiIiIiiI...

Introduction

Finally, the language provides a powerful means of parameterization of program units, called 3

generic program units, The generic parameters can be types and subprograms (as well as objects)
and so allow general algorithms to be applied to all types of a given class,

1.5 Method of Description and Syntax Notation

The form of Ads program units is described by means of a context-free syntax together with
context-dependent requirements expressed by narrative rules.

The meaning of Ada program units is described by means of narrative rules defining both the
effects of each construct and the composition rules for constructs. This narrative employs
technical terms whose precise definition Is given In the text (references to the section containing
the definition of a technical term appear at the end of each section that uses the term),

All other terms are in the English language and beer their natural meanIng, as defined in Webster's 3
Third New International Dictionary of the English Language.

The context-free syntax of the lar.,guage Is described using a simple variant of Backus-Naur-Form.
In particular,

(a) Lower case words, some containing embedded underlines, are used to denote syntactic
categories, for example:

adding-operator

Whenever the name of a syntactic category Is used apart from the syntax rules themselves, " "

spaces take the place of the underlines (thus: adding operator).

(b) Boldface words are used to denote reserved words, for example:7

array

(c) Square brackets enclose optional Items. Thus the two following rules are equivalent.

return-statement ::= return [expression];
return,..statement ::= return; I return expression:

(d) Braces enclose a repeated Item. The Item may appear zero or more times; the repetitions 9
occur from left to right as with an equivalent left-recursive rule. Thus the two following rules
are equivalent.

term ::= factor lmultlplylng-operator factorl
term factor I term multlplylng._operator factor

1-7 Method of Description and Syntax Notation 1,5
4l

ANS//MIL-STD-1815A Ada Reference Manual

(e) A vertical bar separates alternative items unless it occurs immediately after an opening brace,
in which case it stands for Itself:

letter.or.digit ::= letter digit
componenLassociation ::= [choice II choice) =>] expression O

(f) If the name of any syntactic category starts with an italicized part, it Is equivalent to the
category name without the italicized part. The italicized part is intended to convey some
semantic Information. For example type-.name and task-name are both equivalent to name
alone.

Note:

The syntax rules describing structured constructs are presented in a form that corresponds to the
recommended paragraphing, For example, an if statement Is defined as

If-statement
if condition then

sequence-of-statements
I elglf condition then

sequence.,oftstementu.
[else

sequenceooftstatomentsu
end if;

Different lines are used for parts of a syntax rule If the corresponding parts of the construct
described by the rule are Intended to be on different lines. Indentation In the rule Is a recommenda-
tion for Indentation of the corresponding part of the construct, It Is recommended that all Indenta-
tions be by multiples of a basic step of Indentation (the number of spaces for the basic step Is not
defined). The preferred places for other line breaks are after semicolons. On the other hand, If a
complete construct can fit on one line, this Is also allowed in the recommended paragraphing,

1.6 Classifloatlon of Errors

The language definition classifies errors into several different categories:

2 (a) Errors that must be detected at compilation time by every Ada compiler.

3 These errors correspond to any violation of a rule given In this reference manual, other than
the violations that correspond to (b) or (c) below. In particular, violation of any rule that uses
the terms must, allowed, legal, or illegal belongs to this category, Any program that contains
suco an error Is not a legal Ada program; on the other hand, the fact that a program Is legal
does not mean, per se, that the program Is free from other forms of error.

(b) Errors that must be detected at run time by the execution of an Ada program.

The corresponding error situations are associated with the names el the predefined excep-
tions. Every Ada compiler Is required to generate code that raises the corresponding exception
if such an error situation arises during program execution, If an exception Is certain to be
raised In every execution of a program, then compilers are allowed (although not required) to

".4 report this fact at compilation time,

1.6 Class/fication of Errors 1-8

.

Introduction

(c) Erroneous execution. B

The language rules specify certain rules to be obeyed by Ads programs, although there is no
requirement on Ada compilers to provide either a compilation-time or a run-time detection of
the violation of such rules, The errors of this category are Indicated by the use of the word
erroneous to qualify the execution of the corresponding constructs. The effect of erroneous S
execution Is unpredictable.

(d) Incorrect order dependences.

Whenever the reference manual specifies that different parts of a given construct are to be
executed in some order that is not defined by the language, this means that the implementa-
tion is allowed to execute these parts in any given order, following the rules that result from
that given order, but not in parallel. Furthermore, the construct is Incorrect If execution of
these parts in a different order would have a different effect, Compilers are not required to
provide either compilation-time or run-time detection of Incorrect order dependences, The
foregoing Is expressed In terms of the process that is called execution; It applies equally to the
processes that are called evaluation and elaboration,

If a compiler Is able to recognize at compilation time that a construct is erroneous or contains an 0o
incorrect order dependence, then the compiler Is allowed to generate, In place of th6 code
otherwise generated for the construct, code that raises the predefined exception
PROGRAM-ERROR. Similarly, compilers are allowed to generate code that checks at run time for
erroneous constructs, for Incorrect order dependences, or for both, The predefined exception
PROGRAMERROR is raised if such a check falls.

19 C i

1-9 Classification of Errors 1.6

L _

2. Lexical Elements

The text of a program consists of the texts of one or more compilations. The text of a compilation
Is n sequence of lexical elements, each composed of characters; the rules of composition are givenflIn this chapter. Pragmas, which provide certair Information for the compiler, are also described In
this chapter.

References. character 2,1, compilation 101, lexlcal olemant 2., pragma 28 2

2.1 Character Set

The only characters al~owed In the text of P, program are the graphic characters and format effec-
tors, Each graphic character corresponds to~ a unique code of the ISO seven-bit coded character
set (ISO standard 646), and is representod (visually) by a graphical symbol. Some graphic
characters are represented by different graph!.-al symbols In alternative national representations of
the ISO character set. The description of the language definition In thit standard reference manual
uses the ASCII1 graphical symbols, the ANSI graphical representation of the ISO character set.

graph ic..character ::- boslc..grephlc...cha rector2
Ilower-.caseietter I other...speclai-character

basic...graphic...character:-
upper..case..letter Idigit

Ispecial-charector Ispace-..character
basic-..character :~pbasic..graphic..charectsr I formaLeffector

The basic character set Is sufficient for writing any program. The characters Included in each of the 3

* categories of basic graphic characters are defined as follows:

(a) upper case letters 4

(b) dgt

(c) special characters 6

"#&'*+,-/:< >.

(d) the space character 7

Format effectors are the ISO (and ASCII) characters called horizontal tabulation, vertical tabula-
tion, carriage return, line feed, and form feed.

2-1 Character Set 2.1

ANSI/MIL-ST7-1815A Ada Reference Manual

The characters included in each of the remaining categories of graphic characters are defined as
follows:

10 (e) lower case letters
a bcdefghiJkIm nopqrstu vwxyz y

M() other special characters
I$ % ? Q§-

",. Allowable replacements for the special characters vertical bar (I), sharp (#), and quotation (") arn
dof;ned in section 2.10.

Notes:.

13 The ISO character that (,orq:,oonds to the sharp graphical symbol in the ASCII representation
appears as a pound stetllrN 'yf nbol In the French, German, and United Kingdom standard national
representations. In any case, the font design of graphical symbols (for example, whether they are in
italic or bold typeface) Is not part of the ISO standard,

S 4 The meanings of the acronyms used in this section are as follows: ANSI stands for American
National Stand&rde Institute, ASCII stands for American Standard Code for Information
interchange, and ISO stands for International Organization for Standardization.

•i The following names are used when referring to Fpeclal characters and other special characters:

symbol name symbol name

Squotation > greater than
sharp underline
ampersand T vertical bar

* apostrophe I exclamation mark
left parenthesis $ dollar
right parenthesis % percent
star, mu.tiply question mark

+ plus commercial at
comm, [left square bracket
hyphen, minus back-slash
dot, point, period] right square bracket

""/ sash, divide circumflex
colon grave acc.ent
semicolon left brace

< less than right brace
cnqual - tilde

22 Lexical Elements, Separators, end Delimiters
q 0

. The text of a program consists of the texts of one or more compilations. The text of each compile."
tion Is a sequence of separate lexical elements, Each lexical element is either a delimiter, an iden-
tifler (which may be a reserved word), a numeric literal, a character literal, a string literal, or a com-
ment. The effect of a program depends only on the particular sequences of lexical elements that
form its compilations, excluding the comments, If any.

2.2 Lexical Elements, Separators, and Delimiters 2.2

.....

Lexical tlemnenlS

In some cases on explicit separate, ;s required to separate adjacent lexical elements (namely, 2
when without separation, Interpretation as a single lexical element Is possible). A separator Is any
of a space character, a format effector, or the end of a line, A space character is a separator except
within a comment, a string literal, or a space character literal. Format effectors other than horizon-
tal tabulation are always separators. Horizontal tabulation Is a separator except within a comment.

The end of a line Is always a separator. The language does not define what causes the end of a line. 3

However If, for a given implementation, the end of a line is signified by one or more charbcters,
then these characters must be format effectors other then horizontal tabulation. In any case, a
sequence of one or more format effectors other than horizontal tabulation must cause at least one
end of line.

One or more separators are allowed between any two adjacent lexical elements, before the first of
each compilation, or after the last, At least one separator Is required between an Identifier or a
numeric literal and an adjacent Identifier or numeric literal,

A delimiter is either one of the following special characters (in the basic character set) .

or one of the following compound delimiters each rctv,;Nposed of two adjacent special characters 6
=;> , * : /= >= ,- < < > > < > .

Each of the special characters listed for single character delimiters !s a single delimiter except If
this character Is used as a character of a compound delimiter, or as a character of a comment, Str-
Ing literal, character literal, or numeric literal.

The remaining forms of lexical element are described In other sections of this chapter, "
INotes:
Each loxical element must fit on one line, sinue the end of a line Is a separator. The quotation, "
sharp, and underline characters, likewise two adjacent hyphens, are not delimiters, but may form
part of other lexical elements.

The following nameso are used when referring to compound delimIters: ,0

delimiter name.

arrow
double dot
double star, exponentlate
assignment lpronounced: "becomes")
Inequality (prunounced: "not equal")
greater than or equal
lees than or equal

<< left label bracket
>> right label bracket
< > box

References; character literal 2,5, comment eJ7, compilation 10,1, iormat effector 2,1, Identifier 2,3, nurneric literal
2.4, ,esarved word 2.9, ipase character 2.1, spec•al character 2.1, string literal 2,6

Lexical Elements, Separators, and Delimiters 2,2
L. ... • _

" , . ,1

AN1•,•O/IL.S- T - T bA Ada Reference Manual

2.3 Identifiers

Identifiers are used as names and also as rosrirved words.

2 identifier -

letter underlinel letter.or.ddigitl

lettnr-or.digit letter I digit

letter upper..case-letter I Iower-case...letter

a All characters of an identifier are significant, including any underline character inserted between a
letter or digit and an adjacent letter or digit. Identifiers differing only In the use of corresponding
upper and lower case letters are considered as the same.

4 Examples:.

COUNT X get-symbol Ethelyn Marion

SNOBOL_4 X1 PageCount STORENEXTITEM

Note:•

No space is allowed within an identifier since a space Is a separator,

e References:' digit 2.1, lower case letter 2.1, name 4.1, reserved word 2.9, separator 2.2, space character 2.1, upper
case letter 2.1

2.4 Numeric Literals

There are two classes of numeric literals: real Ilterals and integer Ilterals. A real literal Is a numeric
literal that Includes a point; an Integer literal Is a numeric literal without a point, Real literals are
the literals of the type universalreal. Integer literals are the literals of the type universaL.Irteger,

numericIlteral :::-4 decimal-llteral I based.literal

1 Peforences; litnral 4,2, universaL-Integer type 3,.54, universal-real type 3,5.6

2.4.1 Decimal Literals

A ('twimal literal is a numeric literal expressed in the conventional decimal notation (that Is, the

b ,'M is Implicitly ten),

decimal-literal :-- Integer [Integeri [exponentl

integer digit i(underlinel dlgitl

oxponent E #-I Integer I E - Integer

2.4,1 Deci•rial Literals 2-4

Lexical Elements

An underline character inserted between adjacent digits of a decimal literal does not affect the 3

value of this numeric literal. The letter E of the exponent, if any, can be written either In lower case
or in upper case, .with the same meanig,

An exponent Indicates the power of ten by which the value of the decimal literal without the expo- 0

nent is to be multiplied to obtain the value of the decimal literal with the exponent. An exponent for
an integer literal must not have a minus sign,

Examples.-

12 0 1E6 123-456 Integer literals

. 12.0 0.0 0,456 3.14159-26 -- real literals

1.34E-12 1.OE+6 -- real literals with exporieni

Notes,,

Leading zeros are allowed, No space is allowed In a numeric literal, not even between constituents ,
" of the exponent, since a space Is a separator, A zero exponent Is allowed for an integer literal,

"References: d glt 2,1, lower case letter 2.1, numqrlc literal 2,4, separator 2.2, space character 2.1, upper case letter
2.1 d

2.4.2 Based L;teralu

A based literal i.i a numeric literal expressed In a form that specifies the base explicitly, The base I
must be at least two and at most sixteen,

based,_literal ::=2

base -# based-Integer [,based-integer] # [exponent]

base ::= Integer

based-integer :::.l
extended.dlilt Ifunderline) extended.digitl

extended-dlglt ::-- digit I letter

An underline character Inserted between adjacent digits of a based literal does not affect the value 3

of this numeric literal, The base ar'd the exponent, If any, are in d&,clmal notation. The only letters
allowed as extended digits are the letters A through F for the digits ten through fifteen, A letter In a
based :!teral (either an extended digit or the letter F of an exponent) can be written either in lower
case or In upper case, with the same meaning,

The conventional meaning of based notation is assumed; In particular the value of each extended 4'

digit of a based literal must be less then the base, An exp,.nent Indicates the power of the base by
"which the value of the based literal without the exponent is to be multiplied to obtain the value of
the based literal with the exponent.

5 B9"

S2-5 Based Literals 2,4.2 .

..........

ANSI/MIL-STD-1815A Ada Reference Manuai

'=

Examples:.

2#11111.-1111# 1 6#FF# 01 6#OFF# - integer literals of value 255
16wE#E1 2#1110_0000# -- integer literals of value 224
16#.F,FF#E+2 2#11. 111-111111 1211#El -- real Ilterals of value 4096,0

References: dlgh 2.1, exponent 2.4,1, letter 2,3, lower case latter 2.1, numeric literal 2.4, upper case letter 2,1

2.5 Character Literals

A character literal Is formed by enclosing one of the 95 graphic characters (Including the space)
between two apostrophe characters, A character literal har a value that belongs to a character
type,

6 2 character_-lteral := 'graphlc-oharacter' .

Examples:.

'A' . ' '

i References: character type 3,5,2, graphic character 2,1 liteeal 4.2, space character 2,1

2.6 String Literlls

A string literal Is formed by a sequence of graphic characters (possibly none) enclosed between

two quotation characters usrd as strIng brackets,

, 2 u string-literal ::- "(graphic-ccheracter)"

I 3 A string literal has a value that Is a sequence of character values corresponding to the graphic
characters of the string literal apart from the quotation character Itself, If a quotation character

" 'value Is to be represented In the sequence of character values, then a pair of adjacent quotation
characters must be written at the corresponding place within the string literal, (This meane that a
string literal that Includes two adjacent quotation characters Is never Interpreted as two adjacent
string literals,)

The length of a string literal Is the number of character values In the sequence represented. (Each

doubled quotation character Is counted as a single character,)

', Examples:

"Meatsnge of the day:"

-- an empty string literal
"A" " . - three string Ilterals of length 1

"Characters such an $, %, and I are allowed In string literals"

2.6 String LUterals 2--6

*- -

Lexical Elements

Note.:

A string literal must fit on one line since it Is a lexical element (see 2.2). Longer sequences of 6
graphic~ character values can hei obtained by catenation of string literals. Similarly catenation of
constants declared In the package ASCII can be used to obtain sequences of character values that
Include nongriphic chsr,ýcter values (the so-called control charactars). Examples of such uses of
catenation are given below:

"FIRST PART OF A SEQUENCE OF CHARACTERS " &
"THAT CONTINUES ON THE NEXT LINE"

"sequence that Includes the" & ASCII .ACK & "control character"

References,' ascii predefined package C, catenation operation 4.15,31, character value 3.6.2, constant 3,2.1,
declaration 3., end of a line 212, graphic character 2.1, lexical element 2.2

2.7 Comments

A comment starts with two adjacent nyphena and extends up to the end of the line. A comment
can appear on any line of a progrnm. The presence or ,t.Asence of comments has no Influence on
whether a program Is legal or Illegal. Furthermore. comments do no-, Influence the effect of a
program; their sole purpoise Is the enlightenment of the human reader.

&Examples.,

-- the lost sentence above echoes the Algol e8 report

end; -- processing, of LINE Is complete :~
-- a long comment may be splilt onto

two or more consecutive lines

---------the first two hyphens start the comment

Note.'

Horizontal tabulation can be used In comments, after the double hyphen, and Is equivalent to orte 3

or more spaces (see 2.2).

References.' and of a line 2.2,. Illegal 1.6. legal 1.8. space character 2.1 4

2.8 Pragmas

A pragma Is used to convey Information to the compiler. A pragma starts with the reserved word
pragma followed by an Identifier that Is the name of the pragma,

pragma ::r
progma Identifier !(argument-asbociation 1, argument-asscjcation I);

argurnonLuassoclation :~
largulment-identifler .=>I name

Ilargu'nont Identifier '~Jexpression

2-7 Pragnias 2.8

ANSI/MIL-STD-1815A Ada Reference Manual

3 Pragmas are only allowed at the following places In a program:

4 0 After a semicolon delimiter, but not within a formal part or discriminant part.

5 At any place where the syntax rules allow a construct defined by a syntactic category whose
name ends with "declaration", 'statement", "clause", or "alternative", or one of the syntactic 0
categories variant and exception handler; but not in place of such a construct. Also at any
place where a compilation unit would he allowed.

• 6 Additional restilctions exist for the placement of specific pragmas.

-7 Sorne pragm3s have arguments. Argument associations can be either positional or named as for
parameter associations of subprogram calls (see 6.4). Named associations are, however, only pos-
sible if the argument Identifiers are defined. A name given in an argument must be eithor a name,
visible at the place of the pragma or an Identifier specific to the pragme.

a The p)ragmas defined by the language are described In Annex B: they must be supported by every
implementation. In addition, an Implamentetic1.i may provide Implementation-defined pragmas, 0
which must ther be described In Appendix P, An implementation Is not allowed to define pragmas
whose presence or absence Influences the legality of the text outside such pragmas, Consequently,
'the legality of 4 program doet not depend on the presence or absence of implementation-defined
pragmas.

- A pragma that is not languago-defined lies no effect if Its identifier is not recognized by the (cur- '

rent) Implementation. Furthermore, a pragma (whether language-defined or implementation-
"defined) has no effect If Its placement or Its argumernts do not correspond to what is allowed for .:
the pragma. The region of text over which a pragma has an effect depends on the pragma,

to Examples:

r.agma LISTPOFF);
prugma OPTIMIZE(TIME);
pragma INLINE(SETMASK);
pragma SUPPRESS(RANGEChECK, ON => INDEX);

Note:

I. It is recommended (but not required) that Implementations issue warnings for pragmes that are
not recognized and therefore ignored.

12 References. compilation unit 10.1, delimiter 2,2, discrimInant part 3.7.1, exception handler 11.2, expression 4.4,
1 formal part 6,1, identifier 2,3, Implementation-defined pragma F, language-defined pragma B, legal 1,6, name 4,1,

reserved word 2,9, statement 6, static expression 4.9, variant 3.7.3, visibility 8.3

13 Categories onding with "declaration" comprise: basic declaration 3.1, component declaration 337, entry
declaration 9.5, generic parameter declaration 12.1

14 Categories ending with "clause comnirise: alignment clause 13,4, component clause 13.4, context clause 10.1.1,
* representation clause 13.1, use clause 84, with clause 10,11.11

15 Categories ending with "alternative* comprise: accept alternative 9.7.1, case statement alternative 54, delay
Sa~ternetive 97.1, selecr alternative 9.7,1, selective welt alternative 9.7.1, terminate alternative 9.7,11

2.8 Pragmas 2-8

Lexical Elements

2.9 Reserved Words

The identifiers listed below are called reserved words and are reserved for special significance in
the language, For readability of this nanual, the reserved words appear in lower case boldface,

abort declare generic of select 2

abs delay goto or separate
accept delta others subtype
access digits if out
all do in task
and Is package terminate
array pragme then
at else private type

elsif limited procedure
end loop

begin entry raise use
body exception range -

exit mod record when
rem while

new renames with
case for not return
constant function null reverse xor

A reserved word must not be used as a declared Identifier. 3

* ~Notes:'

Reserved wordu differing only In the use of corresponding upper and lower case letters are con- 4

sidered as the samo (see 2.3). In some attributes the Identifier that appears after the apostrophe is
identical to some raserved word.

References: attribute 4.1.4, declaration 3.1, Identifier 2,3, lower case letter 2.1, Lipper case letter 2.1 5

2.10 Allowable Replacements of Characters

The following replacements are allowed for the vertical bar, sharp, and quotation basic characters:

0 A vertical bar character (I) can be replaced by an exclamatlon mark (1) where used as a 2

delimiter.

0 The sharp characters (#) of a b,,sed literal can be replaced by colons (:) provided that the 3

replacement Is done for both occurrences,

* The quotation characters () used as string brackets at both ends of a string literal :;an be
replaced by percent characters (%I provided that the enclosed sequence of characters con-
tains no quotation character, and provided that both string brackets are replaced, Any percent
character within the sequence of characters must then be doubled and each such doubled
percent character is interpreted as a single percent character value.

2-9 Allowable Replacements of Characters 2. 10

*, " • " ' " " .

ANSI/MiL-STD-1815A Ada Roference Manual

These replacements do not change the meaning of the program.

Notes:.

It is recommended that use of the replacements for the vertical bar, sharp, and quotation -
characters be restricted to cases where the corresponding graphical symbols are not available.
Note that the vertical bar appears as a broken bar on some equipment; replacement is not recom-
mended in this case.

7 The rules given for identifiers and numeric literals are such that lower case and Lipper case letters
can be used indifferently; these lexical elements can thus be written using only characters of the
basic character set. If a string literal of the predefined type STRING contains characters that are
not in the basic character set, the same sequence of character values can be obtained by
catenating string literals that contain only characters of the basic character set with suitable
character ccnstants declared In the predefined package ASCII. Thus the string literal "AB $CD"
could be rwplaced by "AB" & ASCII .DOLLAR & "CD ". Similarly, the string literal "ABcd" with lower
case letters could be replaced by "AB" & ASCII -LC.C & ASCII .LC-D.

References: ascll predefined package C, based literal 2.4.2, basic character 2.1, catenation operation 4.5.3, character
value 3.5.2, delimiter 2,2, graphic character 2.1, graphical symbol 2.1, Identifier 2.3, lexical element 2.2, lower case
letter 2,1, numeric literal 2.4, string bracket 2,6, strihig literal 2,6, upper case letter 2.1

2.? C0Allowable Replacemnents of Characters 2-10

* as .k~.& ... Li *fl~. . .. 'h~. . .2 -.~. ~'L.W., - - . . * . . U.45, .'* *...__

3. Declarations and Types

This chapter describes the types in the language and the rules for declaring constants, variables.
and named numbers.

3.1 Declarations

The language defines several kinds of entities that are declared, either explicitly or implicitly, by
declarations. Such an entity can be a numeric literal, an object, a discriminant, a record compo-
nent, a loop parameter, an exception, a type, a subtype, a subprogram, a package, a task unit, a
generic unit, a single entry, an entry family, a formal parameter (of a subprogram, entry, or generic
subprogram), a generic formal parameter, a named block or loop, a labeled statement, or an opera-
tion (in particular, an attribute or an enumeration literal; see 3.3.3).

There are several forms of declaration. A basic declaration is a form of declaration defined as fol- .
lows.

basic-declaration
object-declaration number-declaration

I type-declaration subtype-declaratlonI subprogram.declaration package-declaration
task._declratlon generic-declaration

I exception-declaration ganeric-Instantlation
I renaming-declaration deferredconstonLdeclsi'ation

Certain forms of declaration always occur (explicitly) as part of a basic declaration; these forms are ,
dlscrimlnant specifications, component declarations, entry declarations, parameter specifications,
generic parameter declarations, and enumeration literal specifications. A loop parameter specifica-
tion is a form of declaration that occurs only In certain forms of loop statement.

The remaining forms -! declaration are Implicit: the name of a block, the name of a loop, arid a
statement label are Implicitly declared. Certain operations are implicitly declared (see 3.33),

For each form of declaration the language rules define a certain region of text calld the scope of .
the declaration (see 8.2). Several forms of declaration associate an identifier with a declared entity,
Within its scope, and only there, there are places where It Is possible to use the identifier to refer to
the associated declared entity; these places are defined by the visibility rules (see 8.3). At such
places the Identifier Is said to be a name of the entity (its simple name); the nnme Is said to denote
the associated entity.

Certain forms of enumeration literal specification associate a character literal with the cor-
responding declared entity, Certain forms of declaration associate an operator symbol or some
other notation with an explicitly or Implicitly declared operation.

The process by which a declaration achieves Its effect is called the elaboration of the declaration;
this process happens during program execution.

3-1 Declarations 3,1

""---.-----

ANSI/MIL-STD-1815A Ada Reference Manual

After its elaboration, a declaration is said to be elaborated. Prior to the completion of its elabora-
tion (including before the elaboration), the declaration is not yet elaborated, The elaboration of any
declaration has always at least the effect of achieving this change of state (from not yet elaborated
to elaborated). The phrase "the elaboration has no other effect" Is used in this manual whenever
this change of state Is the only effect of elaboration for some form of declaration. An elaboration
process is also defined for declarative parts, declarative Items, and compilation units (see 3.9 and p
10.5).

• o Object, number, type, and subtype doclarations are described here. The remaining basic declara-
tions are described In later chapters,

Note:

11 The syntax rules use the term Identifier for the first occurrence of an identifier in some form of
declaration; the term simple name Is used for any occurrence of an Identifier that already denotes
some declared entity.

12 References: attribute 4.1,4, block name 5.6, block statement 5,6, character literal 2.5, component declaration 3,7,
declarative Item 3,9, declarative part 3.9, deferred constant declaration 7,4, discrimlnant specification 3,7,1, elabora-
tion 3,9, entry declaration 9.5, enumeration literal specification 3.5, 1, exception declaration 11,1, genetic declaration
12.1, generic Instantlation 12.3. generic parameter declaration 12,1, identifier 2.3, label 5,1, loop name 5,5, loop
parameter specification 5,5, loop statement 5.5, name 4.1, number declaration 3.2,2, numeric literal 2.4, object
declaration 3.2.1, operation 3.3, operator symbol 6.1, package declaration 7,1, parameter specification 6,1, record
component 3U7, renaming declaration 8,5, representation clause 13,1, scope 812, simple name 4.1, subprogram body
6,3, subprogram declaration 0, 1, subtype declaration 3.3.2, task declaration 9,1, type declaration 3,3.1, visibility 8.3

3.2 Objects and Namad Numbers

I An object Is an entity that contains (has) a value of a given type. An object Is one of the following:

2 * an object declared by an object declaration or by a single task declaration,

3 0 a formal parameter of a subprogram, entry, or generic subprogram,

4 9 a generic formal object,

5 a loop parameter,

a * an object designated by a value of an access type,

7 0 a component or a slice of another object.

A number declaration Is a special form of object declaration that associates an identifier with a
value of type universeIJnteger or universal-real,

objecLtdeclaration ::=
Identifier-list c[onstant] subtypeIndication [:= expression];

I Identifier-list (constant] constralned.array-definition [:= expression];

number-declaration
identifier-list constant := unlversaLstedlcexpresalon;

Identifier.list Identifier {, Identifier.

3.2 Ob/ects and Named Numbers 3-2

Declarations and Types

An object declaration Is called a single object declaration If Its identifier list has a single identifier; it 10
Is called a multiple ob/ect declaration if the Identifier list has two or more Identifiers. A multiple
object declaration Is equivalent to a sequence of the corresponding number of single object
declarations, For each identifier of the list, the equivalent sequence has a single object declaration
formed by this identifier, followed by a colon and by whatever appears at the right of the colon In
the multiple object declaration; the equivalent sequence is In the same order as the Identifier list,

A similar equivalence applies also for the Identifier lists of number declarations, component 11
declarations, discriminant specifications, parameter specifications, generic parameter declarations,
exception declarations, and deferred constant declarations,

In the remainder of this reference manual, explanations are given for declarations with a single 12

identifier; the corresponding explanations for declarations with several identifiers follow from the
equivalence stated above.

Example: 13

- the multiple object declaration

JOHN, PAUL : PERSON-NAME := new PERSON(SEX => M), -- see 3,8.1

-- is equivalent to the two single object declarations in the order given

JOHN PERSON-NAME :- new PERSON(SEX => M):
PAUL PERSON-NAME :- new PERSON(SEX => M):

References: access type 3.8, constrained array definition 3,6, component 3.3, declaration 3.1, deferred constant 14

declaration 7.4, designate 3.8, dlscrImInant speclflostlon 317,1, entry 9,5, exception declaration 111, expression 4.4,
formal parameter 6.1, generic formal object 12.1,1, generic parameter declaration 12.1, generic unit 12, generic sub-
program 12,1, Identifier 2.3, loop parameter 5,5, numeric type 3,5, parameter specification 6.1, scope 8.2, simple
name 4,1, single task declaration 9.1, slice 4.1.2, static expression 4,1, subprogram 6, subtype Indication 3,32, type '

3,3, universal-integer type 3,5.4, universal.real type 3.5.6

3.2.1 Object Deolarations .

*4

An object declaration declares an object whose type is given either by a subtype Indication or by a
constrained array definition, If the object declaration Includes the assignment compound delimiter
followed by an expression, the expression specifies an initial value for the declared object; the type
of the expression must be that of the object.

The declared object Is a constant If the reserved word constant appears In the object declaration; 2 .
the declaration must then Include an explicit Initialization. The value of a constant cannot be
modified after Initialization. Formal parameters of mode In of subprograms and entries, and generic
formal parameters of mode In, are also constants; a loop parameter is a constant within the cor-
responding loop; a subcomponent or slice of a constant Is a constant.

An object that Is not a constant Is called a variable (in particular, the object declared by an object 3

declaration that does not Include the reserved word constant Is a variable). The only ways to
change the value of a variable are either directly by an assignment, or Indirectly when the variable
is updated (see 6.2) by a procedure or entry call statement (this action can be performed either on
the variable Itself, on a subcomponent of the variable, or on another variable that has the given
variable as subcomponent).

3-3 Object Declarations 3.2.1

01-10

ANSI/MIL-STO- 1815A Ada Reference Manual

4 The elaboration of an object declaration proceeds as follows:

5 (a) The subtype indication or the constrained array definition Is first elaborated. This establishes
the subtype of the object, ,

(b) If the object declaration Includes an explicit Initialization, the initial value Is obtained by
evaluating the corresponding expression. Otherwise any Implicit initial values for the object or
for its subcomponents are evaluated.

(c) The object Is created, ""

a (d) Any initial value (whether explicit or implicit) is assigned to the object or to the corresponding
subcomponent,

Implicit initial values are defined for objects declared by object declarations, and for compooemts of
such objects, In the following cases:

0 If the type of an object Is an access type, the Implicit Initial value Is the null value of the access
type.

0 If the type of an object is a task type, the Implicit Initial (and only) v~lue designates a cor-
responding task.

12 6 If the type of an object Is a type with dIscriminants and the subtype, of the object Is con-

strained, the Implicit Initial (and only) value of each discriminant is defined by the subtype of
the object.

n If the type of an object Is a composite type, the Implicit ih'lt;al value of each component that
has a default expression Is obtained by evaluation of this eý,presslon, unless the component is
a discriminant of a constrained object (the previous case),

14 In the case of a component that Is Itself a composite object and whose value Is defined neither by
an explicit Initialization nor by a defatult oxpression, any Implicit Initial values for components of the
composite object are deflneqd by the same rules as for a declared object,

h The steps (a) to (d) are performed In the order indicated. For step (b), If the default expression for a
discriminant Is evaluated, then this evaluation Is performed before that of default expressions for
Subcomponents that depend on discriminants, and also before that of default expressions that
include the name of the discriminant, Apart from the previous rule, the evaluation of default
expressions Is performed In some order that is not defined by the language,

15 The initialization of an object (the declared object or one of Its subcomponents) checks that the

initial value belongs to the subtype of the object; for an array object declared by an object declara-
tion, an Implicit subtype conversion Is first applied as for an assignment statement, unless the
object Is a constant whose subtype Is an unconstrained array type. The exception
CONSTRAIN'rERROR Is raised if this check falls.

The value of a scalar variable Is undefined after elaboration of the corresponding object declaration
unless an Initial value Is assigned to the variable by an Initialization (explicitly or Implicitly),

If the operand of a type conversion or qualified expression Is a variable that has scalar subcompo-
nents with undefined values, then the values of the corresponding subcomponents of the result are
undefined, The execution of a program Is erroneous If it attempts to evaluate a scalar variable with . .9
an undefined value, Similarly, the execution of a program is erroneous If It attempts to apply e
p(edeflned operator to a variable that has a scalar subconmponent with an undefined value.

3.2. 1 Oh/ect Deoc/•ratloos 3-4

Declarations and Types

Examples of variable declarations:

COUNT, SUM :INTEGER;
SIZE INTEGER range 0 ,, 10-0:000 0;
SORTED BOOLEAN := FALSE;
COLOR-TABLE array(l ,. N) of COLOR; :
OPTION BITVECTOR(1 .. 10) := (others => TRUE);

Examples of constant declarations" 20

LIMIT constant INTEGER 10_000;
LOW-LIMIT constant INTEGER LIMIT/lO;
TOLERANCE constant REAL DISPERSION(1.15);

Note.-

The expression initializing a conatint object need not be a static expression (nse 4,9). In the above 21

examples, LIMIT and LOW-LIMIT are Initialized with static expressions, but TOLERANCE is not If
DISPERSION Is a user-defined function,

References: access type 3.8, asalgnment 5,2, assignment compound delimiter 5,2, component 3.3, composite type 22

313, constrained array definition 3,6, constrained subtype 3,3, constrainLerror exception 11.1, conversion 4.8,
declaration 3.1, default expression for a dlacrImlnant 3.7, default Initial value for an access type 3.8, depend on a dis-
criminant 3,7,1, designate 3,8, dlicrlmlnant 3,3, elaboration 3,9, entry 9,5, evaluation 4,5, expression 4.4, formal
parameter 6.1, generic formal parameter 12,1 12.3, generic unit 12, In some otder 1,0, limited type 7A4.4, mode In
6.1, package 7, predefined operator 4.5, primary 4.4, private type 7,4, qualified expression 4.7, reserved word 2.9,
scalar type 3.5, slice 4 1.2, suboomponent 3.3, subprogram 8, subtype 3.3, subtype Indication 3.3,2, task 9, task type
9.2, type 3.3, visible part 7,2

3.2.2 Number Declarations

A number declaration Is a special form of constant declaration, The type of the static expression
given for the Initialization of a number declaration must be either the type universaljnteger or the
type universal -real, The constant declared by a number declaration Is called a named number and
has the type of the static expression.

Note.

The rules concerning expressions of a universal type are explained In section 4.10. It Is a conse- 2

quence of these rules that If every primary contained In the expression Is of the type univer-
saJnteger, then tho named number Is also of this type, Similarly, If every primary Is of the type
universalj-eal, then the named number Is also of this type,

Examples of number declarations:.

PI constant := 3,141592(1536: -- a real number
TWO..PI constunt :- 2.0*PI; -- a real number
MAX constant 500; -- an Integer number
POWER_16 constant :-- 2*.16; -- the Integer 85-536
ONE, UN, EINS constant 1; -- three different names for 1

References.: identifier 2.3, primary 4A4, static expression 4.9, type 3,3, universal-Integer type 3,5.4, universal-real 4

type 3.5,6, universal type 4.10

3-5 Number Declarations 3.2.2

ANSI/MIL.-STD-1815A Ada Reference Manual

3.3 Types and Subtypes

A type Is characterized by a set of values and a set of operations.

S 2 There exist several classes of types. Scalar types are integer types, real types, and types defined
by enumeration of their values; values of these types have no components, Array and recesid
types are composite; a value of a composite type consists of component values, An access type is
a type whose values provide access to objects. Private types are types for which the set of possl-
WIe values Is well defined, but not directly available to the users of such types, Finally, theie are
task types. (Private types are described In chapter 7, task types are described in chapter 9, the
other classes of types are described In this chapter,)

3 Certain record and privatn types have special components called discrIminants whose values dis-
"tinguish alternative forms of values of one of these types. If a private type has discriminants, they
are known to users of the type, Hence a private type Is only known by Its name, its discriminants If
any, and by the corresponding set of operations,

4" The set of possible values for an objert of a given type can be subjected to a condition that is cal-
led a constraint (the case where the constraint Imposes no restriction Is also included); a value Is
said to satisfy a constraint If It satisfies the corresponding condition, A subtype is a type together
with a constraint; a value Is said to belong to a subtype of a given type if it belongs to the type and
satisfies the constraint; the given type Is called the base type of the subtype, A type Is a subtype
of itself; such a subtype Is said to be unconstrained: it corresponds to a condition that imposes no
restriction. The base type of a type is the type itself,

- The set of operations defined for a subtype of a given type includes the operations that are defined
for the type; however the assignment operation to a variable having a given subtype only assigns
values that belong to the subtype. Additional operations, such as qualification (in a qualified
expression), are Implicitly defined by a subtype declaration.

'' Certain types have default initial values defined for objects of the type; certain other types have
"default expressions defined for some or all of their components, Certain operations of types end
subtypes are called attributes; theme operations are denoted by the form of name described in sec-
tion 41.4.1

I ,rhe term subcomponent Is used In this manual In placo of the term component to Indicate either a
component, or a component of another component or eubcomponent, Where other subcompo-
"nents are excluded, the terrn component is used Instead.

a A given type must not have a subcomponent whose type Is the given type Itself,

* a The name of a class of types Is used In this manual as a qualifier for objects and values that have a
type of the class considered, For example, the term "array object" Is used for an object whose type
is an array type; similarly, the term "access value" Is used for a value of an access type,

Note.'

to The set of values of a subtyp, Is s subset of the values of the base type, This subset need not be a
proper subset; It can be an empty subset.

Reforence,.: access type 3.8, array type 3.6, ensignment 5.2, attribute 4,1.4, component of an array 3,e, component

of a record 3.7, diacrlmlnnnt constraint 3,712, enumeration type 3.5.1, Integer type 3.5.4, object 3,2.1, private type
7.4, qualified expression 4,7, real type 3.5.6, record type 3,7, subtype declaration 3,312, task type 9.1, type declaration

3.3.1

3-6Sm I

Declarations and Types

3.3.1 Type Declarations

A type declaration declares a type.

type-declaration :=- ful!_type-declarationIncomplete-type.-declaration I private .ype.declaration

fuIlAtype-declaration
type identifier ldlscrimlnant.partl is type-definltion;

type-cdefinition .. = .
enumeration-type-de'Inition Integer-type-definition

I real-type-definition I array-t•pe-definition
I record-type-definition I accean type-de'r'ition
I derived.,type-deflnition

The elaboration of a full type declaration consists of the elaboration of the discrimirant part, If any 3

(except in the case of the full type declaration for an incomplete or orivate type declaration), and of
the elaborat~on of the type definition,

The types created by the elaboration of distinct type definitions are distinct types, Moreover, the
elaboration of the type definition for a numeric or derived type creates both a base type and a sub..
type of the base type; the same holds for a constrained array definition (one of the two forms of
array type definition).

The simple name declared by a full type declaration denotes the declared type, unless the type "
declaration declares both a base type and a subtype of the base type, in which case the simple
name denotes the subtype, and the base type is anonymous. A type Is said to be anonymous If it
has no simple name, For explanatory purposes, this reference manual sometimes refers to an
anonymous type by a pseudo-name, written In Italics, and uses such pseudo-names at places
where the syntax normally requires an Identifier.

Examples of type definitions" '

(WHITE, RED, YELLOW, GREEN, BLUE, BROt-VN, BLACK)
range 1.. 72
array(.. 10) of INTEGER

Examples of type declarations:

type CO'.OR Is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK):
type COLUMN Is range 1,. 72;
type TABLE Is array(l , 10) of INTEGER;

Notes.-

Two type definitions always define two distinct types, even if they are textually identical, Thus, the
array type definitions given In the declarations of A and B below define distinct types.

A array(l ,, 10) of BOOLEAN;
B array(l ,, 10) of BOOLEAN;

If A and B are declared by a multiple object declaration as below, thel,' types are nevertheless dif- 0
ferent, since the multiple object declaration Is equivalent to the above two Siingle object declara-
tions,

A, B array(1 ,, 10) of BOOLEAN;

3-7 Type Declarations 3,3, 1

. ., - . . ,,

ANSI/MIL-STD-1815A Ada Reference Manual

,o Incomplete typt. declarations are used for the defln;tIon of recursive and mutually dependent types
(see 3.8.1). Private type declarations are used In package specifications and In generic parameter
declarations (see 7.4 and 12.1).

References: access type definition 318, array type definition 3.e, beasu type 3.3, constrained array definition 3.6,
constrained subtype 3.3, declaration 3,1, derived type 3.4, derived type definition 3.4, discriminant part 3.71,
elaboration 3.9, enumeration type definition 3.5.1, Identifier 2,3, incomplete type declaratior 3,8.1, Integer type
definition 3.5.4, multiple objeut declaration 3,2, "iumeric type 3.5, private type declaration 7,4, real type definition
3,5,6, rnserved word 2,9, type 3.3

"0"

3.3.2 Subtype Declarations

A subtype declaration declares a subtype.

2 subtype.declsration

subtype Identifier i1 3ubtype-indicatlon;

subtype-indication tvpe.mark [constraint]

type-mark ::= typo..name subtype..name

constraint ::m--
rnnga..constraint Ifloatlng..poinL-constraint Ifixed...roint~conat ralilt

I IndeKtcongtraint I discrImInant-constraint

3 A type mark denotes a type or a subtype, If a type mark is the name of a type, the type mark
denotes this type and also the corresponding unconstrained subtype, The base type ofa type mark
Is, by definition, the base type of the type or subtype denoted by the type mark,

A subtype indication defines a subtype of the bace type of the type mark,

5 If an Index constraint appears after a type mark In a subtype Indication, the type mark must not
already Impose an index constraint, Likewise for a dlscriminani constraint, tho type mark must not
already Impose a discriminant constraint. .'As

a The elaboration of a subtype declaration consists of the elaboration of the subtype Indication, The
elaboration of a subtype Indication creates a subtype. If the subtype indication does not include a
constraint, the subtype Is the same as that denoted by the type mark, The elaboration of a subtype
Indication that Includes a constraint proceeds as follows:

(a) The constraint Is first elaborated.

a (b) A check Is then made that the constraint Is compatible with the type or subtype denoted by
the type mark,

4 The cond!tlon Imposed by a constraint is the condition obtained after elaboration of the constraint, 0
(The rules of constraint elaboration are such that the expressions and ranges of constraints are
evaluated by the elaboration of these constraints,) The rules defining compatibility are given for
"each form of constraint in the appropriate section. These rules are such that It a constraint Is com-
patible with a subtype, then the condition Imposed by the constraint cannot contradict any condi-
tion already Imposed by the subtype on its values. The exception CONSTRAINT-ERROR Is raised if
any check of compatibility fails,

3.3,2 Subtype DeclarsatIons 3-8

Declarations and Types

Examples of subtype declarations:

subtype RAINBOW Is COLOR range RED ,. BLUE; see 3,3,1
subtype REDBLUE Is RAINBOW;
subtype INT Is INTEGER;
subtype SMALLJINT Is INTEGER range -10 ,, 10;
subtype UPTOK Is COLUMN range 1 *, K; -- see 3.3.1
subtype SQUARE Is MATRIX(1 .. 10, 1., 10); -- see 3,6
subtype MALE Is PERSON(SEX => ML -- see 3.8

Note,
'"S

A subtypt, declaration does not define a new type,

References: base type 313, compatibility of dlscriminant constraints 3,7,2, compatibility of fixed point constraInts 123.5,9, comnpatibility of floatling point constraints 3,517, compatibillty of Index constraints 346 1, compatlbility of range ". -
constraints 3.5, constrainLerror exception 11,1, declaration 3,1, dlscrlminant 3.3, discrimlnant constraint 3,7.2,

elaboration 319, evaluation 4.5, expression 4,4, floating point ronstraint 35..7, fixed point constraint 3,5,9, Index con- .
straint 3.6,1, range constraint 3,5, reserved word 2.9, subtype 33, type 3.3, type name 3,3,1, unconstrained subtype
3,3

3.3.3 Classlfiaation of Operation@

The set of operations of a type includes the explicitly declared subprograms that have a parameter
or result of the type; such subprograms are necessarily declared after the type declaration,

The remaining operations are each Implicitly declared for a given type declaration, Immediately "
after the type definition, These Implicitly declared operations comprise the basic operations, the
predefined operators (see 4.5), and enumeration Ilterals, In the case of a derived type declaration,
the implicitly declared operations Include any derived subprograms. The operations Implicitly
declared for a given type declaration occur after the type declaration and before the next explicit
declaration, If any. The Implicit declarations of derived subprogreims occur last,

A basic operation Is an operatiun that Is Inherent In one of the following: A

* An assignment (In assignment statements and Initializations), an allocator, a membership test,
or a short-circuit control form,

* A selected component, an Indexed component, or a slice, .

* A qualification (in qualified expressions), on explicit type conversion, or an Implicit type con-
version of a value of type universalinteger or unlversaLreal to the corresponding value of
another numeric type.

* A numeric lIteral (for a universal type), the literal null (for an access type), a string literal, an

aggregate, or an attribute. .

For every type or subtype T, the following attribute Is defined:

T'BASE The baLe type of T. This attribute Is Ellowotd only as thn prefix of the name of
another attribute: for example, T'BASE 'FIRST,

3_9 Classification of Operations 3,3.3

"ANSI/MII-STD-1875A Ada Reference Manual
~~"1

"Note:

"' s 1 Each literal is an operation whose evaluation yields the corresponding value (see 4.2). Likewise, an
aggregate Is an operation whose evaluation yields a value of a composite type (see 4,3). Solve
operations of a type operate on values of the type, for example, predefined operators and certain
subprograms and attributes, The evaluation of some operations of a type returns a value of the
type, for example, literals and certain functions, attributes, and predefined operators. Assignment
is an operation that operates on an object and a value, The evaluation of the operation cor-
responding to a selected component, an Indexed component, or a slice, yields the object or value
denoted by this form of name,

*%: al References,: aggregate 4.3, allocator 4.8, assignment 612, attribute 4,1,4, character lIteral 2,5, composite type 3.3,
. conversion 4,6, derived subprogram 3,4, enumeration literal 3,5 1, formal parameter 6.1, function 6.5, indexed com-

ponent 4,1.1, Initial value 3,2.1, literal 4,2, membership test 4.5 445.2, null literal 3,8, numeric literal 2.4, numeric type
3,5, object 3,2.1,. .1, predeflned operator 4,5, qualified expresslon 4,7, selected component 4,1,3, shoit-circuit con
trol form 4,6 4.5.1, slice 4.1,2, string literal 2,6, subprogram 6, subtype 3.3, type 3.3, type declaration 3,3.1, unlver.
. al-Integer type 3,5,4, unlversol.real type 3.5,, universal type 4.10

3.4 Derived Types

A derived type definition defines a new (base) typeo whose characteristics are derived from those of
a parent type; the new type Is c•lled a derived type. A derived type definition further defines a
"derived subtype, which Is a subtype of the derived type,

derlved..type.defInitIon ::- new subtype-indication

" • The subtype Indication that occurs after the reserved word now defines the parent subtype, The
paren- type Is the base type of the parent subtype, If a constraint exists for the parent subtype, a
similar constraint exists for the derived subtype; the only difference Is that for E range conrterlint,
"and likewise for a floating or fixed point constraint that Includes a range constraint, the value of
each bound Is replaced by the corresponding value of the drrived type, The characteristics of the
derived type are defined as follows:

4 • The derived type belongs to the same class of types as thm parent type, The set of possible
values for the derived type Is a copy of the set of possible values for the parent type. If the
parent type Is composite, then the name components exist for the derived type, and the sub,-
type of corresponding components Is the same.

5 e For each basic operation of the parent type, there is a corresponding basic operation of the
derived type, Explicit type conversion of a value of the parent type Into the corresponding
value of the derived type Is allowed and vice versa as explained In section 4,6.

e For mach enumeration literal or predefined operator of the parent typo there is a corresponding
operation for the derived type, .

e If the parent type Is a task type, then for each entry of the parent type there Is a corresponding
entry for the derived type,

I if a default expression exists for a component of an object having the parent type, then the
same default expression Is used for the corresponding rompanont of tn object having the
derived type,

"* 3.4 Deriwvd Types 3-10

"*• . ' .

Declarations and Types

0 If the parent type Is an access type, then the parent and the derived type share the same col-
lertion; there Is a null access value for the derived type and it is the defatilt initial value of that
type.

* If an explicit representation clause exists tor the parent type and If this clause appears before i0
the derived type definition, then there Is a corresponding representation clause (an Implicit 0
one) for the derived type,

e Certain subprograms that are operations of the parent type are said to be derivable. For each 11
derivable subprogram of the parent type, there Is a corresponding derived subprogram for the
derived type, Two kinds nf derivable subprograms exist. First, If the parent type Is declared
immediately within the visible part of a package, then a subprogram that Is itself explicitly
declared Immediately within the visible part becomes derivable after the end of the visible
part, If It Is an operation of the parent type, (The explicit declaration is by a subprogram
declaration, a renaming declaration, or a generic Instantlation,) Second, if the parent type Is
Itself a derived type, then any subprogram that has been derived by this parent type Is further
derivable, unless the parent type Is declared In the visible part of a package and the derived
subprogram Is hidden by a derivable subprogram of the first kind,

Each operation of the derived type Is implicitly declared at the place of the derived type declara- 1•
tlon, The Implicit declarations of any derived subprograms occur last,

The specification of a derived subprogram Is obtained Implicitly by systematic replacement of the ,3
parent type by the derived type In the specification of the derivable subprogram. Any subtype of
the parent type Is likewise replaced by a subtype of the derived type with a similar constraint (as
for the traniformation of a constraint of the parent subtype Into the corresponding constraint of
the derived subtype), FinaIll,, any expression of the parent type Is made to be the operand of a type
conversion that yields a result of the derived type,

Calling a derived subprogram Is equivalent to calling the corresponding slubprogram of the parent 14

type, In which each actual parameter that Is of the derived type Is replaced by a type conversion of
this actual parameter to the parent type (this means that a conversion to the parent type happens
before the call for the modes in and In out; a reverse conversion to the derived type happens after
the call for the modes In out and out, see 6.4.1), In addition, If the result of a called function Is of
the parent type, this result is converted to the derived type,

If a derived or private type Is declared ImmedlAtely within the visible part of a package, then, within
this visible part, this type must not be used as the parent type of a derived type definition. (For
private types, see also section 7,41.)

For the elaboration of a derived type definition, the subtype Indication Is first elaborated, the
derived type Is then created, and finally, the derived subtype is created,

Exampies: -?

type LOCALCOORDINATE Is new COORDINATE: -- two different types
type MIDWEEK Is new DAY ringe TUE ., THU; see 3,5.1
type COUNTER Is new POSITIVE; -- same range as POSITIVE

0
type SPECIAL-KEY Is new KEYMANAGERKEY; -- see 7.4.2

the derived subprogram. have the following specifications:

-- procedure GETKEY(K : out SPECIALKEY);
-- functlon "<"(X,Y SPECIALXEY) return BOOLEAN;

3-1 1 Derlvwd Types 3.4

ANSI/MIL-STD-1815A Ada Reference Manual

Notes.:

1' The rules of derivation of basic operations and enumeration literals imply that the notation for any
literal or aggregate of the derived type is the same as for the parent type; such literals and
aggregates are said to be overloaded, Similarly, It follows that the notation for denoting a compo-
nent, a discriminant, an entry, a slice, or an attribute is the same for the derived type as for the

%! parent type.

19 Hiding of a derived subprogram is allowed even within the same declarative region (see 8.3). A
derived subprogram hides a predefined operator that has the same parameter and result type
profile (see 6.6).

20 A generic subprogram declaration is not derivable since it declares a generic unit rather than a sub-
program. On the other hand, an Instantiation of a generic subprogram is a (nongenoric) sub-
program, which is derivable if It satisfies the requirements for derivability of subprograms,

If the parent type is a boolean type, the predefined relational operators of the derived type deliver a
result of the predefined type BOOLEAN (see 4,5.2), , "

22 If a representation clause is given for the parent type but appears after the derived type declara-
tion, then no corresponding representation clause applies to the derived type; hence an explicit
representation clause for such a derived type :s allowed,

23 For a derived subprogram, If a parameter belongs to the derived type, the subtype of this , ,
parameter need not have any value in common with the derived subtype,

24 References' access value 3,8, e',tual parameter 6.4,1, aggregate 4,3, attribute 4,1,4, base type 3,3, basic operation
* 3,3.3, boolean type 3,5.3, bound of a range 3.6, class of type 3.3, collection 3.8, component 3.3, composite type 3.3,

constraint 3,3, conversion 4,6, declaration 3.1, declarative region 8,1, default expression 3.2,1, default Initial value for
an access type 3.8, discrlminant 3,3, elaboration 3,9, entry 9.5, enumeration literal 3,5.1, floating point constrsint ...** .2
3,5,7, fixed point constraint 3.5,9, formal parameter 6.1, function call 6.4, generic declaration 12,1, immediately
within 8.1, implicit declaration 3,1, literal 4.2, mode 8.1, overloading 8.6 8.7, package 7, package specification 7.1,
"parameter association 6.4, predefined operator 4,5, private type 7.4, procedure 6, procedure call statement 6.4, renge
constraint 3,5, representation clause 13.1, reserved word 2,9, slice 4.1.2, subprogram 6, subprogram specification
6.1, subtype indication 3.3,2, subtype 3.3, type 3.3, type definition 3.3.1, visible part 7.2

3.5 Scalar Types

Scalar types comprise enumeration types, Integer types, and real types. EDlumeratlon types and
imleger types are called discrete types; each value of a discrete type has a position number which
is an integer value, Integer types and real types are called numeoc types. All scalar types are
ordered, that is, all relational operotors are predefined for their values,

2 range-c~onstraint range range

range :--range-attribute
I simple._ex;'ression ,, simple-expresslon

3.5 Scalar Types 3-12

Declarations and Types

A range specifies a subset of values of a scalar type. The range L , R specifies the values from L to 3
R inclusive if the relation L <= R is true. The values L and R are called the lower bound and upper
bound of the range, respectively, A value V is said to satisfy a range constraint if it belongs to the
range; the value V is said to belong to the range If the relations L <= V and V <= R are both TRUE,
A null range is a range for which the relation R < L is TRUE ; no value belongs to a null range. The
operators <= and < in the above definitions are the oredefined operators of the scalar type. P

"If a range constraint is used In a subtype indication, either divectly or as part of a floating or fixed
point constraint, the type of the simple expressions (likewise, of the bounds of a range attribute)
must be the sami as the base type of the type mark of zhe subtyp(, indication. A range constraint is
compatible with a subtype if each bound of the rang.Je belongs to the aubtype, or if the range con-
straint defines a null range; otherwise the rant e constraint is not compatible with the subtype.

The elaboration of a range constraint consists of tha evaluation of the range. The evaluation of a
range defines its lower bound and Its upper bound. If simple expressions are given to specify the
bounds, the evaluation of the range evalua Les these simple expressions in some order that is not
defined by the language.

Attributes 6

For any scalar type T or for any subtype T .)f a scalar type, the following attributes are defined: 7

T'FIRST Yields the lower bound of T. The value of this attribute has the samne type as T.

T'LAST Yields the upper bound of T. The value of this attribute has the same type as T.

Note:

Indexing and iteration rules use values of discrete types, 10

References: attribute 4.1.4, constraint 3,3, enumeration type 3.,1, erroneous 1,6, evaluation 4,5, fixed point ii
constraint 3,5,9, floating point constraint 3.5,7, index 3,6, Integer type 3,5.4, loop statement 5.5, renge attribute
3.6.2, real type 3,5.6, relational operator 4,5 4.562, satisfy a constraint 3.3, simple exr'resslon 4.4, subtype Indication
"3.3,2, type mark 3.3.2

3.5.1 Enumeration Types

,An enumeration type definition defines an enumeration type.

enumer'ation-type-definition :2= .

(enumerationJlteral-specification I, enunieration-literalespecification)

enumeratloniliteral-specification ::= enumeration-literal

enumeratlon.-llteral ::= identifier I character-literal

The identifiers and character literals listed by an enumeration type definition must tie dittiinct, Each 3
enumeration literal specification is the declaration of the corresponding enumeration literal: this
declaration is equivalent to the declaration of a parameterless function, the designator beilriI the
enumeration literal, and the result type being the enumeration type. The elaboration tf an
enumeration type definition creates an enumeration type; this elaboration Includes that of every
enumeration literal specification, ..

3--13 Enumeration Types 3.6.1

ANSI/MIL-STD-1815A Ada Reference Manual
'0

Each enumeration literal yields a different enumeration value. The predefined order relations
between enumeration values follow the order of corresponding position numbers. The position
number of the value of the first listed enumeration literal is zero; the position number for each
other enumeration literal is one more than for Its predecessor In the list.

5 If the same identifier or character literal Is specified In more than one enumeration type definition, _
"the corresponding literals are said to be ovwrloaded. At any place where an overloaded enumera-
tion literal occurs in the text of a program, the type of the enumeration literal must be determinable
from the context (see 837),

6 Examples:

type DAY Is (MON, TUE, WED, THU, FRI, SAT, SUN):
type SUIT Is (CLUBS, DIAMONDS, HEARTS, SPADES);
type GENDER is (M, F);
type LEVEL Is (LOW, MEDIUM, URGENT);
type COLOR In (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);4 type LIGHT is (RED, AMBER, GREEN); -- RED and GREEN are overloaded

type HEXA Is ('A', 'B', 'C', 'D', 'E', 7F');
type MIXED Is ('A', 'B', '*', B, NONE, '?', ''):

subtype WEEKDAY Is DAY range MON ,, FRI;
subtype MAJOR Is SUIT range HEARTS ., SPADES;
subtype RAINBOW Is COLOR range RED BLUE; -- the color RED, not the light

SNote.

If an enumeration literal occurs In a context that does not otherwise suffice to determine the type
of the literal, then qualification by the name of the enumeration type Is one way to resolve the
ambiguity (see 8.7), '.i

8 References: character Iieral 2,5, declaration 3,1, designator 5,1, elaboration 3.9, 6,1, function 6.5, identifier 2.3,
name 4.1, overloading 6 8,7, position number 3,5, qualified expression 4,7, relational operator 4,5 4,5.2, type 3.3,

* type definition 3.3.1

3.5.2 Character Types

An enumeration typo is said to be a character type if at least one of Its enumeration literals Is a

character literal. The predefined type CHARACTER is a character type whose values are the 128
characters of the ASCII character set, Each of the 95 graphic characters of this character set Is
denoted by the corre'.pondlng character literal,

2 Example:"

type ROMAN.-DIGIT Is ('I, 'V', 'X', 'L', 'C', 'D', 'M'); .

Notes.'

3 The predefined package ASCII Includes the declaration of constants denoting control characters
and of constants denoting graphic characters that are not In the basic character set.

3

S3.5.2 Character Types 3-14

Declarations and Types

A conventional character set such as EBCDIC can be declared as a character type; the internal -

codes of the characters can be specified by an enumeration representation clause as explained In
section 13.3.

References: ascii predefined package C, basic character 2.1, character literal 2,5, constant 3,21, declaration 3.1,
enumeration type 3,5.1, graphic character 2.1, Identifier 2,3, literal 4,2, predefined type C, type 3,3

3.5.3 Boolean Types

There Is a predefined enumeration type named BOOLEAN. It contains the two literals FALSE and
TRUE ordered with the relation FALSE < TRUE- A boolean type is either the type BOOLEAN or a
type that Is derived, directly or Indirectly, from a boolean type.

References: derived type 3.4, enumeration literal 3.5,1, enumeration type 3,5,1, relational operator 4.5 4.5.2, type .
-|3,3 0,

:13 3

3.5.4 Integer Types

An integer type definition defines an Integer type whose set of values Includes at least those of the

specified range.

integer.type.deflnition ::= range-constraint 2

If a range constraint Is used as an Integer type definition, each bound of the range must be defined 3
by a static expression of some Integer type, but the two bounds need not have the same Integer
type. (Negative bounds are allowed.)

A type declaration of the form: .

type T Is range L.. R;"

Is, by definition, equivalent to the following declarations:

"type Integer-type Is new predeflned-Integer-type;
subtype T Is Integer-type range Integer-type(L) , Integer-typelR).

where Integer-type Is an anonymous type, and where the predefined Integer type Is implicitly 5

selected by the Implementation, so as to contain the values L to R Inclusive. The integer type .
"declaration Is Illegal If none of the predefined Integer typos satisfies this requirement, excepting
unIversaLinteger. The elaboration of the declaration of an Integer type consists of the elaboration
of the equivalent type and subtype declarations,

The predefined Integer types Include the type INTEGER, An implementation may also have
predefined types such as SHORT-INTEGER and LONG-INTEGER, which have (substantially) shorter
and longer ranges, respectively, than INTEGER, The range of each of these types must be
symmetric about zero, excepting an extra negative vr.lue which may exist In some Implementa-
"tions, The base type of each of these types Is the type Itself.

* 3-115 Integer Types 3.54

ANSI/MIL-STD-1815A Ada Refernnce Manual

',0

Integer literals are the literals of an anonymous predefined integer type that is called univer-
salI.Jnteger in this reference manual. Other integer types have no literals. However, for each
integer type there exists an implicit conversion that converts a universal-Integer value into the cor-
responding value (if any) of the Integer type. The circumstances under which these implicit conver-
sions are Invoked are described In section 4.6.

o The position number of an Integer value Is the corresponding value of the type universa/.Jnteger.

to The same arithmetic operators are predefined for all Integer types (see 4.5), The exception
NUMERIC-ERROR is raised by the execution of an operation (in particular an implicit conversion)
that cannot deliver the correct result (that Is, if the value corresponding to the mathematical result
Is not a value of the integer type), However, an Implementation Is not required to raise the excep-

tion NUMERIC-ERROR If the operation is part of a larger expression whose result can be computed
correctly, as described in section 11 .6.

Examples:

type PAGENUM Is range 1 . 2-000;
type LINE.SIZE Is range 1 . MAXLINESIZE;

subtype SMALLINT Is INTEGER range -10 ., 10;
subtype COL'JMNPTR Is LINESIZE range 1. 10;
subtype BUFFER-SIZE Is INTEGER range 0 MAX:

Notes.,

I? The name declared by an Integer type declaration Is a subtype name, On the other hand, the
predefined operators of an Integer type deliver results whose range Is defined by the parent
predefined type, such a result need not belong to the declared subtype, In which caso an attempt
to assign the result to a variable of the Integer subtype raises the exception CONSTRAINT..ERROR,

13 The smallest (most negative) value supported by the predefined Integer types of an Implementas
tion Is the named number SYSTEM.MININT mnd the largest (most positive) value Is
SYSTEMMAXINT (see 13.7).

14 References: anonymous type 3,3.1, belong to a subtype 3.3, bound of a range 3.5, conatrainLerror exception 11,1
conversion 4,6, Identifier 2.3, Integer literal 2.4, literal 4,2, numerlo..error exception 11,1, paren, type 3A4, predeflned
operator 4.5, range constraint 3., static, expresslon 4.9, subtype di claratlon 3.3,2, system predefined package 13.7,
type 3.3, type declaration 3,3,1, type definition 33,1, universal type 4.10

3.5.5 Operations of Discrete Types

The basic operations of a discrete type Include the operations involved in assignment, the
membership tests, and qualification; for a boolean type they Include the short-circuit control forms;
for an integer type they Include the explicit conversion of values of other numeric types to the
Integer type, and the Implicit conversion of values of the type unlverselJnteger to the type.

Finally, for every discrete type or subtype T, the basic operations include the attributes listed
below, In this presentation, T Is referred to as being a subtype (the subtype T) for any property that
depends on constraints Imposed by T; other properties are stated In terms of the base type of T.

3.5.5 Operations of Discrete Types 3-16
"• ~~....

Declarations and Types

The first group of attributes yield characteristics of the subtype T. This group includes the attribute
BASE (see 3.32), the attributes FIRST and LAST (see 3.5), the representation attribute SIZE (see
1 3.7.2), and the attribute WIDTH defined as follows:

r'WIDTH Yields the maximum Image length over all values of the subtype T (the image is the 4

sequence of characters returned by the attribute IMAGE, see below). Yields zero 6
for a null range, The value of this attribute Is of the type universal-Integer.

All attributes of the second group are functions with a single parameter. The corresponding actual
parameter Is indicated below by X.

T'POS This attribute Is a function. The parameter X must be a value of the base type of T. '"
The result type Is the type unlversal!jnteger. The result Is the position number of
the value of the parameter.

TWVAL This attribute Is a special function with a single parameter which can be of any 7

Integer type. The result type Is the base type of T, The result is the value whose
position number Is the universal.nteger value corresponding to X, The exception
CONSTRAINT-ERROR Is raised If the universal-Integer value corresponding to X Is
not In the range T'POS(T'BASE'FIRST) ,. T'POS(T'BASE'LAST).

T'SUCC This attribute Is a function, The parameter X must be a value of the base type of T,
The result type Is the base type of T, The result Is the value whose position number
Is one greater than that of X, The exception CONSTRAINT-ERROR Is raised If X
equals rBASE-LAST,

T'PRED This attribute Is a function, The parameter X must be a value of the base type of T,
The result type Is the baie type of T. The result Is the value whose position number
In one les than that of X. The exception CONSTRAINTERROR Is raised If X equals
T'BASE'FIRST.

T'IMAGE This attribute Is a function, The parameter X must be a value of the base type of T. io
The result type Is the predefined type STRING. The result Is the Image of the value
of X, that Is, a sequence of characters representing the value In display form, The
Image of an Integer value Is the corresponding decimal literal; without underlines,
leading zeros, exponent, or tralling spaces; but with a single leading character that -
Is either a minus sign or a space. The lower bound of the image Is one.

The Image of an enumeration value Is either the corresponding Identifier In upper
case or the corresponding character literal (including the two apostrophes);
neither leading nor trailing spaces are included, The Image of a character C, other
than a graphic character, is Implementation-defined; the only requirement is that
the Image must be such that C equals CHARACTER'VALUE (CHARACTER'IMAGE (C)),

T'VALUE This attribute Is a function. The parameter X must be a value of the predefined type
STRING. The result type Is the base type of T, Any leading and any trailing spaces
of the sequence of characters that correspondn to the parameter are ignored,

For an enumeration type, If the sequence of characters has the syntax of an .0

enumeration literal and if this literal exists for the base type of T, the result Is the
corresponding enumeration value. For an integer type, if the sequence of
characters has the syntax of an Integer literal, with an optional single leading
character that Is a plus or minus sign, and If there Is a corresponding value in the
base type of T, the result Is this value. In any other case, the exception
CONSTRAINT-ERROR Is raised.

3-17 Operations of Discrete Types 3.5.5

* • " ..

ANS1/MIL-STD- 87 5A Ads Reference Manual

In addition, the attributes A'SIZE and A'ADDRESS are defined for an object A of a discrete type
(see 13.7.2).

Besides the basic operations, the operations of a discrete type include the predefined relational
operators. For enumeration types, operations include enumeration literal.. For boolean types,
operations include the predefined unary logical negation operator not, and the predefined logical S
operators. For integer types, operations include the predefined arithmetic operators: these are the
binary and unary adding operators - and +, all multiplying operators, the unary operator abs, and
the exponentlating operator.

~ The operations of a subtype are the corresponding operations of its base type except for the fol-
lowing: assignment, membership tests, qualification, explicit type conversions, and the attributes '0
of the fitst group; the effect of each of these operations depends on the subtype (assignments,
membership tests, qualifications, and conversions Involve a subtype check; attributes of the first
group yield a characteristic of the subtype),

Notes:

17 For a subtype of a discrete type, the results delivered by the attributes SUCC, PRED, VAL, and
VALUE need not belong to the subtype; similarly, the actual parameters of the attributes Pos,
SUCC, PRED, and IMAGE need not belong to the subtype, The following relations are satisfied (In
the absence of an exception) by these attributes:

TPOSIT'SUCC(X)) = T'POS(X) + 1 ..

T'POS(TPRED(X)) - T'POS(X) - 1

T'VAL(T'POS(X)) - X
T'POS(T'VAL(N)) - N

Examples:
7.,,.,

-- For the typos and subtypes declared in section 3.5.1 we have:

-- COLOR'FIRST - WHITE, COLOR'LAST - BLACK
- RAINBOW'FIRST = RED, RAINBOW'LAST - BLUE

-- COLOR'SUCCIBLUE) - RAINBOW'SUCC(BLUE) - BROWN
-- COLOR'POS(BLUE) = RAINBOW'POS(BLUE) - 4
-- COLOR'VAL(O) - RAINBOW'VAL(O) - WHITE

19 fleferences, abs operator 4.5 4.5.6, assignment 5,2, attribute 4. 14, baos type 3.3, basic operation 3.3,3, binary
adding operator 4,5 4,5,3, boolean type 3,,13, bound of a range 3,5, character teral 2,5, constraint 3.3, con-
Sst•taint..error exception 11.1, conversion 4.6, discrete type 3.5, enumeration literal 3,5.1, exponentlating operator 4.5
4.5,6, function 6,5, graphic character 2,1, Identifier 2.3, Integer type 3.5.4. logIcal operator 4,5 4,5, 1, membership
teat 4.5 4.5,2, multiplying operator 4.5 4.455, not operator 4.5 4.5.6, numeric Iit--dl 2.4, numeric type 3.5, object 3.2,
operation 3.3, position number 3.5, predeflned operator 4.5, predefined type C, qualified expression 4,7, relationsi
operatnr 4.5 4.5.2, short-citcult control form 4.5 4.5,1, string type 3,6,3, subtype 3,3, type 3,3, unary adding operator
4,5 4,5.4, universal-Integer type 3,4.4, universal type 4.10

3,5.5 Operations of Discrete Types 3-18

Declarations and Types

3.5.6 Real Types

Real types provide approxlmatlons to the real numbers, with relative bounds on errors for floating
point types, and with absolute bounds for fixed point types,

real-type-definition 2

floating-.pointLconstraint J flxed-poinL.'ionstraint

A set of numbers called model numbers Is associated with each real type. Error bounds on the -
predefined operations are given in torms of the model numbers. An implementation of the type
must include at least these model numbers and represent them exactly.

An Implementation-dependent set of numbers, called the safe numbers, Is also associated with
each real type, The set of safe numbers of a real type must include at least the set of model
numbers of the type. The range of safe numbers Is allowed to be larger than the range of model
numbers, but error bounds on the predefined operations for safe numbers are given by the same
rules as for model numbers. Safe numbers therefore provide guaranteed error bounds for opera-
tions on an Implementation-dependent range of numbers; In contrast, the range of model numbersdepends only on the real type definition and Is therefore independent of the Implementation,

Real literals are the Ilterals of an anonymous predefined real type that Is called universal-real In •
this reference manual, Other roal types have no literals. However, for each real type, there exists an
Implicit conversion that converts a universoL real value Into a value of the real type. The condl-
tions under which these Implicit conversions are Invoked are described In section 4.6, If the
unlversaLreal value Is a safe number, the Implicit conversion delivers the corresponding value; If It
belongs to the range of safe numbers but Is not a safe number, then the converted value can be
any value within the range defined by the safe numbers next above and below the universalj'eel
value.

The execution of an operation that yields a value of a real type may raise the exception ,
NUMERIC-ERROR, as explained In section 4.5.7, If It cannot deliver a correct result (that Is, if the
value corresponding to one of the possible mathematical results does not belong to the range of
safe numbers); In particular, this exception can be raised by an Implicit conversion. However, an
Implementation Is not required to raise the exception NUMERIC-ERROR If the operation Is part of a
larger expression whose result can be computed correctly (see 11.6),

The elaboration of a real type definition Includes the elaboration of the floating or fixed point con-
straint and creates a real type,

Note:

An algorithm written to rely only upon the minimum numerical properties guaranteed by the type
definition for model numbers will be portable without further precautions,

References, conversion 4A, elaboration 3,9, fixed point constraint 3,5.9, floating point constraint 3,5,7, literal 4.2, ,.. .
numerlc~error exreption 11. 1, predeflned operation 3,3.3, real literal 2.4, type 3.3, type definition 3,3.1, universal
type 4.10

3-19 Reel Types 3.6.6

• . +

ANSI/MIL-STD- 1815A Ads Reference Manuel

3.5.7 Floating Point Types

For floating point types, the error bound Is sperif led as 8 relative precision by giving the ,equired
minimum number of significant decimal digits.

floating.point-constraint

floating-accuracy-definltion (ranGe.constraint]

floating-accuracy.dftinltion digits stat/csimple-expression

The minimum number of b;gnificant decimal digits is specified by the value of the static simple
expression of the floating accuracy definition, This value must belong to some Integer type and
must be positive (nonzero); It Is denoted by D In the remainder of this section. If the floating point
constraint is used as a real type definition and Includes a range constraint, then each bound cf the
ranige must be defined by a static expression of some real type, but the two hounds need not have
the same real type.

For a given radix, the following canonical form Is defineu for any floating point model number other

than zero:

sign *i, mantissa . (redix ** exponent)

In this form: sign Is either +1 or -1; mantisse is expressed in a number base given by radix; and
exponent Is an Integer number (possibly negative) such that the Integer part of mantissa Is zero 9
and the first digit of Its frac(tlonal part Is not a zero.

The specified number D Is the minimum number of decimal digits required after the point In the
decimal mantissa (that Is, If radix Is ten), The value of D In turn determines a corresponding
number B that Is the minimum number of binary digits required after the point In the binary man-
tissa (that is, If radix Is two), The number B associated with D is the smallest value such that the
relative precision of the binary form is no less than that specified for the decimal form, (The
number B is the Integer next above (D*Iog(10)/Iog(2)) + 1.)

The model numbers defined by a floating accuracy definition comprise zero and all numbers whose
binary canonical form has exactly B digits after the point In the mantissa and en exponent in the
range -4,-,B .. +4*B. The guaranteed minimum accuracy of opesitions of a floating point type Is 4_0
defined in terms of the model numbers of the floating point constraint that forms the cor-
responding real type definition (see 4,5.7).
The predefined floating point types Include the type FLOAT, An Implementation may also have
predefined types such as SHORTFLOAT and LONG.-FLOAT, which have (substantially) lose and
more accuracy, respectively, than FLOAT. The base type of each predefined floating point type Is
the type Itself, The model numbers of each predefined floating point type are defined In terms of
the number D of decimal digits returned by the attribute DIGITS (see 3.5.8).

For each predefined floating point type (consequently also for each type derived therefrom), a set
of safe numbers Is defined as follows. Tho safe numbers have the same number B of mantissadigits as the model numbers of the type and have an exponent in the range -E ., +E where E Is
Implementation-defined and at least equal to the 4,8 of model numbers, (Consequently, the safe
numbers Include the model numbers,) The rules defining the accuracy of operations with model
and safe numbers are given In section 4,5.7. The safe numbers of a subtype are those of Its base
type.

3.5.7 Floating Point Typos 3-20

Declarations and Types

A floating point type decleration of one of the two forms (that is, with or without the optional range
constraint Indicated by the square brackets):

type T Is digits D [range L ,, RI;

is, by definition, equivalent to the following declarations:

type floating._point_type Is new predefinedifloeting-point-type;
subtype T is floating-point-type digits)

[range floating.point-type(L) . floatingpointtype(R)];

where floating-poinrjtype Is an anonymous type, and where the predefined floating point type Is
implicitly selected by the Implementation so that Its model numbers include the model numbers
defined by D; furthermore, It a range L .. R Is supplied, then both L and R must belong to the range
of safe numbers, The floating point declaration Is Illegal If none of the predefined floating point
types satisfies these requirements, excepting universalreal, The maximum number of digits that
can be specified In a floating accuracy definition is given by the system-dependent named number
SYSTEM. MAX-DIGITS (see 13.7.1).

The elaboration of a floating point type declaration consists of the elaboration of the equivalent •
type and subtype declarations.,

If a floating point constraint follows a type mark In a subtype indication, the type mark must o4
denote a floating point type or subtype. The floating point constraint Is compatible with the type
mark only if the number D specified in the floating accuracy defini-Jon Is not greater than the cor-
respondinq number D for the type or subtype denoted by the type mark, Furthermore, If the
floating point constraint Includes a range constraint, the floating point constraint is compatible
with the type mark only If the range constraint Is, Itself, compatible with the type mark,

The elaboration of such a subtype Indication Includes the elaboration of the range constraint, If
there is one; it creates a floating point subtype whose model numbers are defined by the cor-
responding floa:ng a=curaoy definition, A value of a floating point type belongs to a floating point
subtype If and only !f It belongs to the range defined by the subtype,

The same arithmetic operators are predefined for all floating point types (see 4.5), 6

h Notes.'

A range constraint Is allowed In s floathi;g p•.nt subtype Indication, either directly after tihe type
mark, or as part of a floating point constraint, In either case the bounds of the range must belong
to the base type of the type mark (see 3.5). The Imposition of a floating point constraint on a type
mark In a subtype Indication cannot reduce the allowed range of values unless It includes a range
constraint (the range of model numbers that correspond to the specified number of digits can be • .,
smaller than the range of numbers of the type mark), A value that belongs to a floating point sub-
type need not be a model number of the subtype.

Examples: 18

type COEFFICIENT It digits 10 rangs -1,0 1.0;

type REAL Is digits 8;
type MASS Is digits 7 range 0.0 ., 1.0E35;

subtype SHORT._COEFF Is CCEFFICIENT digits 5; - a subtvpe with lea. accuracy
subtype PROBABILITY Is REAL range 0,0 1.0; -- a subtype with a smaller range

3-21 Floating Point Types 3,547

.~•

A IP.'.UlIVL -. lU- IC IAio A18 rieTerence Mvianuai

Notes on the examples:
19 The Implemented accuracy for COEFFICIENT Is that of a predefined type having at least 10 digits of

precision. Consequently the specification of 5 digits of precision for the subtype SHORTCOEFF is
allowed, The largest model number for the type MASS is approximately 1.27E30 and hence less
than the specified upper bound (1.0E35). Consequently the declaration of this type is legal only If
this upper bound is in the range of the safe numbers of a predefined floating point type having at 0
least 7 digits of precision,

20 References: anonymous type 3.3.1, arithmetic operator 3.5,5 4.5, based literal 2.4.2, belong to a subtype 3.3, bound
of a range 3,5, compatible 3,3,2, derived type 3.4, digit 2,1, elaboration 3.1 3.9, error bound 3.5.6, exponent 2A4.1
Integor type 3.5,4, model number 3.5.6, operation 3.3, predefined operator 4,5, predefined type C, range constraint
3.5, real type 3,5.6, real type definition 3.5.6, safe number 3.5.6, simple expression 4.4, static expression 4,9, subtype
declaration 3,3,2, subtype Indication 3.3.2, subtype 3.3, type 3.3, type declaration 3.3.1, type mark 3,312

3.5.8 Operations of Floating Point Types
b.• ,%

The basic operations of a floating poin, type Include the operations involved in assignment,
membership tests, qualification, the explicit conversion of values of other numeric types to the
floating point type, and the Implicit conversion of values of the type universal/rea! to the type,

In addition, for every floating point type or subtype T, the basic operations Include the attributes
listed below, In this presentation, T is referred to as being a subtype (the subtype T) for any
property that depends on constraints Imposed by T; other properties are stated in terms of the .
base type of T,

The first group of attributes yield characteristics of the subtype T, The attributes of this group are
the attribute BASE (see 3.3,2), the attributes FIRST and LAST (see 3,5), the representation
attribute SIZE (see 1 3.7.2), and the follrwing attributes:

T'DIGITS Yields the number of decimal digits in the decimal mantissa of model numbers
of the subtype T, (This attribute yields the number D of section 3,5,7.) The
value of this attribute Is of the type unlversal.Jnteger,

S T'MANTISSA Yields the number of binaiy digits In the binary mantissa of model numbers ot
the subtype T, (This attribute yields the number B of section 3,5,7,)'The value
of this attribute Is of the typo universal.nteger.

r'EPSILON Yields the absolute value of the difference between the model number 1.0 and
the next model number above, for the subtype T. The value of this attribute is
of the type universa/lreal.

T'EMAX Yields the largest exponent value In the binary canonical form of model
numbers of the subtype T, (This attribute yields the product 4*B of section
3.5.7.) The value of this attribute Is of the type unlversaIJnteger,

a T'SMALL Yields the smallest positive (nonzero) model number of the subtype T, The
value of this attribute Is of the type un/versal/jeal,

9 T'LARGE Ylelds the largest positive model number of the subtype T, The value of this
attribute Is of the type unlversal.real.

3.5.8 Operations of Floating Point Types 3-22

,'
, • , •

Deciarations and Types

The attributes of the second group Include the following attributes which yield characteristics of 10
the safe numbers:

T'SAFE-EMAX Yields the largest exponent value In the binary canonical form of safe numbers of 1
the base type of T. (This attribute yields the number E of section 3,5.,7) The
value of this attribute Is of the type un/versel/Jnteger.

T'SAFE...SMALL Yields the smallest positive (nonzero) safe number of the base type of T. The .

value of this attribute Is of the type unlversal-real.

T'SAFL.LARGE Yields the largest positive safe number of the base type of T, The value of this 1
attribute Is of the type universol-ree/. '

In addition, the attributes A'SIZE and A'ADDRESS are defined for an object A of a floating point 14

type (see 13.7,2). Finally, for each floating point type there are machine-dependent attributes that
are not related to model numbers and safe numL~ers. They correspond to the attribute designators
MACHINE.RADIX, MACHINE-MANTISSA, MACHINL-EMAX, MACHINE-.EMIN, MACHINE-.ROUNDS, -

and MACHIN EOV.R FLOWS (see 13.7.3). '

Besides the basic operations, the operations of a floating point type Include the relational
operators, and the following predefined arithmetic operators: the binary and unary adding
operators - and +, the multiplying operators * and /, the un~ary operator abs. and the exponen-
tiating operator.

The operations of a subtype are the corresponding operations of the type except for the following:
assignment, membership tests, qualification, explicit conversion, and the attributes of the first
group; the effects of these operations Pro redefined in terms of the subtype.

Notes.,

The attributou EMAX, SMALL, LARGE, and EPSILON are provided for convenience, They are all
related to MANTISSA by the following formulas:

T'EMAX =14*T'MANTISSA

T'EPSILON ~.2.0**(1 - T'MANT!SSA)
T'SMALL .~2.0**(-T'EkIAX - 1)
T'LARGE 2.0**T'EMAX * (1.0 - 2.0**(-T'MANTISSAi)

*The attribute MANTISSA. giving the number of binary digits in the mantissa, Is Itself re!3ted to
DIGITS. The following relations hold between the characteristics of the model numbors and those
of the safe numbers:

T'BASE'EMAX <-~ T'SAFE-EMAX
I"BASE'SMALL >-. T'SAFE...SMALL
T'I3ASE'LARGE <-= T'SAFE...LARGE

The attributes TFIRST and T'LAST need not yield model or safe numbers. If a cr,(rtaln number of
*digits Is specified in the declaration of a type or subtype T, the attribute TDUIGITS yields this
A number,

References: ahi operator 4.5 4.51, arlthmetic operator 3,15,5 4.B, assignment b5.2, attribute 4,1.4, base type 3.3, ~
beasi opretlaon 1.3.3, binary adding operator 4.5 4.5.3, bound of a range 3.5, constraiint 3.3. conversion 4.6, digit 2.1,

* ~exponentiating operator 4.5 4,15.6, floating point type 3IV,, membership toot 4.5 4.5.2, model number 35.6., mouk
*tiplying operator 4.15 4,5,15, numeric type 3.5, object 3.2, operation 3.3, prisdefined operator 4.15, clualifled expression

4.7, relational operator 4,15 4.,62, mate number 31.6,, subtype 3,3, type 3.3, unary adding operator 4.5 4.5.4, universal .
type 4.10, urilversal-integer type 3.,4A, unIversol-reai type 3.5.8

3-23 Oporations of Floating Point Types 3468

"ANSI/MIL-STD-1815A Ada Reference Manual

3.5.9 Fixed Point Types

For fixed point types, the error bound Is specified as an absolute value, called the delta of the fixed
point type.

Sflxed_,poinLconstraint

fixed-accuracy-definition (range-constraint]

fixed.. accuracy-.definitlon delta static.simple-expression

The delta Is specified by the value of the static simple expression of the fixed accuracy definition,
This value must belong to some real type and must be positive (nonzero), If the fixed point con-
straint is used as a real type definition, then It must Include a range constraint; each bound of the
specified range must be defined by a static expression of some real type but the two bounds need
not have the same real type, If the fixed point ronstraint Is used In a subtype indication, the range
constraint Is optional,

e r o A canonical form Is defined for any fixed point model number other than zero, In this form: sign Is.. ~~either 4.1o -1,1 mantissa Is a positive (nonzero) Integer: and any model number Is a multiple of a .".

certain positive real number called small, as follows:

sign m, mantIssa * smll

For the model numbern defined by i fixed point constraint, the number small Is chosen as the
largest power of two that Is not greater than the delta of the fixed accuracy definition Alternative-
"ly, It Is possible to specify the value of sm#ll by a length clause (see 13,2), In which case model
numbers are multiples of the specified value, The guaranteed minimum accuracy of operations of a
fixed point type Is defined In terms of the model numbers of the fixed point constraint that forms
"the corresponding real type definition (see 4,5,7),

For a fixed point constraint that Includes a range constraint, the model numbers comprise zero and
all multiples of small whose mantissa can be expressed using exactly B binary digits, where the
value of B Is chosen as the smallest integer number for which each bound -'. b;e specified range Is
either a model number or lies at most amall distant from s modele number, For a fixed point con-
atraint that does not include a range constraint (thlu is only allowed after a type mark, In a subtype

. Indication), the model nurnhers ars defined by the delta of the fixed accuracy definition and by the
rnngc of tihe subtype denoted by the type mark,

"An Implementation must have at least one anonymous prrdeflned fixed point type, The base type
of each such fixed point type Is the type Itself, the modul numbers of each predefined fixed point
type comprise zero and all numbers for which mantissa (In the canonical form) has the number of
binary digits returned by the attribute MANTISSA, and for which the number small has the value
returned by the attribute SMALL.

A fixed point type declaration of the form:

type T Is delta 0 range L ., H;

"is, by definition, equivalent to the following declarations,

type figed4hoint.type Is new predafined-fixedpoinh•ttype;
j.uhtypoi T Is fixed-poInt-type

range flxed.vpotnt.-type(L) ftxedpoint.type(R); '

3 ,.5.9 Fixed Point Types 3_24

Declarations and Types

*0

In these declarations, fixed.point-type Is an anonymous type, and the predefined fixed point type
Is implicitly selected by the Implementation so that its model numbers inclide the model numbers
defined by the fixed point constraint (that is, by D, L, and R, and possibly by a length clause
specifying small),
The fixed point declaration is Illegal If no predefined type satisfies these requirements. 'he safe S
numbers of a fixed point type are the model numbers of its base type.

The eiaboration of a fixed point type declaration consists of the elaboration of the equivalent type
and subtype declarations,

If the fixed point constrdint follows a type mark In a subtype indication, the type mark must denote
a fixed point type or subtype. The fixed point constraint Is compatible with the type mark only If the
delta specified by the fixed accuracy definition Is not omaller then the delta for the type cr subtype
denoted by the type mark. Furthermore, If the fixed point constraint Includes a range constraint,
the fixed point constraint Is compatible with the type mark only If the range constraint Is, Itself,
compatible with the type mark.

The elaboration of such a subtype Indication Includes the elaboration of the range constraint, If
there Is one; It creates a fixed point subtype whose model numbers are defined by the cor-
responding fixed point constraint and also by the ;ength clause specifying small, If there Is one, A
value of a fixed point type belongs to a fixed point subtype If and only If It belongs to the range
defined by the subtype,

The same arithmetic operators are predefined for all fixed point types (see 4,5), Multiplication and
division of fixed point values deliver results of an anonymous predefined fixed point type that Is cal-
led universa/Jixed In this reference manual; the accuracy of this type Is arbitrarily fine, The values
of this type must be converted explicitly to some numerin type,

Notes,,

If S Is a subtype of a fixed point type or subtype T, then the set of model numbers of S Is a subset .'
of those of T, If a length clause has been given for T, then both S and T have the same value for
small. Otherwise, since small Is a power of two, the sma/ of S Is equal to the &mal# of T multiplied
by a nonnegative power of two,

A range constraint Is allowed In a fixed point subtype Indicatinn, either directly after the type mark,
or as part of a fixed point constraint, In either case the bounds of the range must belong to the
base typo of the type mark (see 3,5),

Examples"'

type VOLT Is delta 0,125 range 0,0 ,, 256.0;
subtype ROUGH..VOLTAGE Is VOLT delta 1,0; -- some rungs as VOLT

A pure fraction whIch requires all the amallable space In a word
on a two'b complement machine can bo declared as the type FRACTION:

DEL : oonstant :=, 1.0/2**(WOHD.,LENGTH - 1):
type FRACTION Is delta DEL range -1.0 .. 1,0 - DEL:

References,' amonyrnous type 3.3,1, arithmetlc operator 3,61 4.45, base type 3,3, belong to a subtype 3.3, bound of a
range 3,5, compatiblej 3,3.2, convrarson 4,6, elaboratIon 3,9, error bound 3,5,6, iength clause 13.2, model number
3,5,6, numeric typo 1,5, operation 313, predeflned operator 4.5, rangn constraInt 3.5, rael type 3,5,6, roal type definl-
tion 3,5,6, safti numthr 315,6, simple expiresslon 4A4, static express'on 4,Y, subtype 3.3, subtype (leclAration 3.3,2,
subtype Irrlhcatlmn 3,3,2 type 3.3, type duclaretlorn 3.3.1, type mark 3,3,2

3.25 Fixed Point Types 3.5,9

ANSI/MIL..STD-1815A Ada Reference Manual

3.5.10 Operations of Fixed Point Types

The basic operations of a fixed point type Include the operat;ons involved in a8E ignment,
membership tests, qualification, the explicit cornversion (f values of other numeric types to the fix-
ed point type, and the implicit conversion of values of the type universal.real to the type. .

In addition, for every fixed point type or subtype T the basic operations include the attributes listed
below. In this presentation T is referred to as being a subtype (the subtype T) for any property that
depends on constraints imposed by T; other propertics are stated in terms of the base type of T.

The first group of attributes yield characteristics of the subtype T. The attributes of this group are
the attributes BASE (see 3.3.2), the attbutes FIRST and LAST (see 3,5), the representation
attribute SIZE (see 13.7,2) and the following attributes:

['DELTA Yielas the value of the delta specified in the fixed accuracy definition for the sub-
"type T, The value of this attribute Is of the type universal-Jeal,

T'MANTISSA Yields the number of binary digits In the mantissa of model numbers of the sub-
type T. (Thia attribute yields the number B of section 3.5.9,) The value of this
attribute is of the type universal-integer.

6 T'SMALL Yields the smallest positive (nonzero) model number of the subtype T. The value
of this attribute is of the type unlversaLreal.

7 T'LAPGE Yields th.: largest positive model number of the subtype T, The value of this
attribute Is of the type unlversat.real,

S7T'FORE YtAlds the minimum number of characters needed for the Integer part of the
decimal representation of any value of the subtype T, assuming that the
representation does not Include an exponent, but includes a one-character prefix
that Is either a minus sign or a space. (This minimum number does not Include
superfluous zeros or underlines, and Is at least two.) The value of this attribute is
of the type un/versa _integer,

T'AFT Yields the number of decimal digits needed after the point to accommodate the .,
precision of the subtype T, unless the delta of the subtype T is greater than 0.1, in
which case the attribute yields the value one. (T'AFT ;s the smallest positive
integer N for which (10**N)*T'DELTA is greater than or equal to one.) The value
of this attribute Is of the type universal/integer,

• 10 The attributes of the second group Include the following attributes which yield characteristics of
the safe numbers:

'. T'SAFESMALL Yields the smallest positive (nonzero) safe number of the base type of T, The
value of this attribute Is of the type universel..."al,

. T'SAFELARGE Yields the largest positive safe number of the base type of T. The value of this

attribute is of the type universaLreal,

In addition, the attributes A'SIZE and A'ADDRESS are defined for an object A of a fixed point type
(see 13.7.2). Finally, for each fixed point type or subtype T, there are the machine-dependent
attributes T'MACHINEROUNDS and T'MACHINEOVERFLOWS (see 13.73).

3,5. 10 Operations of Fixed Point Types 3-26
I .

Declarations and Types

Besides the basic operations, the operations of a fixed point type Include the relational operators, 14

and the following predefined arithmetic operators: the binary and unary adding operators - and +
the multiplying operators *and /,and the operator abs.

The operations of a subtype are the corresponding operations of the type except for the following: 1
assignment, membership tests, qualification, explicit conversion, and the attributes of the first
group: the effects of these operations are redefined In terms of the subtype.

Notes:'

The value of the attribute T'FORE depends only on the range of the subtype T. The value of the
attribute T'Ar-T depends only on the value of T'DELTA . The following relations exist between
attributes of a fixed point type:

T'LARGE = (2**T'MANTISSA -1) *T'SMALL
T'SAFE-LARGE = T'BASE'LARGE
T'SAFE-SMALL = T'BASE'SMALL

References.: abs operator 4,5 4.5.8, arithmetic operator 3.5.5 4,15, assignment 1512, base type 3.3, basic operation i
3.3.3, binary adding operator 4.5 4,5.3, bound of a range 11,15, conversion 4.6, delta 3.5,9, fixed point type 3,519,
membership test 4.5 4.5.2, model number 3.15.8, multiplying operator 4,15 4.5.5, numeric type 3.5, object 3.2, opera-
tion 3.3, qualified expression 4.7, relational operator 4,15 4.5.2, sate number 3.5.6, subtype 3.3, unary adding operator
4.5 4.15A4, universal-integer type 3.5,4, unIversaseal type 3.5.8

3.6 Array Types

An array object Is a composite object consisting of components that have the same subtype, The
name for a component of an array uses one or more Index values belonging to specified discrete
types. The value of an array object is a composite value consisting of the values of Its components.-

array-.type-detinitlran : 2 .

unconstrained-array..definition Iconstrained..array..defirition

unconsti dine&..array..definition
array(indeix.subtype...definition I, ndex....ubtype...definitionl) of

componentL.subtype-indication

coiistralned..array-.definition
array index-.constraint of componentau btype-ind Ication

index-subtype-.definition : type-.mark rangs <>

Index-constralnt : (diacrete..range 1, discrete-j'angel)

discrete-range ::=d/screte...subtype..Jndication range

An a~rray object Is characterized by the number of Indices (the dirnensione/ity of the at-ray), the type
and position of each Index, the lower and upper bounds for %,ac Index, and the type and piossible
constraint of the components. The order of the Indices is significant,

3-27 Array Types 3.6

ANSIIMIL-STD-1815A Ada Reference Manual

4 A one-dimensional array has a distinct component for each possible Index value, A multldlmen.-
slonal array has a distinct component for each possible sequence of index values that can be
formed by selecting one value for each Index position (In the given order). The possib!e values for
a given Index are all the values between the lower and upper bounds, inclusive; this range of values
is called the Index range.

An unconstrained array definition defines an array type, For each object that has the array type, the
number of indices, the type and position of each index, and the subtype of the components are as
in the type definition; the values of the lower and upper bounds for each Index belong to the cor-
responding index subtype, except for null arrays as explained in section 3.6.1, The index subtype
for a given index position Is, by definition, the subtype denoted by the type mark of the cor-
respcnding Index subtype definition. The compound delimiter <> (called a box) of an Index sub-
type definition stands for an undefined range (different objects of the type need not have the same , .
bounds). The elaboration of an unconstrained array definition creates an array type; this elabora-
tion includes that of the component subtype Indication.

A constrained array definition defines both an array type and a subtype of this type:

, The array type Is an implicitly declared anonymous type; this type is defined by an (Implicit)
unconstrained array definition, In which the component subtype indication Is that of the con-
strained array definition, and In which the type mark of each Index subtype definition denotes
the subtype defined by the corresponding discrete range,

* The array subtype Is the subtype obtained by Imposition of the index constraint on the array
type, . ..

If a constrained array definition Is given for a type declaration, the simple name declared by this
declaration denotes the array subtype.

The elaboration of a -onstralned array definition creates the corresponding array type and array .1
subtype. For this eliboration, the Index constraint and the component subtype Indication are
elaborated. The evaluation of each discrete range of the Index constraint and the elaboration of
the component subtype Indication are performed In some order that Is not defined by the
language.

Examples of type declarations with unconstrained array definitions:

type VECTOR is array(INTEGER rwnge <>) of REAL;
type MATRIX is array(INTEGER range <>, INTEGER range <>) of REAL;
type BIT-VECTOR Is array(INTEGER range <>) of BOOLEAN;
type ROMAN Is array(POSITIVE range <>) of ROMAN-DIGIT;

Examples of type declarations with constrained array definitions:

type TABLE is array(1 ., 10) of INTEGER;
type SCHEDULE Is arnay(DAY) of BOOLEAN;
type LINE Is array(1 ,, MAXLINE.SIZE) of CHARACTER;

13 Examples of object declarations with constrahied array definitions,

GRID array(l ,, 80, 1 .. 100) of BOOLEAN;
MIX array(COLOR range RED ,, GREEN) of BOOLEAN;
PAGE array(1 ,, 50) of LINE; -- an array of arruys

3.6 Army Types 3-28

Declarationa' and Types

Note:

For a one-dimensional array, the rule given means that a type declaration with a constrained array 14

definition such as 4..-

type T is array(POSITIVE range MIN ,, MAX) of COMPONENT;

Is equivalent (In the absence of an Incorrect order dependence) tco the succession of declarations 15

subtype Index-.subtype Is POSITIVE range MIN ., MAX;
type array..type Is urray(Index..subtype range <>) of COMPONENT;
subtype T io array..iype(index_,subtype);

where index._subtype and array_tJ'pe are both anonymous. Consequently, T Is the name of a sub- ..
type and all objects declared with this type mark are arrays that have the sanae bounds, Similar
transformations apply to multidimensional arrays.

A similar transformation applies to an object whose declaration includes a constrained array defini-
tion. A consequence of this lit that no two such objects have the same type.

References: anonymous type 3.3.1, bound of a range 3.6, component 3.3, constraint 3.3, discrete type 3.5, .
elaboration 3,1 3,9, hi some order 1,6, name 4,1, object 3.2, range 3,3, suvtype 3.3, subtype Indication 3.3,2, type
3.3, type declaration 3,3,1, type definition 3,3,1, type mark 3.3.2

3.8.1 Index Constraints and Discrete Ranges

An Index constraint de'ermines the range of possible values for every Index of an array type, and
thereby the corresponding array bounds.

For a discrete range used In a constrained array definition and defined by a range, an implicit jon- 2

version to the predefined type INTEGER Is assumed If each bound Is either a numeric literal, a
named number, or an attribute, and the type of both bounds (prior to the Implicit conversion) Is the
type unIversalJnteger, Otherwise, both bounds must be of the same discrete type, other than
universali-nteger; this type must be determinable Independently of the context, but using the fact
that the type must be discrete and that both bounds must have the same typo. These rules apply
also to a discrete range used In an !teration rule (see 5.5) or in the declaration of a family of entries
(see 9.5),

If an index constraint follows a type mark in a subtype Indication, then the type or subtype denoted
by the type mark must not already lr-ipose an Index constraint. The type mark must denote either
an unconstrained array type or an accass type whose designated type is such an array type. In
either r'ase, the Index constraint must provide a discrete range for each index of the array type and
the type of each discrete range must be the same as that of the corresponding index.

An index constraint Is compatible with the type drnmoted by the type mark If and only If the con-
straint defined by e3ch discrete range Is compatible with the corresponding Index subtype, If any of .
the discrete ranges defines a null range, any array thus constrained Is a null array, having no com-
ponents, An array value satisfies an Index constraint Jf at each index position the array value and
the Index constraint have the same Index bounds, (Note, however, that assignment and certain
other operations on arrays Involve an Implicit subtype conversion.)

3-29 Index Constraints and Discrete Ranges 3.6.1
U I

..............]-........ "" • • •• .. '

ANS!/MIL..STD-1815A Ads Reference Manual

The bounds of each arr," . ,rmined as follows:

e 0 For a variable declarL,6, o' -oic, dvrl: zration, the subtype Indication of the corresponding
object declaration musa . -onbtiZ,,Aed array subtype (and, thereby, the bounds). The
same requirement axistr for the -u.."vpe !ýrdratlon of a component declaration, if the type of
the record component iu an orray %yoe: and t.r *he component subtype indication of an array
type definition, If the tyre of the array compcn;aots is itself an array type,

* For a constant declared by an object deci.eation, tho bounds of the constant are defined by

the Initial value If the subtype of the constant is unconstrsined; they are otherwise defined by

this subtype (in the latter case, the Initial value the result of an Implicit subtype conversion).
The same rule applies to a generic formal parimeter of mude in.

* For an array object designated by an access value, the bounds must be defined by the
allocator that creates the array object. (The allocated object is constrained with the cor-
responding values of the bounds.)

* For a formal parameter of a subprogram or entry, the bounds are obtained from the cor-
responding actual parameter. (The formal parametnr is constrained with the corresponding
values of the bounds,)

0 * For a renaming declaration and for a generic formal parameter of mode in out, the bounds are
those of the renamed object or of the corresponding generic actual parameter.

For the elaboration of an Index constraint, the discrete rengos are evaluated In some order that Is

not defined by the language.

Examples of arrey declarations incluting an Index constraint:"

BOARD MATRIX(1 ,, C, 1 .. 8); -- see 3.6
RECTANGLE MATRIX(1 ., 20, 1 ,, 30):
INVERSE : MATRIX(1 0, N, 1 ,, N); -- N need not be static
FILTER : BITVECTOR(O .. 31);

13 Example of array declaration with a constrained array subtype:

MY-SCHEDULE : SCHEDULE; -- all arrays of type SCHEDULE have the same bounds

14 Example of record type with a component that Is art array:

type VARLINE(LENGTH INTEGER) Is
record

IMAGE : STRING(1 ,, LENGTH);
end record;

NULL-LINE : VARLINE(O); NULLLINE.IMAGE Is a null array

Notes:

The elaboration of a subtype Indication consisting of a type mark followed by an Index constraint
checks the compatibility of the Index constraint with the type mark (see 3.3.2).

ie All components of an array have the same subtype, In pnrtIcular, for an array of components that
are one-dimensional arrays, this means that all compononts have the same bounds and hence the ._
same length.

3.6. 1 Index Constraints and Discrete Ranges 3-30

Declarations and Types
I.,i

References., access type 3.8, access type definItion 3.8, access value 3.8, actual parameter 6,4,1, allocator 4.8, array
bound 3.6, array component 3.6, array type 3.6, array type.definition 3.6, bound of a range 3,5, compatible 3.3,2,
component declaration 3,7, constant 3,2,1, constrained array definition 3.6, constraInGJ array subtype 3,6, conversion
4,6, designate 3,8, designated type 3.8, discrete range 3.0, entry 9.5, entry family declaiation 9,5, expresslon 4.4, for- -

meal parameter 6,1, function 8.5, generic actual parameter 12.3, generic formal parameter 12.1 12.3, generic
parameter 12,1, Index 3.6, Index constraint 3.6,1, Index subtype 3,6, Initial value 3.2.1, Integer literal 2.4, Integer type " "
3.54, iteration rule 5.5, mode 12,1.1, name 4,1, null range 3,5, object 3.2, object declaration 3,2,1, predefined type
C, range 3.5, record component 3.7, renaming declaration 8,5, result subtype 6.1, satisfy 3,3, subprogram 6, subtype
conversion 4.6, subtype Indication 3.3.2, type mark 3,312, unconstrained array type 3.6, unconstrained subtype 3 3, " "
universal typo 4.10, universali.nteger type 3.5.4, variable 3.2,1

3.6.2 Operations of Array Types

The basic operations of an array type include the operations Involved in assignment and -
aggregates (unless the array type is limited), membership tests, Indexed components, qualification,
and explicit conversion; for one-dimensional arrays the basic operations also include the opera-
tions involved In slices, and also string literals If the component type Is a character type.

If A is an array object, an array volue, or a constrained array subtype, the basic operations also ,
include the attributes listed below, These attributes are not allowed for an unconstrained array
type, The argument N used In the attribute designators for the N-th dimension of an array must be
a static expression of type universel_/nteger. The value of N must be positive (nonzero) and no 2
greater than the dimensionality of the array,

A'FIRST Yields the lower bound of the first index range. The value of this attribute ,
has the same type as this lower bound,

A'FIRST(N) Yields the lower bound of the N-th Index range, The value of this attribute 4

has the same type as this lower bound.

A'LAST Yields the upper bound of the first Index range. The value of this attribute 5
has the same type as this upper bound,

A'LAST(N) Yields the upper bound of the N-th Index range, The value of this attribute ,
has the same type as this upper bound.

A'RANGE Yields the first Index range, that Is, ihe range A'FIRST .. A'LAST. 7

A'RANGE(N) Yields the N-th Index range, that is, the range AFIRST (N).. A'LAST (N),

A'LENGTH Yields the number of values of the first Index range (zero for a null range),
The value of this attribute Is of the type unlversa.Jrnteger.

A'LENGTH(N) Yields the number of values of the N-th index range (zero f-or a null 10
range). The value of tits attribute Is of the type universaldinteger,

In addition, the attribute T'BASE Is defined for an array type or subtype T (see 3.3.3); the attribute

"TSIZE is defined for an array type or subtype T, and the attributes A'SIZE and A'ADDRESS are
defined for an array object A (see 13.722),

Pera

3-31 Operations of Array Types 3.6.2

q.•

"ANSI/MIL-STD-1815A Ada Reference Manual
*.I.

12 Besides the basic operations, the operations of an array type include the predefined comparison for
equality and inequality, unless the array type is limited. For one-dImensIonal arrays, the operations
Include catenation, unless the array type Is limited; if the component type Is a discrete type, the
operations also Include all predefined relational operators; if the component type is a boolean
type, then the operations also include the unary logical negation operator not, and the logical
operators.

.a Examples (using arrays declared In the examples of section 3.6. P

FILTER'FIRST = 0 FILTER'LAST = 31 FILTER'LENGTH = 32
-- RECTANGLE'LAST(1) = 20 RECTANGLE'LAST(2) 30

Notes:

4 The attributes AFIRST and A'FIRST(I) yield the same value. A similar relation exists for the
attributes A'LAST, A'RANGE, and A'LENGTH. The following relations are satisfied (except for a null
array). by the above attributes If the Index type Is an integer type:

A'LENGTH A'LAST - A'FIRST + 1
. A'LENGTH(N) A'LASTIN) - A'FIRST(N) + 1

is An array type Is limited If Its component type Is limited (see 7.4.4).

References: aggregate 4,3, array type 3., assignment 5,2, attribute 4,1,4, basic operation 3.3,3, bound of a range
3.6, catenation operator 4.5 4,5.3, character type 3.5.2, constrained array subtype 316, conversion 4.0, designator
6,1, dimension 3.6, Index 3.6, Indexed component 4.1.1, limited type 7,4,4, logical operator 4,5 4.5,1, membership
teat 4,5 4,5,2, not operator 4.5 4,584, null range 3,5, object 3.2, operation 3,3, predefined operator 4.5, qualified
expression 4.7, relational operator 4.5 4.5.2, slice 4.1.2, static expression 419, string literal 2.6, subcomponont 3.3,
type 3.3, unconstrained array type 3.8, universal type 4.10, universal-Integer type 3.,.4

3.6.3 The Type String

The values of the predefined type STRING are one-dimensional arrays of the predefined type
CHARACTER, Indexed by values of the predefined subtype POSITIVE:

subtype POSITIVE Is INTEGER range 1 ., INTEGER'LAST:
type STRING Is array(POSITIVE range <>) of CHARACTER:

Examples:

.* STARS STRING(1 ., 120) := (1 ., 120-> >
"QUESTION constant STRING := "HOW MANY CHARACTERS?";
,. QUESTION'FIRST = 1, QUESTION'LAST - 20 (the number of characters)

ASK.IWICE constant STRING :- QUESTION & QUESTION;
NINETY-SIX constant ROMAN := "XCVI": -- see 3.6

Notes.

3 String literals (see 2.16 and 4.2) are basic operations applicable to the type STRING and to any
other one-dimensional array type whose component type is a character type. The catenation
operator Is a predefined operator for the type STRING and for one-dimensional array types: it is
"represented as &, The relational operators <, <=, >, and >= are defined for values of these types,
and correspond to lexicographic order (see 4.5.2).

"3.6.3 The Type String 3-32

Declarations and Types

References: aggregate 4,3, array 3.6, oatenation operator 4.5 4,5.3, character type 3.5.2, component type (of an
array) 3,6, dimension 3,1, Index 3.6, lexicographic order 4.5.2, positional aggregate 4,3, predefined operator 4.5,
predefined type C, relational operator 4.5 4,5.2, string literal 2,6, subtype 3.3, type 3.3

3.7 Record Types

A record object Is a composite object consisting of named components, The value of a record
object Is a composite value consisting of the values of its components,

record.type.deflnitlon ::-
record

component-list
und reolrd

componentLlist ::'
componenLdeclarstlon (cornponent-declaration)

I Icomponent-doelarntionl varianLpart
I null;

component..docloration ::,,
Identifier.Jlst : component-subtype.definltlon [:- expression):

component..ubtype.definition :;- subtype..indication

Each component declaration declares a component of the record type. Besides components 3

declared by component declarations, the components of a record type Include any components
declared by discriminant specifications of the record type declaration, The Idontifiers of all comno-
sonts of a record type must be distinct. The use of a name that denotes a record component other
than a dlscriminant Is not allowed within the record type definition that declares the component,

A component declaration with several Identifiers Is equivalent to a sequence of single component 4

declarations, as explained In section 3.2. Each single component declaration declares a record
component whose subtype Is specified by the component subtype definition,

If a component declaration Includes the assignment compound delimiter followed by an expres-
sion, the expression is the default expression of the record componont; the default expression
must be of the type of the component. Default expressions are not allowed for components that
are of a limited type,

If a record type does not have a discriminant part, the samo components are present In all values .
of the type. If the component list of a record type Is defined by the reserved word null end there Is
no discriminant part, then the record type has no components and all records of the type are null
records,

The elaboration of a record type definition creates a record type; It consists of the elaboration of
any corresponding (single) component declarations, In the order in which they appear, Including 0
any component declaration In a variant part, The elaboration of e component declaration consists
of the elaboration of the component subtype definition,

For the elaboration of a component subtype definition, If the constraint does not depend on a dis- s
criminant (see 3.7,1), then the subtype Indication Is elaborated, If, on the other hand, the con-
straint depends on a discriminant, then the elaboration consists of the evaluation o; any Included
expression that Is not a discriminant.

3.33 Record Types 3.7

~~. . ., -

Declarations and Types

A discrlminant specification with several Identifiers is equivulant to a sequence of single discrimi-
nant specifications, as explained In section 3.2. Each single discriminant specification declIres a
discriminant. If a discriminant specification Includes the assignment compound delimiter followed
by an expression, the expression Is the default expression of the discriminant; the default expres-
sion must be of the type of the discrimInant. Default expressions must be provided either for all or
for none of the discriminants of a discriminant part.

The use of the name of a discriminant Is not allowed In default expressions of a discriminant part if
the specification of the discriminant Is Itself given in the discrimlnant part,

Within a record type definition the only allowed uses of the name of a discriminant of the record ,
type are: in the default expressions for record components: in a variant part as the discriminant "'.
name; and in a component subtype definition, either as a bound in an Index constraint, or to
specify a discrirrninant value in a discriminant constraint. A discriminant name used in these com-
ponent subtype definitions must appear by Itself, not as part of a larger expression. Such compo-
nent subtype definitions and such constraints are said to depend on a discrim/nant.

A component Is said to depend on a discrIminent If It Is a record component declared In a variant .. .,
part, or a record component whose component subtype definition depends on a discriminant, or
finally, one of the subcomponents of a component that itself depends on a discriminant,

Each record value includes a value for each discriminant specified for the record type: it also
includes a value for each record component that does not depend on a discriminant, The values of
the discriminants determine which other component values are In the record value. .

"Direct assignment to a discrIminant of an object Is not allowed: furthermore a discriminant is not
allowed as an actual parameter of mode In out or out, or as a Cenerli actual parameter of mode In
out. The only allowed way to change the value of a dlcrlminant of a variable Is to assign a
(complete) value to the variable Itself, Similarly, an assignment to the variable Itself Is the only
allowed way to change the constraint of one of Its components, If the component subtype defin-;
tion depends on a discrimInant of the variable,

The iflaboration of a diecriminant part hes no other effect, 1o

Examples; i .

type BUFFER(SIZE BUFFER-SIZE :'= 100) Is -- see 3.54
record

POS BUFFER-SIZE .- 0;
VALUE STRING(1 .. SIZE);

end record;

type SQUARE(SIDE : INTEGER) is
record

MAT : MATRIX(1 .. SIDE, 1 ,, SIDE); ,- see 3.8
end record;

type DOUBLESQUARE(NUMBER :,INTEGER) Is
record

LEFT: SQUARE (NUMBER);
RIGHT : SQUARE INUMBER);

end record;

3-35 Discr/mlnants 3,7,1
St-~ . . .

ANSIIMIL-STD-1815A Ada Reference Manual

type ITEM(NUMBER POSITIVE) Is
record

CONTENT : INTEGER;
-- no component depends on the discriminant

end record;

12 References' assignment 5.2, assignment compound delimiter 2.2, bound of a range 3,5, component 3.3, component
declarat;on 3,7, component of a record 3,7, declaration 3.1, discreto type 3,5, disr.riminant 3,3, discriminant con- ,'. .
straint 3,7.2, elaboration 3.9, expresrion 4.4, generic formal type 12.1, generic parameter declaration 12,1, Identifier
2.3, identiflor list 3,2, Incomplete type declaration 3.8,1, index constraint 3.6.1, name 4,1, object 3.2, private type 7,4,
prlv&'o type declaration 7,4, record type 3,7, scope 8.2, simple name 4.1, subcomponent 3.3, subtype indication
3.3.2, type declaration 3.3.1, type mark 3,3.2, variant pail 3,7.3

3.7.2 Discriminent Constraints

A discriminan'. constraint Is only allowed In a subtype Indication, after a type mark. This type mark
must denote either a type with discriminants, or an access type whose designated type is a type
with discriminants. A dlscriminant constraint specifies the values of these discriminants.

discrlminant-constrslnt =
(dlscrImInant..assolatlon 1, dlscrlminant-assoolationi)

discriminanLassociation :- ,.
IdIscr/minant-simple.narne I d/acr/m/nenLtsimplena mel ,> expression , , ,'

3 Each discrlmlnant association associates an expression with one or more discriminents. A dlscriml-
nant association Is ssid to be named If the dlicriminants are specified explicitly by their names; ItIs otherwise said to be pc#It/ona/, For a positional association, the (single) dlscrlmlnant Is Implicitly ..

specified by position, In textual order, Named issoclations can be given In any order, but if both

positional and named associations are used In the same dlacrlminant constraint, then positional
associations must occur first, at their normal position, Hence once a named association Is used,
the rest of the discriminant constraint must use only named associations,

For a named discrlmlnant association, the discriminant names must denote discriminants of the
type for which the dlscrlminant constraint Is given, A discrlmlnant association with more than one
discrlminent name Is only allowed If the named discriminants are all of the same type. Further.
more, for each discriminant association (whether named or posilional), the expression and the
associated discriminants must have the same type. A dlscriminant constraint must provide exactly
one value for each disorlmlriant of the type.

5 a A discriminant constraint Is compatible with the type denoted by a type mark, If and only If each
discriminant value belongs to the subtype of the corresponding dlscrlmlnant, In addition, for each
subcomponent whose component subtype specification depends on a discriminant, the discriml-
nant value Is substituted for the discrimInant in this component subtype specification and the com-
patibility of th.4 resulting subtype Irdlcatlon Is checked.

a A composite value satisfies a dIscrimInant constraint If and only If each discriminant of the com-
posite value has tMe value Imposed by the discrlmlnant constraint.

.4

3.7.2 Dlscrlrnlnant ConstraInts 3-36

Declarations and Types

The initial values of the discrirninants of an object of a type with discriminants are determined as 7

follows:

9 For a variable declared by an object declaration, the subtype Indication of the corresponding b

object declaration must Impose a discriminant constraint unless default expressions exist for
the discrlmlnants; the discriminant values are defined either by the constraint or, In its
absence, by the default expressions, The same requirement exists for the subtype indication of
a component declaration, if the type of the record component has discrlmlriants; and for the
component subtype Indication of an array type, if the type of the array components Is a type
with discrIminants,

0 For a constant declared by an object declaration, the values of the discriminants are those of . 0
the Initial value If the subtype of the constant Is unconstrained; they are otherwise defined by
this subtype (in the latter case, an exception is raised If the Initial value does not belrng to this
subtype). The same rule applies to a generic parameter of mode In,

* For an object designated by an access value, the discriminmnt values must be defined by the .0
allocator that creates the object. (The allocated object Is constrained with the corresponding .
discrimlnant values.)

* For a formal parameter of a subprogram or entry, the discriminants of the formal parameter 1,
are Initialized with those of the corresponding actual parameter. (The formal parameter Is
constrained If the corresponding actual parameter Is constrained, and In any case If the mode ;,,,,
Is in or If the subtype of the formal parameter Is constrained,)

* For a renaming declaration and for a generic formal parameter of mode In out, the diacrlmi- 1,
nants are those of the renamed object or of the corresponding generic actual parameter

For the elaboration of a discrimlnant constraint, the expressions given In the discriminant assocla- , .
tions are evaluated In some order that Is not defined by the language; the expression of a named
association Is evaluated once for each named dlicriminant,.

Examples (using types declared In the previous section).- 14

LARGE BUFFER(200); -- constrained, always 200 characters (explicit diarlimlnant value)
MESSAGE : BUFFER; -- unconstrained, Initially 100 chnracters (default dlaoriminant value)

BASIS SQUARE(W); -- constrained, always 5 by "
ILLEGAL SQUARE; -- Illegal, a SQUARE must be constiained

Note:"

The abovo rules and the rules detining the elaboration of an object declaratlon (see 3.2) ensure
that discriminants always have a value, In particular, If a discrlminant constraint Is Imposed on an
objoct declaration, each discriminant Is Initialized with the value specified by the constraint,
Similarly, If the subtype of a oomponent has a discriminant constraint, the discriminants of the
component are correspondingly Initialized,

Refe ences, access type 3,8, accese type definition 3.8, access valur 3.9, actual parameter 6,4,1, ullocator 4,0, array 16 .
type dafinltli 3,6, bound of a range 3,5, compatible 3,3,2, component 3.3, component declaratlon 3,7, component
subtype indlnation 3,7, composite value 3,3, constant 32.,1, constrained subtype 3,3, constraint 3,3, declaratlon .1,
default exproesion for a diaoriminant 3,7, depend on a dlsrlrtnInunt 337,1, designate 3,8, designated typo 3,8, dicrlml-
nant 3,3, elaboration 319, entry 9.5, evaluation 4,5, #mpreasion 4.4, formal parameter 6,1, generl, actual parameter
12.3, Unnerlc formal parameter 12,1 12.3, mode In 6,1, mode In out 6,1, name 4.1, object 3.2, obJeut declaration
3,2,1, renaming declaration 8,5, reserved word 2,9, matIll' 3.3. simple name 4,1, subcomponent 3,3, aubprogram 6,
suhtype 3., subtype Indication 3.3.2, type 3.3, type mark 3,3.2, variable 3,2.1

3.37 Discrlrmnant Constraints 3.7.2

ANs//MIL-sro-48165A Ada Reference Manual

.1.7.3 Variant Parts

A record type with a variant part specifies alternative lists of components, Each variant defines the
components for the corresponding value or values of the dlisurlminant.

2 varlanL-part:=
case discrimlnanf..simple-namne Is

varianx
I variantl

end case;

variant :
when choice 11 choice) l

component-lut

choice :R impls..sxpression
Idiscrete...range I others I comrponent-slmple..nams -

Each variant starts with a list of choices which must be of the same type as the discriminant of the
*variant part, rho tvre of the discriminant of a variant part must not be a generic formal type. If the
* subtype of the discriminant Is static, then each value of this subtype must be represented o~nce aiid

only once In the set of choices of the variant part, and no other value is allowed, Otharwiv., each
value of the (base) type of the d:scriminant must be repreeented once and only once In th" set of
choices. ~.

4 The simple expressions and discrete ranges given a# choices In a variant part must be static. A
choice defined by a discrete range stands for all values In the oorresponding range (none If a null
range), The choice others Is only allowed for the last variant and as Its only choice: It stands foi all
values (possibly none) not given In the choices of previous variants, A component simple name Is
not allowed as a choice of a veiriant (although It is part of the syntax of choice).

A reuord value contains the values of tho components of a givern variant If and only If the discrimi-
namnt value Is equal to one of the values spocified by the choices of the variant, This rule applies In
turn to any further varliant that Is, Itself, Included In the component list of the given variant, If the
component Ilit of iq variant Is specified by null, the variant has no components. ,

P- -4

Ex.~ample of record type with a variant part,,

type DEVICE Is (PRINTER, DISK, DRUM):
type STATE Is (OPEN, CLOSED);

type PERIPHERAL(UNIT :DEVICE :-DISK) Is
record

STATUS :STAI*E;
onese UNIT Is

when PRINTER -

LINE-.COUNT INTEGER range 1I. PAci7..SIZE;
when others =-5

CYLINDER CYLIf'JDER-.INDEX:
TRACK TRACK...NUMBER;

end coas:
end record;

3.7T3 Variant Parts 3-38

Declarations and Types

Examples of record subtypes,

subtype DRUM-..UNIT Is PERIPHERAL(DRUM);
subtype DISK-..UNIT Ic PERIPHERAL(DiSK);

Exeirip/es of constre/rnud record var/ebles,:n

WRITER PERIPHERAL(UNIT =~> PRINTER):
ARCHIVE DISK-UNIT,

Note,,

Choices with discrete values are also used In case statementc and In array aggregates. Choices Q
with component simple namos are used In record ag)gregates.

References,- array aggregate 4.3 2, best type 3.3, component 3,13, component list 3.7, discreto range 3,6, ic
discriminant 3.3, gemeric formal typts 1212,1, null rang. 35.13 record aggregate 4.31, range 1,5, record type 337, simple
expression 4A4, simple namne 4.1, static discrete rantie 4,9, static eypression 4.9, static tiuhtypa 4,,.1 subtype 3.3

3.7.4 Operations of Record Types

The basic operations of a record type Include the operations Involved In assignment and
aggregates (unless the type Is limited), membership tests, selec~tion of record components,
qualification, and type conversion (for derived types),

For any objeci A of a type with discriminants, the basic operations also Include the following
attribute!~' ~

A'CONSTRA:NED Yields the value TRUE If a discriminant constraint applies to the object A,
or If the object is a constant (including a formal parameter or generic for-
mal parameter of m~ode In); yields the value FALSE otherwise, If A Is a
generic formal parameter of mode In out, or If A Is a formal parameter of
mod~s In out or out and the type mark given In the corresponding J
parameter specification denotes an unconstrained type with discrimi-
nants, then the value of this attribute Is obtained from that of the cor-
responding actual parameter. *rho value of this attribute Is of the
predefined type BOOLEAN

In addition, the attributes T'BASE and T'SIZE 4re defined for a record type or subtype T (see 3.3.3);
the attributes A'SIZE and A'ADDIF.SS are defined for a record object A (see 13.7.2),

Besides the basic operations, the operations of a record type Include the predefined comparison
for equality and Inequality, unless the type Is liin'tod,

Note,,

A record type Is limited If the type of any of Its componento Is limited (see 7.4.4).0

References: actual parorneter 6A.41, aggregate 4.3, aeiig~nnent 5.2, attribute 4.1.4, basic oporation 3.3,3, hooloan
type 315.3, constant 3,2. 1, conversion 4.6, derived type 3.4. discrimninanit 3.3. discrinfloant corlstrairl 3,7..2, formal
paramotnr 6,1, gionarl actual paramneier 12.1, goneric formal parameter 12,1 12.3, l~nmIted type 7/.4.4, memrbership
tout 4,11 4.C,2, mude 0. 1, object 3.2. 1, operation 3.3, preclefinod operato~r 4,15, p adufinod typo C, qual~iod oxprassion
4,7, rocord typei 3.7, relational operator 4,15 4.6,2, selected component 4,.1,3, aubibWp~fonot 313, subtvpe 3.3, type
3.3

3-39 Operatiwis of Rocord Typos 3.1.4

ANSI/MIL-STD-1815A Ada Reference Manual

3.8 Access Types

, An object declared by an objec. declaration Is created by the elaboration of the object declaration
and is denoted by a simple name or by some other form of name, In contrast, there are objects
that are created by the evaluation of allocators (see 4.8) and that have no simple name. Access to
such an object Is achieved by an access value returned by an allocator; the access value Is said to
designate the object.

2 access-type.-definition access subtypeindication

3 , For ea.-h access type, there is a literal null which has a null access value designating no object at
all. The null value of an access type Is the default initial value of the type. Other values of an
access type are obtained by evaluation of a special operation of the type, called an allocator. Each
"such access value designates an object of the subtype defined by the subtype Indication o* the
access type definition; this subtype is called the designated subtype; the base type of this subtype
is called the designated type. The objects designated by the values of an access type form a collec-
tion implicitly associated with the type,

4 The elaboration of an access type definition consists of the elaboration of the subtype Indication
and creates an access type.

5 If an access object Is constant, the contained access value cannot be changed and always
designates the same object. On the other hand, the value of the designated object need not
remain the same (assignment to the designated object is allowed unless the designated type is
limited).

a, The only forms of constraint that are allowed after the name of an access type In a subtype indicq-
tion are index constraints and discrirninant constraints. (See sections 3.6,1 and 3,7.2 for the ruloes
applicable to these subtype Indications.) An access value belongs to a corresponding subtype of .,, ;;,
an access type either If the access value Is the null value or if the value of the designated object
satisfies the constraint.

Examples:

type FRAME Is access MATRIX; -- see 3.6

type BUFFER-NAME Is access BUFFER; -- see 3.7,11

Notes.,

a An access value delivc:.-d by an ahocator can be assigned to several access objects. Hence It Is
possible for an object .;reated by an allocator to be designated by more than one variable or cons-
tant of the access type. An access value can only designate an object created by an allocator; In
particular, It cannot designate an object declared by an object declaration,

If the type of the objects designated by the access values is en &rray type or a type with discrlml-.
"4 nants, these objects are constrained with either the array bounds or the discriminant values sup-
* plied implicitly or explicitly for the corresponding allocators (see 4.8).

10 Access values are called poiners or references In some other languages,

References. allocator 4.8, array type 3.6, assignment 5.2, belong to a subtype 3.3, constant 3.2.1, constraint 3.3,
discriminant constraint 3.7,2, elaboration 3.9, Index constraint 3.6.1, index specification 3.6, limited type 7,4,4, literal
4.2, name 4.1, object 312.11object declaration 3.2.1, reserved word 2.9, satisfy 3,3, simple namre 4.1, subcornponent
3.3. subtype 3.3, subtype Indication 3.3.2, type 3.3, variable 3.2.1

3.8 Access Types 3-'40

Declarations and Types

3.8.1 Incomplete Type Declarations

There are no particular limitations on the designated typ3 of an access type, In particular, the typs
of a component of the designated type can be another access type, or even the same access type.
This permits mutually dependent and recursive access types. Their declarations require a prior
incomplete (or private) type declaration for one or more types,

incomplete-type-declaration type identifier [discrlminant-partl; 2

For each incomplete type declaration, there must be a corresponding declaration of a type with the

same identifier. The corresponding declaration must be either a full type declaration or the
declaration of a task type, In the rest of this section, explanations are given in terms of full type
declarations; the same rules apply also to declarations of task types. If the Incomplete type
declaration occurs immediately within either a declarative part or the visible part of a package
specification, then the full type dec!aration must occur later and Immediately within this
declarative part or visible part, If the Incomplete type declaration occurs Immediately within the
private part of a package, then the full type declaration must occur later and Immediately within
either the private part Itself, or the declarative part of the corresponding package body.

A discriminant part must be gven in the full type declaration If and only If one Is given in the 4

Incomplete type declaration; If discrlminant parts are given, then they must conform (see 6.3,1 for
the conformance rules). Prior to the end of the full type declaration, the only allowed use of a name
that denotes a type declared by an Incomplete type declaration Is as the type mark In the subtype
Indication of an access type definition; the only form of constraint allowed In this subtype Indica-
tion Is a discriminant constraint.

The elaboration of an Incomplete type declaration creates a type. If the incomplete type declare-
tion has a discriminant part, this elaboration includes that of the discriminant part: In such a case,
the discriminant part of the full type declaration Is not elaborated.

Example of a recursive type:

type CELL; -- Irtcomplete type declaration
type LINK is access CELL;

type CELL In
record

VALUe : INTEGER;
SUCC : LINK;
PRED : LINK;

end record;

HEAr, LINK new CELL'(O, null, null);

NEXT LINK HEAD.SUCC;

Examples of mutually dependent access types: •

type PERSONMSEX GENDER): -- Incomplete type declaration
type CAR; -- Incomplete type declaration

type PERSON-NAME Is access PERSON;
type CAR-NAME Is access CAR;

type CAR Is
record .. .

NUMUER : INTEGER;
OWNER : PERSON-NAME:

end record;

3-41 Incomplete Type Declarations 3.8.1

ANSI/MIL-STD-1816A Ada Reference Manuel

* type PERSON(SEX GENDER) Is
record

NAME STRING(1 .. 20):
BIRTH DATE:
AGE INTEGER range 0 ,, 130;
VEHICLE CAR-NAME: ,
case SEX In

when M => WIFE PERSONNAME(SEX => F);
wheo F -> HUSBAND PERSONNAME(SEX => M);

end case;
find record;

MY-CAR, YOUR-CAR, NEXT-CAR CAR-NAME; -- Implicitly Initialized with null value "

B References: access type 3.8, access type definition 3.8, component 3.3, conform 6.3.1, uonhtraint 3.3, declaration
3,1, declarative Item 3.9, designate 3.8, discrlmlnant constraint 3,712, dlacriminant part 337,1, elaburatlon 3.9, Iden-
tiflor 2.3, name 4,1, subtype Indication 3,3.2, type 3,3, type mark 3.3.2 %

3.8.2 Operetions of Access Types

"The basic operations of an access type Include the operations involved in assignment, allocators
for the access type, membership tests, qualification, explicit conversion, and the literal null, If the
designated type Is a type with discriminants, the basic operatiorvs Include the selection of the cor-
responding discriminants; If the designated type Is a record type, they Include the selection of the
corresponding components; If the designated type Is an array type, they Include the formation o,
Indexed components and slices; If the designated type is a task type, they Include selection of
entries and entry families. Furthermore, the basic operations include the formation of a selected
component with the reserved word all (see 4.1.3),

2 If the designated type is an array type, the basic operations include the attributes that have the
attribute designators FIRST, LAST, RANG!, and LENGTH (likewise, the attribute designators of the
N-th dimension), The prefix of each of these attributes must be a value of the access type, These
attributes yield the corresponding characteristics of the designated object (see 3.6.2)1.

, If the designated type Is a task type, the basic operations Include the attributes that have the
attribute designators TERMINATED and CALLABLE (see 9.9). The prefix of each of these attributes
must be a value of the access type. These attributes yield the corresponding characteristics of the
designated task objects.

4• In addition, the attribute T'BASE (see 3.3,3) and the, representation attributes T'SIZE and
T'STORAGESIZE (see 13.7,2) are defined for an access type or subtype T; the attributes A-SIZE
and A'ADDRESS are defined for an access object A (see 113.7.2).

Besides the basic operations, the operations of an access type include the predefined comparison
for equality and Inequality,

, References: access type 318, allocator 4,8, array type 3,0, ap.•lgnment 5,2, attribute 4,1,4, attribute designator 4.1,4,
base type 3.3, bosic operation 3.3.3, collection 3.8, constrained array subtype 3,6, conversion 4,6, desIgnaij 3.0,
designated subtype 3.8, designated type 3.8. discrlminmnt 3.3, Indexed componeint 4. 1. 1, literal 4.2, membership test
4.5 4.5.2, object 3.2.1, operation 3.3, private type 7.4, qualified expression 4.7, record type 3.7, selected component
4.1.3, slice 4,1,2, subtype 3.3, task type 9.1, type 3.3

3.8,2 Operations of Access Types 3-42

S- . .. , .. •" .

Declarations and Typeg

.9
3.9 Declarative Parts

A declarative part contains declarative Itema (poss',bly none).

doclarativepart
lbasic-declarative-item) Ilater.declarative-Iteml

hasic.declarative-item ;:= basic.declaration
representation-clause I useclause

later.declarative-item := body
I subprogram-declaration I psckage..declaration
I task-declaration i generic-cdeclaratlon
I use-clause generic-inetantlation

body ::= proper..body body-stub

proper-body ::= subprogram..body J package-body J task-body

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, In .
the order In which they are given in the declarative part. After Its elaboration, a declarative Item Is
said to be elaborated, Prior to the completion of Its elaboration (including before the elaboration),
the declarative item is not yet elaborated.

For several forms of declarative item, the language rules (in particular scope and visibility rules) are 4

such that It Is either Impossible or Illegal to use an entity before the elaboration of the declarative
item that declares this entity, For example, It Is not possible to use the name of a type for an object
declaration If the corresponding type declaration Is not yet elaborated, In the case of bodies, the
following checks are performed:

* For a subprogram call, a check Is made that the body of the subprogram Is already elaborated, ,

0 For the activation of a task, a check Is made that the body of the corresponding task unit is .
already elaborated,

* For the Instantlatlon of a generic unit that has a body, a check Is made that this body Is
already elaborated. ,

The exception PROGRAM-ERROR is raised if any of these checks falls, -.

If a subprogram declaration, a package declaration, a task declaration, or a generic declaration is a ,
declarative Item of a given declarative part, then the body (if there Is one) of the program unit
declared by the declarative Item must Itself be a declarative Item of this declapative part (and must
appear later). If the body Is a body stub, then a separately compiled subunit containing the cor-
responding proper body Is r quired for the program unit (see 10.2).

References., activation 9,3, InstantIation 12,3, program-error exception 11, 1, scope 8,2, subprogram call 6,4, type 10
3,3, visibility 8,3

Elaboration of declaret/ons: 3,1, component declaration 3.7, deferred constant declaration 7.4,3, discrimlnant
specification 3.7,1, entry declaration 9.5, enumeratIon literal specification 3,5,1, generic declaration 12.1, generic
Instantiation 12,3, Incomplete type declaration 3,8,1, loop parameter specification 6,5, number declaration 3.2,2,
object declaration 3.2,1, package declaration 7.2, parameter specification 8.1, private type declaration 7,4,1, renam-
ing declaration 8,5, subprogram declaration &.1, subtype declaration 3.3.2, tank declaration 9.1, type declaration 33.1

3-43 DeclaratIve Parts 3.9 S.I,

ANS•I/MIL..STD-1816A Ada Reference Manual

12 Elaboration of type definitions: 3,3.1, access type definition 3.8, array type definition 3.6, derived type definition
34, enumeration type definition 3.5.1, Integer type definition 3.5,4, real type definition 3,5.6, record typo definition
3.7

13 Elaboration of other constructs: context clause 10.1, body stub 102, compilation unit 10.1, discrImInant part
3,7.1, generic body 12.2, generic formal parameter 12.1 12,3, library unit 10,5, package body 7.1, representation
"clause 13,1, subprogram body 6,3, subunit 10,2, task body 9,1, task object 9.2, task specification 9.1, use clause 8A4,
with clause 10,1,1

S .9

• °

3,9 Declarative Parts 3.44

.- t .k

4. Names and Expressions

The rules applicable to the different forms of name and expression, and to their evaluation, are
given in this chapter.

* 4.1 Names

Names can denote declared entitles, whether declared explicitly or implicitly (see 3,11) Names can
also denote objects designated by access values; subcomponents and slices of objects and values;
single entries, entry families, and entries In families of entries. Finally, names can denote attributes
of any of the foregoing.

name ::= simple.name '
I character-literal I operator-symbol
I Indexed-component I slice h•, iL-

selected-component I attribute

simple-name ::. Identifier

prefix ::= name I function-.',call

A simple name for an entity Is either the identifier associated with the entity by Its declaration, or I
another Identifier associated with the entity by a renaming declaration.

Certain forms of name (indexed and selected components, slices, and attributes) include a prefix
that is either a name or a function call. If the type of a prefix Is an access type, then the prefix must
not be a name that denotes a formal parameter of mode out or a subcomponent thereof. ". "'

If the prefix of a name is a function call, then the name denotes a component, a slice, an attribute, 5

an entry, or an entry family, either of the result of the function call, or (if the result Is an access
value) of the object designated by the result.

A prefix Is said to be appropriate for a type In either of the following cases:

a The type of the prefix Is the type considered, 7

e The type of the prefix is an access type whose designated type is the type considered. e

The evaluation of a name determines the entity denoted by the name. This evaluation has no other o
effect for a name that Is a simple name, a character literal, or an operator symbol. , .

The evaluation of a name that has a prefix includes the evaluation of the prefix, that Is, of the cor- 10

responding name or function call. If the type of the prefix is an access type, the evaluation of the
prefix Includes the determination of the object designated by the corresponding access value; the
exception CONSTRAINT-ERROR Is raised If the value of the prefix is a null access value, except In
the case of the prefix of a representation attribute (see '13.7.2). L.

4-1 Names 4.1
St.. -

S

* .• ANS//MIL-STD-1815A Ada Reference Manual

a' Examples of simple names:.

P1 -- the simple name of a number (see 3.2.2)
LIMIT -- the simple name of a constant (see 3.2.1)

- COUNT -- the simple name of a scalar variable (see 3.2.1)
BOARD -- the simple name of an array vuriable (see 3.6.1) S
MATRIX -- the simple name of a type (see 3.6)
RANDOM -- the simple name of a function (see 6.1)
ERROR -- the simple name of an exceptin (see 11.1)

" " References; access type 38, access value 3.8, attribute 4,1.4, belong to a type 3.3, character literal 2,5, component
3,3, constralnt.arror exception 11.1, declaration 3.1, designate 3,8, designated type 3.8, entity 3.1, entry 9,5, entry S
family 9,5, evaluation 4,5, formal parameter 6.1, function call 6,4, identifier 2,3, indexed component 4,1.1 mode 6.1,
null atcess value 3.8. object 3,2,1, operator symbol 8,1, raising of exceptions 11, renaming declarations 8,5, selected
component 4.1,3, slice 4.1,2, subcomponent 3,3, type 3.3

4.1.1 Indexed Components ,

I • An Indexed component denotes either a component of an array or an entry In a family of entries,

2 Indexed-component ::= prefix(exprasolon 1, expression})

3 In the case of a component of an array, the prefix must be appropriate for an array type, The
expressions specify the Index values for the component; there must be one such expression for
each Index position of the array type, In the case of an entry In a family of entries, the prefix must
be a name that denotes an entry family of a task object, and the expression (there must be exactly
"one) specifies the Index value for the Individual entry,

4 Each expression must be of the type of the corresponding Index, For the evaluation of an Indexed
"component, the prefix and the expressions are evaluated In some order that Is not defined by the
language, The exception CONSTRAINT-ERROR Is raised If an Index value does not belong to the
range of the corresponding Index of the prefixing array or entry family.

-• Examples of Indexed components,,

MY-SCHEDULE(SAT) -- a component of a one-dimensional array (see 3.6.1)
PAGE(10) -- a component of a one-dimensional array (see 3.6)
BOARD(M, J + 1) -- a component of a two-dimensional array (see 3.6.1)
PAGE(I1)(20) -- a component of a component (see 3.6)
REQUESTr(MEDIUM) -- an entry In a family of entries (see 9.5)
NEXT.FRAME(L)(M, N) -- a component of a function call (see 6.1)

Notes on the examples;

- Distinct notations are used for components of multidimensional arrays (such as BOARD) and
arrays of array's (such as PAGE). The components of an array of arrays are arrays and can therefore
be Indexed. Tnus PAGE (10)(20) denotes the 20th component of PAGE (10), In the last example
NEXT.FRAME(L) Is a function call returning an access value which designates a two-dimensional
array,

References; approprIate for a type 4,1, array type 3,6, component 3,3, component of an array 3,6, constraint-error
exception 11.1, dimension 3,6, entry 9,5, entry family 9.5, evaluation 4,5, expression 4.4, function call 6,4, in some
order 1.6, Index 3,6, name 4.1, prefix 4.1, raising of exceptions 11, returned value 5.8 6.,5 task object 9,2

4,1. 1 Indexed Components 4-2

J k..

Names and Expressions

4.1.2 Slices

A slice denotes a one-dimensional array formed by a sequence of consecutive components of a
one-dimenslonal array, A slice of a variable Is a variable; a slice of a constant Is a constant; a slice
of a value Is a value.

slice prefix(dlscrete-range) 2

The prefix of a slice must be appropriate for a one-dimensional array type. The type of the slice Is
the base type of this array type. The bounds of the discrete range define those of the slice and
must be of the type of the Index; the slice Is a nulls/lie denoting a null array if the discrete range Is "
a null range.

For the evaluation of a name that Is a slice, the prefix and the discrete range are evaluated In sormie 4

order that Is not defined by the language. The exception CONSTRAINT-ERROR Is raised by the
evaluation of a slice, other than a null slice, If any of the bounds of the discrete range does not
belong to the Index range of the prefixing array. (The bounds of a null slice need not belong to the
subtype of the Index.)

Examples of s/5ces:

STARS(1 ,, 15) -- a slice of 15 characters (see 3.8,3)
PAGE01O ,, 10 + SIZE) - a slice of 1 + SIZE components (see 3.8 and 3,2.1)
PAGE(L)(A ,, B) -- a slice of the array PAGE(L) (see 3.6)
STARS(1 ,0 0) - a null slice (see 3.6,3)
MYSCHEDULE(WEEKDAY) bounds given by subtype (see 3.8 and 3,5.1)
STARS(M ,1 !5)(K) -- same as STARS(K) (see 3.8.3)

- provided that K Is In 5 , 15

Notes,.

For a one-dimensional array A, the name A(N ,, N) Is a slice of one component; Its type Is the base .

type of A. On the other hand, AfN) Is a component of the array A and has the corresponding com-
ponent type.

References,' appropriate for a type 4.1, array 3.8, array type 3.6, array value 3.8, base type 3.3, belong to a subtype
33, bound of o discrete range 3.8.1, component 0,3, component tyne 3,3, constant 3.2.1. constraInt 3,3, con-
straInLerror exception 1 1,1, dimenslon 3.6, discrete range 1.0, evaluation 4.5, Index 3.6, Index range 3.A, name 4,1,
null array 3,A1. null range 3,5, prefix 4 1, raising of exceptions 11, type 3,3, Varhible 3.2,1

4.1.3 Seleoted Components

Selected components are used to denote icord components, entries, entry families, and objects

designated by access values; they are also used as expended names as described below,

selected.oomponent ::= prefix,seleotor

selector ::- simple.name
I chnracteriiteral I operator-nymbol I all

S.,4

4-3 Selected Components 4. 1,3

, . .. ril

ANSI/MIL-STD-1815A Ada Reference Manual

3 The following four forms of selected components are used to denote a discriminant, a record corn-
ponent, an entry, or an object designated by an access value:

4 (a) A discriminant:

5 The selector must be a simple name denoting a discriminant of an object or value. The prefix
must be appropriate for the type of this object or value.

5 (bi A component of a record:

The selector must be a simple name denoting a component of a record object or value. The
prefix must be appropriate for the type of this object or value.

For a component of a variant, a check Is made that the values of the discriminants are such
that the record has this component, The exception CONSTRAINT-ERROR Is raised If this check
falls.

(c) A single entry or an entry family of a task:

10 The selector must be a simple name denoting a single entry or an entry family of a task. The
prefix must be appropriate for the type of this task.

(d) An object designated by an access value:a l

12 The selector must be the resevo(l wre •tll, The ,aiso- of the lr-'!I~x must belcng to &n access

type,

3 A selected component of one of the remaining two forms Is called an expanded name, In each . '
case the selector must be either a simple name, a character literal, or an operator Jymbol, A func- ',

tion call Is not allowed as the prefix of an' expanded name, An expanded name can denote:

14 (e) An entity declared in the visible part of a package:

The prefix must denote the package, The selector must be the simple name, character literal,
or operator symbol of the entity.

s (f) An entity whose declaration occurs Immediately within a named construct:

The prefix must denote a construct that Is either a program urlit, a block statement, a loop
statement, or art accept statement, In the case of an ancapt statement, the prefix must be
either the simple name of the entry or entry family, or an expanded name ending with such a
simple name (that Is, no Index Is allowed). The selector must be the simple name, character
literal, or operator symbol of an entity whose declaration occurs immediately within the con-
struct,

J

This form of expanded name Is only allowed within the construct Itself (including the body and
any subunits, In the case of a program unit), A name declared by a renaming declaration In not
allowed as the prefix, If the prefix Is the name of a subprogram or accept statement and If
there is more than one visible enclosing subprogram or accept statement of this name, the
expanded name Is ambiguous, Independently of the selector.

If, according to the visibility rules, there Is at least one possible Interpretation of the prefix of a
selected component as the name of an enclosing subprogram or accept statement, then the only
Interpretations considered ars those of rule (f), as expanded names (no Interpretations of the prefix
as a function call are then c)nsldered).

4. 1.3 Selected Components 4-4

Names and Expressions

The evaluation of a name that Is a selected component Includes the evaluation of the prefix, 20

Examples of selected components: 2

TOMORROW.MONTH -- a record component (see 3.7)
NEXT-CAR.OWNER -. a record component (see 3.8.1)
NEXT-CAR.OWNER.AGE -- a record component (see 3.8.1)
WRITEF1.UNIT -- a record comp~onent (a dlscriminant.) (see 3.7.3)
MIN..CELLIH).VALUE -- a eacord component of the result (see 8,1 and 3181)

of the function call MIN...CELL(H)

CONTROL.SEIZE -- an entry of the task CONTROL (see S.,I and 9.2)
POOL(K).WRITE ti n entry of the task P001(K (see 9.1 and 9.2)

NEXT-CAR.all -- the object designated by
-- the access variable NEXT-..CAR (see 3.8.1)

Examples of expanded names,

TABLE,..MANAGER.INSERT a procedure of the visible part of a package (see 7.5)
KEY..MANAGER."(" - an operator of the visible part of a package (see 7.4.2)

DOT-PRODUCT.SUM - a variable declared in d procedure body (see 8.6)
BUFFER.POOL -- a variable declarod In a task unit (see 9,12)
BUFFER.READ -- an entry of a task unit (sea 9.12)
SWAPTEMP -- a variable declared In a block statement ?.ose 5.6) .. A
STAN DAR D.800 LEAN -- the name of a predefined type (see 8.6 and C)

Note,,

For a recco-d with components that are other records, the above rules Imply that the simple nameNmust be given at each ievel for the name of a subcomponent, For example, the name
NEXT-CAR .OWNER -BIRTH .MONTH cannot be shortened (NEXT-CAR -OWNER -MONTH Is not
allowed).

References., accept statement 9,5, maccess type 3.8, acceas value 3.8, appropriate for a type 4.,1, block statement 5.6, 24

body of a program unit 3.9, character literal 2.5, component of a record 1,7, constraint-orror exception 11.,1, denlara-
tdon 3. 1, designate 3.8, discriminant 3.3, entity 3. 1, entry 9,15, entry fatilly 9.15, function call 61.4, Index 3.6, loop Atate-
ment 5,5, object 3.2,.1, occur Immediately within 8,.1, operator 4.5, operator symbol a, 1, overloading 8.3. pankage 7,
predefined type C, prefix 4.1, procedure body 0.3, programn unit 0, raising of exceptions -11, record 37, recora oompo-
nent 3.7, reg'~minyj declaration 8.15, reserved word 2.,0. simple name 4.11, subprogram 63, subunit 10.2, task 9, task
object 9.2, taok unit 9, variable 3,.73, variant 3.713, visibility 8.3, visible part 3.7,3

4.1.4 Attributes

An attribute denotes a basnic operation of an entity given by a prefix.

attribute ::= pi'efix'attrib u to-.dosig notor

attribute-.designator ::- si mple-name 1(universeLstat/c-expresslon)]

The applicable attribute designators depend oni thin pret'x. An attribute can be a basic operationK delivering a value; alternatively It c~r, be a function, a type, or a range. The meaning of the prefix of
an attribute must be determinable, Independently of the attribute designator and Independently of6
the fact that It Is the prefix of an attribute.

4-5 Attributes 4.1.4

ANSI/MIL-STD-1815A Ada Reference Manual

The attribute- defined by the language are summarized In Annex A. In addition, an
implementation may provide Implementation-defined attributes; their description must be given in
Appendix F, The attribute designator of any implementation-deflned attribute must not be the
same as that of any language-defined attribute,

The evaluation of a name that is an attribute consists of the evaluation of the prefix.

Notes:

The attribute designators DIGITS, DELTA, and RANGE have the same identifier as a reserved word,
However, no confusion is possible since an attribute designator is always preceded by an
apostrophe. The only predefined attribute designators that have a universal expression are those
for certain operations of array types (see 3.6.2).

Examples of attributes:.

COLOR'FIRST .- minimum value of the enumeration type COLOR (see 3.3,1 3.5)
RAINBOW'BASE'FIRST -- same as COLOR'FIRST (see 3.3.2 3,3,3)
REAL'DIGITS -- precision of the type REAL (see 3.5.7 3.5.8)
BOARD'LAST(2) -- upper bound of the second dimension of BOARD (see 3.8,1 3.8.2)
BOARD'RANGE(1) Index range of the first dimension of BOARD (see 3.6.1 3.6.2)
POOL(K)'TERMINATED - TRUE If task POOL(K) Is terminated (ace 9.2 9.9)
DATE'SIZE -- number of bits for records of typo DATE (see 3.7 13.7.2)
MESSAGE'ADDRESS -- address of the record variable MESSAGE (see 3,7.2 13.7.2)

References; appropiiate for a type 4.1, basic operation 3,3,3, declared entity 3,1, name 4,1, prefix 4.1 reserved word
2,9, simple name 4.1, static expression 4,9, type 3,3, universal expression 4,10

4.2 Literas..

A literal Is either a numeric literal, an enumeration literal, the literal null, or a string literal, The
evaluation of a literal yields the corresponding value,

Numeric literals are the Iteral of the types unlversiaIJnteger and unlversalreal, Enumeration
literals Include character literala and yield values of the corresponding enumeration types, The
literal null yields a null access value which designates no objects at all.

A string literal Is a basic operation that combines a sequence of characters Into a value of a one-
dimensional array of a character type; the bounds of this array are determined according to the
rules for positional array aggregates (see 4,312), For a null string literal, the upper bound Is the .
predecessor, as given by the PRED attribute, of the lower bound. The evaluation of a null string
literal raises the exception CONSTRAINT-ERROR If the lower bound does not have a predecesoor
(see 3,5,5),

The type of a string literal and likewise the type of the literal null must be determinable solely from
the context In which this literal appars, excluding the literal Itself, but using the fact that the literal
null Is a value of an access type, and similarly that a string literal is a value of a one-dimensional
array type whose component type Is a character type.

The character ilterals corresponding to the graphic characters contained within a string literal must
be visible at the place of the string literal (although these characters themselves are not used to
determine the type of the string literal).

4, 2 Literals 4-6
P• 1

"Names and Expressions

* ~Examples:'

3,14159-26536 -- a real literal
1-345 -- an Integer literal
CLUBS -- an enumeration literal
'A' -- a character literal
"SOME TEXT" -- a string literal

References': access type 3.8, aggregate 4,3, array 3,8, array bound 3.6, array type 3.6, character literal 2,5, character -
type 3,52, component type 3.3, constrainLerror exception 11.1, designate 3,8, dimension 3.6, enumeration literal
3.5. 1, graphic character 2,1. Integer literal 2.4, null access value 3,8, null literal 3,8, numeric literal 2.4, object 3,2,1,
real literal 2.4, string literal 2,6, type 3,3, universalIntegar type 3,5,4, univeoraltreal type 3,5,, visibility 8.3

4.3 Aggregates

Aii aggregate Is a basic operation that combines component values Into a composite value of a
record or array type,

aggregate ::-a .
(componenteassoolation (, componentLassooiation).

componentassociation ::
[cholce II oholcel => I expression

Each component association associates an expression with components (possibly none), A compo-
nerit association li said to be named If the components are specified explicitly by choices, It in
ntherwise said to be positional. For a positional association, the (single) component Is implicitly
specified by position, In the order of the corresponding component declarations for record compo-
nents, In index order for array components, V..

Named associations can be given In any order (except for the choice others), but if both positional 4
and named associations are used In the same aggregate, then posltlonsi associations must occur
first, at their normal position, Hence once a named association Is used, the rest of the aggregate
must use only named associatlons, Aggregates containing a singlo component association must

, always be given In named notation, Specific rules concerning component associations exist for
record aggregates and array aggregates,

Choices In component associations have the same syntax as in variant parts (see 3.7,3). A choice
that is r component simple name Is only allowed In a record aggregate, For a component ansocis-
tion, a choice that Is a simple expression or a discrete range Is only allowed In an array aggregate;
a choice that is a simple expression specifies the component at the corresponding index value;
similarly a discrete range specifies the components at the index values In the range. The choice
others Is only allowed In a component association If the association appears lost and has thlv .
single choice; It specifies all remaining components, If any.

Each component of the value defined by an aggregate must be represented once and only once In .
the aggregate. Hence each aggregate must be complete and a given component Is not allowed to

'* be specified by more than one choice,

The type of an aggregate must be determinable solely from the context In which the aggregate
"appears, excluding the aggregate Itself, but using the fact that this type must be composite and not
limited. The type of an aggregate In turn determines the required type for each of its components,

4-7 Aggregates 4.3

2% . . . -. . .

ANSIIMIL-STIJ-1876A Ada Reference Manual

Notes:

8 The above rule Implies that the determ~ination of the type of an aggresc~te cannot use any In-formal-
tion from within the aggregate, In particular, this determination cannot use the t-.ipn of the expres-
sion of a component association, or the form or the type of a choice. An agcirsgate can always be
distinguished fruin an expression enclosed by parentheses: this is a consequence of the fusct that
named notatloi is required for an aggregate with a singlei component,

9 References,, array aggregate 4,12, array typ6 3.6, basIc. operatIor 3.3.3, ch~olce 3.7,3, component 313. compoalte
* ~type 1.3. composite value 3.3, discrete range 3.0, expression 4.4, IOdex 3,6, im~itad type 7,4.4, primary 4A4, record

Eiggregcate 41.31, record type 3.7. simple expreuIon 4.4, simple nmem 4, 1, type 3.3, virlant part 3.7 3

4.3.1 Record Aggregates

If the type of an aggregate Is a record type, the component names given as choices must denote
components (Including discrlmInanta? of the record type. If the choice othets Is given eoar choice of
a record aggregate, It must represent at leaist one component, A component association with the
choice others or with more than one ohoice ib only allowed If the represented components aer lit
of the same type, The expression of a component association must have the type of tho associated
record components.

The value specified for a dlscrimInant that govorric a variant part must bm given by a static expres-
sion (note that this value determines which depeiident components must appear In thle record

* valuel.

:iFor the evaluation of a record aggregate, the expressions given In the component associations are
evaluated In smane order that Is not defined by the language, The expression of a named assocla-

4 tion Is evaluated once for each ussociated component, A check Is made that the value of each sub-
component of the aggregate belongs to the subtype of this stibcomponent. The exception -

CONSTRAINT-ERROR Is raised It this check fails.

4 Example of it record aggregate with positional assoclatlonc.,'

(4, JULY, 1"176) -- sea 3.7

5 Examples of record aggregates with named assoclatlons,-

(DAY -c> 4, MONTH -> JULY, YEAR 1> 778)
(MONTH -> JULY, DAY '>4, YEAR '>1*776)

(DISK, CLOSED, TRACK .>5, CYLIND~ER -> 1l2) evue 3.7.3
* ~(UNIT .> DISK, STATUS _> CLOSED, CYLINDER u>9, TRACK _> ¶1

a Exa'mple of component association with several choices:

(VALUE 0,. Q SUCCIPRED -. , new CELL1O. null, null)) *-see 3.8.10
The allocator is evaluated twice: SUCC anH PRED designate different calls

Note,-

I For an aggregate with positional associations, discriminent vaiuea appear first since the discrimi.,
nant part Is given first In the record type declaration; they must be In the earno urder tit In the dis- ~ ,

criminant part,

4.3.1 Record A ggre,,,a(as 4-9

Names and Expressions

References. aggregate 4.3, kollocator 4,8, choice 3.7,3, component association 4.3, componbnt name 3.7, conctroint "

3,3, constrainLerror eseption 11.1, depend on a dlacrimlnant 3,7,1, discrlminant 3.3, dlscrimilnant part 337.1,

evaluate 4,5, expression 4.4. In mome order 1,6, program 10, raising of exceptions 11, record component 3,7, record

type 3,7, satisfy 3,3, suatic expressIon 4,9, subcomponent 3,3, subtype 3.3.2, type 3.3, variant part 3.73

4.3.2 Array Aggregates

If the type of an aggregate Is a one-dimensional array type, then eech choice must specify values
of the index tvpe., and the expression of each component association must be of tVe component
type,

If The type of an aggregate is a multidimensional array type, an n-almensional aggregate Is written 2
as n one-dimensional aggregate, In which the expression specified for each component association
Is Itself written as an (n-1)-dimensionai aggregate which Is called a subaggregate; the Index sub-
type of the one-dimensional aggregate Is given by the first index position of tho array type, The
same rule Is used Vo write a subaggregete If It Is again multidimernional, using successive index
pnsltions. A string literal Is allowed In a multidimensional oggregete aL the place of a one-
dimensional array of a character type, In what follows, the rules concerning array aggregates are
formulated In terms of one-dimensional aggregates.

Apart from a fina! component association with the single choice others, the rest (if any) of the corn-
portent associations of an array aggregate must be either all positional or all named, A named
association of a,, array aggregate Is only allowed to have a choice that Is not static, or likewise a
choice that Is a null range, If the aggregate Includes a single component association and this com-
ponent association has a single choioe, An others choice Is static If the applicable Index constraint
Is static.

Ths bounds of an array aggregate that has an others choice are determined by the applicable Index 4 '

constraint, An others choice Is only &llowed If the aggregate appears In one of the following con-
texts (which defines the applicable Index constraint):

(a) The aggregate Il an actual parameter, a generic actual parameter, the result expression of a
function, or the oxpression that follows an absignment compound delimiter, Moreover, the
subtype of the corresponding formal parameter, generic formal parameter, function result, or ..

object Is a constrained array subtype,

For an aggregate that appears In ouch a context and contains an association with an others
choice, named associations are allowed for other assnclations only In the case of a
(nongeneric) actual parameter or function result, If the agjregate Is a multidimensional array,
this restriction also applies to each of Its subaggregates,

(h) The aggregate Is the operand of a qualified expression whose type mark denotes a con-
strained array mubtype,

(c) The aggregate Is the expression of the component e-soclation of an enclosing (array or record)
aggregate, Moreover, If this enclosing aggregate Is a multidImen•lonal array aggregate thlon It
Is Itself In one of these three contexts,

The boundi of an array aggregate that does not have an uthers choice are determined us follows,
For an aggregate that has named associations, the bounds are determined by the smallest and
largest choices given, For a positional aggregate, the lower bound Is determined by the app!icable
Indnx constraint If the aggregate appears In one of the contexts (a) through (c); otherwise, the 0
lower bound Is giver, by S'FIRST where S Is the Index subtype; In either case, the upper bound Is
JetermInrd by the number of components,

4_9 Array AggregatEs 4,.7.2

ANS//M/L-STD-181r4 Ada Reference Manual

* 10 The evaluation of an array aggregate that Is not a subaggregate proceeds In two steps. First, the
choices of this aggregate and of its subaggregates, If any, are evaluatred In some order that Is not
defined by the language. Second, the expressions of the component associations of the array
aggregate are evaluatrid In some order that Is not defined by the language; the expression of a
named association Is b,/aluated once for each associated component. The evaluation of a subag-
gregate consists of this second step (the first step Is omitted since the choices have already been
evaluated).

For the evaluation of an aggregate that Is not a null array, a check is madea that the index values
defined by choices bFIlong to the corresponding Index subtypes, and also that the value of each
subcomponent of the aggregate belongs to the subtyr~e of this subcomponent, For an n-
diminsional multidimensional aggregata, a check Is made that all (n-1)-dimensional subagyrega-
tes have the snme bounds. The exception CONSTRAINT-..ERROR Is raised If any of these checks
fails.

Note.-

12 The allowed contexts for an array aggregate Including an others choice are such that the bounds of
such an aggregate are 9lways known from the context.

1. Examples of array, aggregates with posidonaf associations:

(7, 9, 5, 1, 3, 2. 4, 8, 6, 0)
TABLE1(5, 8, 4, 1, others .=> 0) -- see 3.6 t

14 Examples of array aggregates with named assoclatlons:

(1 5 => (10 8 => 0.0)) -- two-dimensional
(10 N => new CELL) -- N new cells, In particular for N 0

TABLE'(2 I4 I10 => 1, others =>0)
SCHEDULE(MON .. FRI -=> TRUE, others => FALSE) see 3.6
SCHEDULE'(WED ISUN => FALSE, others => TRUE)

Examples of two-dimensional array aggregates:

-- Three aggregates for the same value of type MATRIX (see 3.6):

((1.1, 1.2, 1.3), (2.1, 2.2, 2.31))
(1 => (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 ý> (1 => 1.1, 2 => 1,2, 3 => 1.3), 2 => (1 ~>2.1, 2 => 2.2, 3 => 2.3))

Y'xa, np/os of aggregates as Initial values:

A TABLE (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(11=7, A(10)0O
B TABLE TABLE'J2 1 4 1 10 => 1, others ='> 0); -- B(1)=0. B(10=1
C constant MATRIX := (1 .. 5 => 0(1 ,. => 0.0)l); -C'FIRSTM1=1, C'LAST(2)=8

D BIT-VECTOR(M .. N) :=(M .. N => TRUE); -_ see 3.6
9E BIT,.NECTCR(M .. N) :~(others => TR UE);

F STRING(1 . 1) (1 => 'F'); -- a one component aggregate: same as'F

7l References: aictual parameter 6.4. 1, aggregate 4.3, array typo 316, assignment compound dellmIter 15.2, choice 3.7,3,
component 3.3, component association 4,3, component type 3,3, constrained array subtype 3,63, constraint 3,3, con-
stralnt...,rror excJeptionl 1 1.1, dimension 3.6, evaluate 4.5, expression 4,4, formal parameter 6. 1, function 6.5, In some

I order 11.1, Index constraint 3.6.1, index range 3.6, Index subtype 3.6, index type 3.6, named component association
4.3, null array 3.6.1, object 3.2, positional component association 4.3, qualified expression 4.7, raising at exceptions
11, static ,,xpresslon 4.9, subcomponent 3.3, type 3.3

4.3,2 Arrby Aggregates 4-10

Names and Expressions

4.4 Expressions

An expression Is a formula that defines the computation of a value.

expression
relation land relation) I relation lfnd then relation)

I relation (or relation) I relation for else relationj
I relatlnn Ixor relation)

relation
sImple.expression [relatlonal-operator simple-expression]
simple-expression [not] In range

I simple-expression [not] in type-mark

simple-expression [unary-adding.operatorl term (blnary.addlng.operator term)

term factor fmultlplylng.operator factorl

factor :=primary [*primary) I abs primary I not primary

primary
numeric.literal I null I aggregate I string-literal I name I allocator
function-call I type-conversion I quallfied-expression I (expression)

Each primaty has a value and a type. The only names allowed as primaries are named numbers;
attributes that yield values; and names denoting objects (the value of such a primary Is the value of
the object) or denoting values. Names that denote formal parameters of mode out are not allowed
as primaries; names of their subcomponents are only allowed In the case of discriminants.

The type of an expression depends only on the type of its constituents and on the operators
applied; for an overloades. constituent or operator, the determination of the constituent type, or the
Identification of the appropriate operator, depends on the context, For each predefined operator,
the operand and result types are given In section 4.5.

Examples of primaries:
40-- real literal
PI -named number

(1 10 > 0) array aggregate
SUM -- variable
INTEGER'LAST -- attribute
SINE(X) - function call
COLOR'(BLUE) -- qualified expression
REAL(M*N) -- conversion
(LINE-COUNT + 10) -- parenthesized expression

Examples of expressions:

VOLUME -- primary
not DESTROYED -- factor 0
2,LINECOUNT -- term
-4.0 -- simple expression
-4.0 + A -- simple expresilon
B,,:*2 - 4.0A*C simple expression
PASSWORD(1 - 3) -"BWV" -- relation
COUNT in SMALLINT -- relation
COUNT not In SMALLINT -.- relation
INDEX := 0 or ITEM-HIT -- expression
(COLD and SUNNY) or WARM -- expression (pareoitheses are required)
A•r (B•,C) -- expression (parentheses wre required)

4-11 Expressions 4,4

. ' -,.-, - - - --. -, -.

ANS!/MIL-STD-1815A Ada Reference Manual

S 7 References: aggregate 4,3, allocator 4.8, array aggiegate 4.3.2, attribute 4.1.4, binary adding operator 4,5 4.5.3,
context of overload resolution 8.7, exponentlating operator 4.5 4.5.6, function nail 6.4, multiplying operator 4.5 4.5,5,
name 4.1, named number 3.2, null literal 3.8, numneric literal 2.4, object 3,2, operator 4.5, overloading 8,3,
overloading an operator 6.7, qualified expression 4,7, range 3.5, real literal 2,4, relation 4.5.1, relational operator 4.5
4,5.2, result type 6,1, string literal 2.6, type 3,3, type conversion 4.6, type mark 3.3.2, unary adding operator 4.5
4.154. variable 3.2.1

"4.5 Operators and Expression Evaluation

"I The language defines the following six classes of operators, The corresponding operator symbols
(except /=), and only those, can be used as designators in declarations of functions for user-

_ defined operators. They are given in the order of Increasing precedence,

2 logical-operator and or xor

"relational-operator <= I I >I

binary.adding-operator ::= -- I &

unary.adding-.operator ::= + - .

multiplying.operator m* / I od I rm r

highest.precedence-operator ** &abe not

3 The short-circuit control forms and then and or alse have the same precedence as logical
operatuis, The meambershlp tests In and not in have the same precedence as relational operators,

" " For a term, simple expression, relation, or expression, operators of higher precedence are
-+ associated with their operands before operators of lower precedence. In this case, for a sequence

of operators of the same precedence level, the operators are associated In textual order from left to
right; parentheses can be used to impose specific associations,

, The operands of a factor, of a term, of a simple expr-ession, or of a relation, and the operands of an
expression that does not contain a short-circuit control form, are evaluated in some order that is
not defined by the language (but before application of the corresponding operator). The right
operand of a short-circuit control form Is evaluated If ard only if the left opeland has a certain
value (see 4.5.1).

e. For each form of type declara•on, certrin of the above operators are predefined, that Is, they are
implicitly declared by the type declaration. For e-ch such Implicit operator declaration, the names
of the parameters are LEFT and RIGHT for binary operators; the single parameter is called RIGHT
for unary adding operators and for the unary operators ab! and not, The effect of the predefined

"" operators is explained In subsections 4,5,1 through 4,5.7.

, The predefined operations on integer types either yield the mathematically correct result or raise
the exception NUMERIC-ERROR, A predofined operation that delivers a result of an Integer type
(other than universaLI.Jnteger) can only raise the exception NUMERIC-ERROR if the mathematical
result is not a value of the type. The predefined operations on real types yield results whose
accuracy Is defined In section 4,547. A predefined operation that delivers a result of a real type
"(other than universaljeai) can only raise the exception NUMERIC-ERROR if the result is not within

4! the range of the safe numbers of the type, as explained in section 4.5.7.

4,5 Operators and Expression Evaluation 4-12

MEMO-e

Names and Expressions

E>amnples of precedenc•-,-

not SUNNY or WARM -- same as 'not SUNNY) or WARM
X > 4.0 and Y > 0.0 -- same as (X > 4.0) and (Y > 0.0)

-4.0*.A*2 same as -(4.0 * (A**2))
abs(1 + A) + -- same as (bs (1 + A)) + B
Y,•i, (-3) -- parentheses are necessary.
A / B *k C -.- same as (A/B)*C
A + (B + C) -- evaluate B + C before adding it to A

References: designator 8.1, exprec lon 4.4, factor 4.4, Implicit declaration 3.1, In some order 1.8, Integer type 3,5,4, "
membership test 4,5.2, name 4.1, numeric.error exception 11,1, overloading 6,6 8,7, raising of an exception 11,
range 3.5, real type 3.6.6, relation 4.4, safe number 3.,5.6, short-cIrcuIt control form 4.5 445.1, simple expression 4.4,
term 4.4, type 3.3, type declaration 3,3,1, universal-integer type 3,5,4, universal-real type 3.5.6

4.5.1 Logical Operators and Short-circuit Control Forms

The following logical operators are predefined for any boolean type and any one-dimensional array
type whose components are of a boolean type; In either case the two operands have the same
type.

Operator Operation Operand type Result type 2

and conjunction any boolean type same boolean type
array of boolean components same array type

or Inc.sive dlsjunction any boolean type same boolean type
array of boolean components same array type

xor exclusive disjunction any boolean type same boolean type
array of boolean components same array type

The operations on arrays are performed on a component-by-component basis on matching compo-
nent1., if any (as for equality, see 4.6.2). The bounds of the resulting array are those of the left
operand, A check Is made that for each component of the left operand there Is a matching compo-
nent of the right operand, and vice versa. The exception CONSTRAINTERROR Is raised If this
check falls.

The short-circuit control forms and then and or else are defined for two operands of a boolean type 4

and deliver a result of the same type, The left operand of a short-circuit control form Is always
evaluated first, If the left oporand of an expression with the control form and then evaluates to
FALSE, the right operand Is not evaluated arid the value of the expression Is FALSE. If the left
operand of an expression with the control form or alse evaluates to TRUE, the right operand Is not
evaluated and the value of the expression Is TRUE, If both operands are evaluated, and then
delivers the same result as and, and or else delivers the same result as or,

Note: The conventional meaning of the logical operators Is given by tne following truth table: 5

A B Aand B A or B AxorB 6

TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TPUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

4-13 Logical Operators and Shori circuit Control Forms 4.5.1
.:,q

ANSI/MIL-STD-1815A Ada Reference Manual
,0

Examples of logical operators:.

SUNNY or WARM

FILTER(1 .. 10) and FILTER(IS ., 24) -- see 3.6.1

Examples of short-circuit control forms:

NEXT-CAROWNER /= null and thin NEXT-CAROWNER.AGE > 25 -- see 3.8.1
N = 0 or gise AN) =HIT-VALUE

References: array type 3,6, boolean type 3.5,3, bound of an Index range 3,6.1, component of an array 3.6,

constraint-error exception 11.1, dimension 3,8. false boolean value 3.5.3, Index subtype 3.6, matching component- of
arrays 4.5.2, null array 3.6,1, operation 3.3, operator 4,5, predeflned operator 4,5, raising of exceptions 11, true
boolean value 3.5.3, type 3.3

4.5.2 Relational Operators and Membership Tests

The equality and Inequality operators are predefined for any type that is not limited, The other ,' -

relational operators are the ordering operators < (less than), <" (loss than or equal), > (greater
than), and >= (greater than or equal), The ordering operators are predefined for any scalar type,
and for any discrete array type, that is, a one-dimensional array type whose components are of a
discrete type, The operands of each predefined relational operator have the same type. The result
type Is the predefined type BOOLEAN,

2 The relational operators have their conventional meaning: the result is equal to TRUE If the
corresponding relation is satisfied. the result Is FALSE otherwise, The Inequality operator gives the
complementary result to the equality operator: FALSE if equal, TRUE If not equal,

3 Operatom Operation Operand type Result type

/= equality and Inequality any type BOOLEAN %

< <= > >= test for ordering any scalar type BOOLEAN
discrete array type BOOLEAN

Equality for the discrete types Is equality of the values., For real operands whose values are nearly
equal, the results of the predefined relational operators are given in section 4.5,7. Two access
values are equal either If they designate the same object, or If both are equal to the null value of
the access type,

For two array values or two record values of the same type, the left operand is equal to the right
operand If and only If for each component of the left operand there is a matching component of the
right operand and vice versa; and the values of matching components are equal, as given by the
predefined equality operator for the component type, In particular, two null arrays of the same
type are always equal; two null records of the same type are always equal.

For comparing two records of the same type, matching components are those which have the
same component Identifier.

For comparing two one-dimensional arrays of the same type, matching components are those (if
any) whose Index values match In the following sense: the lower bounds of the Index ranges are
defined to match, and the successors of matching Indices are defined to match, For comparing two
multidimensional arrays, matching components are those whose Index values match in successive
index positions.

4.5,2 Relational Operators and Membership Tests 4-14

Names ana Expressions

If equality Is explicitly defined for a limited type, It does not extend to composite types having sub- -
components of the limited type (explicit definition of equality Is allowed for such composite types).

The ordering operators <, <=, >, and >= that are defined for discrete array types correspond to
lexicographlc order using the predefined order relation of the component type, A null array is lex-
lcographically less than any array having at least one component. In the case of nonnull arrays, the , •.
left operand is lexicographically less than the right operand if the first component of the left
operand Is less than that of the right; otherwise the left operand Is lexicographlcally less than the ,',,.. '>
right operand only if their first components are equal and the tall of the left operand Is lox-
icographically less than that of the right (the tall consists of the remaining components beyond the
first and can be null),

The membership teats In and not In are predefined for all types, The result type is the predefined ,o
type BOOLEAN. For a membership test with a range, the simple expression and the bounds of the
range must be of the same scalar type; for a membership test with a type mark, the type of the
simple expression must be the base type of the type mark, The evaluation of the membership test
in yields the result TRUE if the value of the simple expression Is within the given range, or If this
value belongs to the subtype denoted by the given type mark; otherwise this evaluation yields the
result FALSE (for a value of a real type, seoe 4.5.7). The membership test not In gives the
complementary result to the membership test In,

Examples:

X/.Y /= -'

"< "A" and "A" < "AA" -- TRUE
"AA" < "B" and "A" < "A " -- TRUE

MY_-CAR = null -- true If MY-CAR has been set ta null (see 3.8.1)MY-CAR = YOUR-CAR -- true If we both share the same carMYCAR nl= YOURCARall -- true If the two cars are Identical

N not In 1 *, 10 -- range membership test
TODAY in MON ,. FRI -- range membership test
TODAY In WEEKDAY -- subtype membership test (see 3.5.1)
ARCHIVE In DISK-UNIT -,- subtype membership test (see 3.7.3)

Notes.:

No exception is ever raised by a predefined relational operator or by a membership test, but an 12

exception can be raised by the evaluation of the operands.

If a record type has components that depend on discriminants, two values of this type have mat- ..
ching components If and only If their discrimlnants are equal. Two nonnull arrays have matching
components If and only If the value of the attribute LENGTH(N) for each Index position N Is the
same for both.

References: access value 3,8, array type 3.6, base type 3,3, belong to a subtype 3,3, boolean predefined type 3.5.3, 14

bound of a range 3,5, component 3.3, component Identifier 3,7, component type 3,3, composite type 3.3, designate
3,8, dimension 3.8, discrete type 3,5, evaluation 4,5, exception 11, Index 3,6, Index range 3.6, limited type 7A4.4, null
access value 3.8, null array 3,6,1, null recoru 3.7, object 3.2,1, operation 3.3, operator 4,5, predeflned operator 4,5,
raising of exceptions 11, range 3,5, record type 3,7, scalar type 3.5, sImple expression 4.4, suboomponent 3.3, suc-
cessor 3.5.5, type 3.3, type mark 3,3,2

4-15 Relational Operators and Membership Tests 4,5.2

ANS1/MIL-STD-1 815A Ada Reference Manual

4.5.3 Binary Adding Operators

The binary adding operators + and - are predefined for any numeric type and have their conven-
tional meaning. The catenation operators & are predefined for any one-dimensional array type that
is not limited. 0

Operator Operation Left operand type Right operand type Result type

+ addition any njmeric type same numeric type same numeric type

subtraction any numeric type same numeric type same numeric type '"

& catenation any array type same array type same array type
any array type the component type same array type
the component type any array type same array type
the component type the component type any array type

3 For real types, the accuracy of the result is determined by the operand type (see 4.5.7).

4 If both operands are one..dimenslonal arrays, the result of the catenation is a one-dimensional
array whose length ;s the sum of the lengths of Its operands, and whose components comprise the
components of the left operand followed by the components of the right operand, The lower bound
of this result Is the lower bound of the left operand, unless the left operand Is a null alray, in which
case the result of the catenation Is the right operand.

If either operand Is of the component type of an array type, tho result of the catenation is given by

the above rules, using In place of this operand an array having this operand as Its only component
and having the lower bound of the index subtype of the array type as its lower bound,

6 The exception CONSTRAINTERROR Is raised by catenation If the upper bound of the result
exceeds the range o? the Index subtype, unless the result Is a null array, This exception Is also
raised If any operand Is of the component type but has a value that does not belong to the nompo-
nent subtype,

I Examples:

Z + 0.1 -- Z must be of a real type

"A" & "BCD" -- catenation of two string literals
'A' & "BCD" -- catenation of a character literal and a string literal
'A' & 'A' -- catenation of two character literals

a References: array type 3,6, character literal 2,5, component type 3.3, constrainLerror exception 1 1,1 dimension 3,6
Index subtype 3,8, length of an array 3,6,2, limited type 7.4,4, null array 3,6,1, numeric type 3,5, operation 33,
operatot 4,5, predefined operator 4,5, raising of exceptions 11, range of an Index subtype 3.6.1, reel type 3.5,6, string
literal 2.6, type 3.3

4.6.4 Unary Adding Operators . ,.

The unary adding operators + and - are predefined for any numeric type and have their conven-
tionial meaning, For each of these operators, the operand and the result have the same type,

4X,&4 Unary Adding Operators 4-16

Names and Expressions

Oper,' tor Operation Operand type Result type "

+ Identity any numeric type same numeric type

negation aiy ?iumeric type same numeric type

References: numeric type 3.5, coperation 3.3, operator 4.5, predefined operator 4A5, type 3.3 3

4.5.5 Multiplying Operators,

The operators * and / are pradeflned for any Integer and any floating point type anci have their con..
ventional meaning: the operators mod and rem are predefined for any integer type. For each of
these operators, the operands and the result have the same base type. For fPoating point types, thei
accuracy of the result Is determined 'Iy the operand type (see 4,b.7),

Operator Operatior? Oporand type Result type 2

,multiplio•,,ion any Integer type same Integer type
any floating point type same floating point type

/ Integer division any Integer type same integer type.
fli sting division any floating point typo same floating ý. •int type .. ,

mod modulus any integer type aame iateger typo

rem reainrder any Integer type same Integer type

Integer division and romlnder are defined by the relation 3

A (A/B)*B *(A rer B)

where (A rem B) has the sign of A and an absolute valuo less than the absolute vulue of B. Integer 4

division satisfies the Identity

(-A)/B = -(A/B) .= AA(-B)'"1

The result of the modulus operation Is such that (A mod B) has the sign of B and an absolute value
less then the absolute value of B; In addition, for some Integer value N, this result must satisfy the
relation

A = B*N + (A mod 8)

For each flxud point type, the following multiplication and division operators, with an operand of
the predefined type INTEGER, are predefined.

Operator Operofon Left operand type Ri4,ht operand type Result type I

multiplication any fixed rp,,Nlnt type INTEGER same as left
INTEGEA any fixed point type same as right

division any toed point type INTEGER same as left

4-17 Multlply/ng Operators 445,5

ANSIIMIL-STD-1815A Ada Reference Manual
'A '0

a, ,Integer multiplication of fixed point values Is equivalent to repeated additon. Division of a fixed
point value by an Integer does not Involve a change in type but is approximate (see 4.5.7).

" Finally, the following multiplication and division operators are declared In the predefined package
STANDARD, These two special operators apply to operands of all fixed point types (it Is a conse-
quence of other rules that they cannot be renamed or given as generi' actual parameters), .

.. Operator Operation Left operand type Right operand type ResltIt type

multiplication any fixed point type any fixed point type universaLfixed

/ division any fixed point type any fixed point typo universai-fixed

Multiplication of operands of the same or of different fixed point types is exact and delivers a resuit
of the anonymous predefined fixed point type universe/Jixed whose delta Is arbitrarily small. The
result of any such multiplication must always be explicitly converted to some numeric type, This
ensures explicit control of the accuracy of the computation, The same considerations apply to dlvi-
sion of a fixed point value by another fixed point value, No other operators are defined for the type
unlversalJIxed.

1 The exception NUMERIC-ERROR Is raised by Integer division, rem, and mod If the right operand Is
zero,

1 Examples.'

I INTEGER :I. 1
J INTEGER := 2;
"K INTEGER :-, 3:

X REAL digits 6 :- 1.0 -- see 3.5.7
Y REAL digts 0 ;- 2.0;

F FRACTION delta 0.0001 1- 0.1; -- see 3.5,9
G FRACTION delta 0.0001 :. 0.1;

Expression VOWue Result Type

I,- 2 same as I and J, that Is, INTEGER
./J 1 some as K and J, that Is, INTEGER,

sK mod J I same as K and J, that is, INTEGER

X/Y 0,5 same as X and Y, that Is, REAL
F/2 0,05 same as F, that Is, FRACTION

3*F 0,3 same as F, that Is, FRACTION
Fa,,G 0,01 unlverseljixed, conversion needed
FRACTION(F*G) 0,01 FRACTION, as stated by the conversion
RFAL(J)*Y 4.0 REAL, the type of both operands after converslon of J

"4,65 I 4ultiplytng Operators 4-18

Names ano Expressions

Notes:

For positive A and B, A/B is the quotient and A rem B is the remainder when A Is divided by B. The "4
following relations are satisfied by the rem operator:

A rem (-B) = A rem B
'-A) rem B - -(A rem B)

For any integer K, the following Identity holds:

A modS 8 (A +K*811mod B

The relations between integer division, remaincder, and modulus are illustrated by the following
table:

A B A/B A rem B A mod B A B A/B A rem 8 A mod B

10 5 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4 , 1
12 5 2 2 2 -12 5 -2 -2 3

13 5 2 3 3 -13 5 -2 -3 2
14 6 2 4 4 -14 5 -2 -4 1 "." *.

10 -5 -2 0 0 -10 -5 2 0 011 -5 -2 1 -4 -11 -5 2 -1 -1

12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 .4 -4

References: actual parumeter 0,4.1, bass type 3.3, declaration 3.1, delta of a fixed point type 3,5.9, fixed Point type 17

3.5,9, floating point type 3,5.7, generic formal subprogram 12.1, Integer type 3,5A4, numeric type 3.6, numeric-arror.
exception 11,1, predeflned operator 4,5, railing of exceptions 11, renaming declaration 8.5, standard predeflned
package 8A, type conversion 4.8

4.5.6 Highest Precedence Operatora

The highest precedence unary operator abs Is prede-lned for any numeric type, The highest
precedence unary operator not Is predefined for any boolean type and any one-dimonsional array
type whose components have a boolean type,

Operator Operation Operand type Result type 2 --

obs absolute value ony numeric type same numeric typo

not logical negation any boolean type same boolean type "..
array of boolean components same array type

The operator not that applile to a one-dimensional array of boolean components yields a one-

dimensional boolean array with the same bounds; each component uf the result is obtained by
logical negation of the corresponding component of the operand (that is, the comoonent that has
the sarrie index value).

4-19 Highest Precedence Orrators 445,6
A Sl

ANSI/MIL-STD-1815A Ada Reference Manual

4 The highest precedence exponentletIng operator ** Is predefined for each integer type and for
each floating point type, In either case the right operand, called the exponent, is of the predefined
type INTEGER.

Operator Operation Left operand type Right operand type Result type

exponentiation any Integer type INTEGER same as left
any floating point type INTEGER same as left

Expoiientliation with a positive exponent Is equivalent to repeated multiplication of the left operand
by Itself. as indicated by the exponent and from left to right. For an operand of a floating point type,
the exponent can be negative, In which case the value Is the reriprocal of the value with the "
positive exponent, Exponentlation by a zero exponent dealivers the alue one, Exponentiation of a thevalue of a floating point type Is approximate (see 4,15.7), Exponentiation of an Integer raises the "''

exception CONSTRAINTERROR for a negative exponent.

References. array type 3,8, boolean type 3.5.3, bound of an array 316,1 component of an array 3.6, constraint-error
exception 11.1, dimenslonallty 3,6, floating point type 3.5.9, Index 3,6, integer type 3,5.4, multiplication operation
4,45,15, predefined operator 46, raising of exceptions 11

4.5.7 Accuracy of Operations with Real Operands

A real subtype specifies a set of model numbers. Both the accuracy required from any basic or
predefined operation giving a real result, and the result of any predefined relation between real
operands are defined In terms of these model numbers,.

2 A model Interval of a subtype Is any Interval whose bounds are model numbers of the subtype, The
model Interval associated with a value that belongs to a real subtype Is the smallest model Interval
(of the subtype) that Includes the value. (The model interval associated with a model number of a
subtype consists of that number only.)

3 For any basic operation or predeflned operator that yields a result of a real subtype, the required
bounds on the result are given by a model Interval defined as follows:

0 The result model interval Is the smallest model interval (of the result subtype) that includes
the minimum and the maximum of all the values obtained by applying the (exact)
mathematical operation, when each operand Is given any value of the model Interval (of the
operand subtype) defined for the operand.

a The model Interval of an operand that is Itself the result of an operatlon, otir than anr Implicit -.......-
conversion, is the result model Interval of this operation,

9 • The model Interval of an operand whose value Is obtained by Implicit conversion of a universal
expression Is the model Interval associated with this value within the operand subtype,

"rhe result model Interval Is undefined If the absolute value of one of the above mathematical
results exceeds the largest safe number of the result type, Whenever the result model Interval Is
undefined, It Is highly desirable that the exception NUMERICQ.ERROR be raised If the
Implementation cannot produce an actual result that Is In the range of safo numbers, This Is,
however, not required by the language rules, In recognition of the fa.ct that certain target machines
do not permit easy detection of overflow altuRtions. The value of the attribute
MACHINE..OVERFLOWS Indicates wh.ther the target machine raises the exception L
,NUMERIC-ERROR In overflow situations (see 13.7,3).

4,5,7 Accuracy of Operations with Real Operands 4-20

Names and Expressions

The safe numbers of a real type are defined (see 3,58,) as a superset of the model numbers, for
which error bounds follow the same rules as for model numbers. Any definition given in this sec-
tion In terms of model Intervals can therefore be extended to safe intervals of safe numbers, A
consequence of this extension Is that an Implementation Is not allowed to raise the exception
NUMERIC.ERROR when the result Interval Is a safe interval.

For the result of exponentlation, the model interval defining the bounds on the result Is obtained by ..
applying the above rules to th,' sequence of multiplications defined by the exponent, and to the
final division In the case of a negative exponent,

For the result of a relation between two real operands, consider for each operand the model inter- 10
val (of the operand subtype) defined for the operand; the result can be any value obtained by
applying the mathematical comparison to values arbitrarily chosen in the corresponding operand
model intervals. If either or both of the operand model Intervals is undefined (and if neither of the
operand evaluations raises an exceptiorn) then the result of the comparison is allowed to be any
possible value (that Is, either TRUE or FALSE).

The result of a memberohip test Is defined In terms of comparisons of the operand value with the " .
lower and upper bounds of the given range or type mark (the usual rules apply to these com.r
parisono),

Note,'

For a floating point type the numbeis 15.0, 3.0, and 6.0 are always model numbers, Hence X/Y ..
where X equals 1 50 and Y equals 3.0 yleldu exactly 5.0 according to the above rules. In the
general case, division does not yield model numbers and In consequence one cannot assume thet(1 ,0 /X 11*X = 1.0 , ,.•: •:

References. attribute 4,14, basic operation 3,3,3, bnund of a ranpe 3,5, error bound 346,,, exponentiation operation
4.5.6, fals boolean value 3.53, floating point type 1,5.9, machineooverflows attribute 13,7,1, membership teat
4,5,2, model number 3.5.8, mulilpllcatlon operation 4,6,6, numerlo-.rror exception 11.1, predeflned operation 3,3,3,
raising of exceptlon, 11, range 3,5, real type 3.15., relation 4.4, relational operator 4,,2 4.5, safe number 3,5.6, sub-
type 3.3, true boolean value 3.5.3, type conversion 4.6, type mark 3,3.2, universal expresslon 4,10

4.8 Type Converslons

The evaluation of an explicit type conversion evaluates the expression given as the operand, and
converts the resulting value to a specified target type, Explicit type conversions are allowed
between closely related types as defined below,

type-converelon n- type.markiexpression)

The target type of a type conversion Is the base type of the type mark, The type of the operand of a
type conversion must be determinable Independently of the context (In particular, independently of
the target type), Furthermore, the operand of a type conversion Is not allowed to be a literal null, an
allocator, an aggregate, or a string literal; an expression enclosed by parentheses Is allowed as the
operand of a type conversion only If the expression alone Is allowed,

A conversion tu a subtype consists of a conversion to the target type followed by a check that the
result of the conversion belongs to the subtype. A caonversion of an operand of a given type to the
type Itself Is allowed,

4-21 Type Conrversions 4.6

• , , .

ANSI/MIL-STO-181i:A Ada Reference MIanuat

5 The other allowed explicit type converslons correspond to the following three oases:

a (a) Numerni types

7 The operand can be of any numeric type; the value of tha operand is converted to the target
"type which must also be a numeric type. For conversions involving rea, types, the result Is
within the accuracy of the spenifled subtype (see 4.5,7), The conversion of a real vilue to an
integer type rounds to the nearest Integer: it the operand Is halfway between two integers
(within the accuracy of the real subtype) rounding may be either up or down,

a (b Derived types

9 The conversion Is allowed If one of the target type and ths operand type Is derived from the
other, directly or Indirectly, or If there exists a third type from which both types are derived.,
directly or Indirectly,

1o (c) Array types

.i: .The conversion Is allowed If the operand type and the target type are array typjes that satisfy
the following conditions: both types must have the asme dimerntionality f•,' each Indix posl-
tion the Index types must either be the same or be convertlbl% to each other; the component
"types must be the same; finally, If the component type is a type wit: discrimina•its or 1n
access wpe, the component subtypes must be either both constrained or both unconstralned,
If the type mark denotes an unconstrained array type, thesn, for each !ndex position, the
bounds of the result are obtained by converting the bounds of the operand to tho cor-
responding Index type of the target type, If the type mark denotes a constralnod array sub-
type, then the bounds of the result are those Imposed by the type mark, Ii either case, the
value of each component of the result Is that of the matching component of 4he operand (see
4.6.2).

12 In the case of conversions of numeric types and derived types, the excoptiorn CONS'rHAINTERIRCR
Is raised by the evaluation of a type conversion If the result of the conversion falls to satisfy ri con-
straint imposed by ttMe type mark.

13 In the case of array types, a cheock Is made that any constraint on the componont subtyl ý 1! the
same for the operand array type as for the target array type, If the type mark denotes an
unconstrained array type and If the operand Is not a nmull array, then, for each Index position, a
check is made that the bounds of the result belong to tho corresponding index subtype of thu
target type, If the type mark denotes a constrainred arrvy subtype, a check is made that for each
component of the operand there Is a matching component of tho target subtype, aind vice versa,
The exception CONSTRAINTEROR Is raised If any of these checks falls,

1 If a conversion Is allowed from one typu to another, the reverse conversion is also allowed, This
reverse conversion Is used where an actual parameter of mode In out or out has the form of a type
conversion of a (variable) name as explained In section 6,41.

I Apart from the explicit type converlorn4, the on;y allowed form of type conversion Is the Implicit
conversion of a value of the type unilversoelJnte per or universeLreal into anoth-r numeric type, An
"Implicit conversion of an operand of type un/versa/.Jntoger to another Integiur type, or of an
operand of type wilversaLrea/ to another real type, can only be applied If tht jprarnd Is either a
numeric literal, u named number, or an attribute; such an operand is c., tud a cowvertible universal
operand In this section, An Implicit conversion of a convertible universal operand Is applied If and
"only If the Innarmost complete context (see 87) determines a unique (numeric) target type for the
Implicit conversion, and there Is no legal Interpretation of this context without this conversion,

4.6 Type Conversions 4-22

Names and Expresuions

Notes.-

Th-a rulesi for Implicit conversions Imply that no Implicit conversion Is ever applied to the operand of
an explicit type conversion. Similarly, Implicit conversions are not applied If both operands Uf a
predefined relational operatc, are convert~ib' universal operand..

Ttle language allows Implicit subtype conversions In the case of array types (see 5.2. 1). P I explicit t
type conversion can have the 31t ect Of a change of representation (in partcular see 1 3.6). Explicit
conversions are also used for actual parameters (sae 6.4).

Examples of nurreric type con version,'

REAL.(A^,oJ) -- vulue is converted to floating point
INTEGER(1.6 -. vilue Is 2
INTEGE)R(4O4) -- value Is 0

* ~Examplo or con vera/on between derived types:

type A.-FORM Is nw'w BFORM;

X A-..FORM;
Y R..FORM;-

X A.-FR()

IY 1 BJORM(X):, -- the reverse conversion *

Examples of cotiversiona between array types:

typo SEiQUENCE lit swisy ~INTEGER range <>) of WNT-U6R:
subtype 0OOZEN Is SEQLJENCE(1 . 12);
LEDGER : rray(i .. 100) of IN)hGER;

*SEQUENCE(LEDGER) bounds are those of LEDGER
SVQUENCE(LEDGEn(31 ,. 42)) -- bounds are 31 and 42

1- DOZEN(LEDGER(31 .. 42il - bounds ore those of DOZEN

exaempies o1 IMP11cit cont/"VraIOns:

X :INTEGER 2: 2

X + 1 *+ 2 -- Implicit conversion of each Integer literal
1 + 2 4- X -- Implicit conversion of each Integer literal

*X 4 tI+ 2) -- Implicit conversion of each Integer literal

U 2 -, (I + 1) -- no Implicit conversion: the type Is universalI~nteger
*A'LENGTH - 'LENCITH -- no Implicit conversion: the type Is universa-Idnteger

C aoiletant 3 + 2:- no imp~lcia .' nvorslon: the type Is universeL-integer

X 3 and 1 a2 Implicit conversion of 3, but not of 1 and 2

Refervnvees.' actual parameter 0.4,1, array type 316, attribute 4,1A4, h-jme type 3.3, belong to a oubtypti 13.3
* component 3.31, constrained array subtype 3.6, cofletralnit-rror exception 11.1, derived typo 3A4, dIlmotniffln 340

expression 4.4, floating point type 36.7, Index 3.5, Index subtype 3,6, Index type 3.6, Integer type 3.B.4. mutchlnU
component 4,5,2, mode 6.1, namei 4,1, named number 3,2. null array 3.0.,1, numerIc literal 2.4, nuernaIc type 15~, rals.
Ing of exceptions 11, real type 3.15.0, representation 1131, statement B, subtype 3.3. type 3,3. typti mark 3.12,
uncornstralned array type 3.0, uilvenea~l-nteger type 3454, unlversel-real type 3.15.8, variable 32,11

4-23 Type Conversions 4.6

ANSI/MIL-STD- 818•7,4 Ada Reference Manual

4.7 Qualified Expressions

A qualified expression Is used to state explicitly the type, and possibly the subtype, of an operand
that is the given expression or aggregate.

2 qualifled-expression
type-mark'(expression) J typeomark'aggregate

,. 3 The operand must have the same type as the base type of the type mark. The value of a qualified
expression is the value of the operand. The evaluation of a qualified expression evaluates the
operand and checks that Its value belongs to the subtype denoted by the type mark. The exception
CONSTRAINT-ERROR is raised If this check fails.

4 Examples:.

type MASK is (FIX, DEC, EXP, SIGNIF);
type CODE Is (FIX, CLA, DEC, TNZ, SUB); ,

PRINT (MASK'IDEC)); -- DEC is of type MASK
PRINT (CODE'(DEC)); - DEC Is of type CODE

for J in CODE(FIX) ,, CODE'(DEC) loop .. , -- qualification needed for either FIX or DEC
for J In CODE range FIX .. DEC loop ... qualification unnecessary
for J in CODE'(FIX) ., DEC loop ... -- qualification unnecessary for DEC

DOZEN'(1I 3 5 I7 =>2, others => O) -- see 4.6

"Notes:

Whenever the type of an enumeration literal or aggregate is not known from the context, a quail-
fled expression can be used to state the type explicitly. For example, an overloaded enumeration
literal must be qualified In the following cases: when given as a parameter In a subprogram call to
an overloaded subprogram that cannot otherwise be Identified on the basis of remaining parame-
ter or result types, in a relational expression where both operands are overloaded enumeration lite-
rals, or In an array or loop parameter range where both bounds are overloaded enumeration lite-
rals. Explicit qualification Is also used to specify which one of a set of overloaded parameterleas
"functions Is meant, or to constrain a value to a given subtype.

6 References: aggregate 4.3, array 3,8, base type 3.3, bound of a range 3.5, constraint.error exception 11.1, context of
overload resolution 8.7, enumeration literal 3,5.1, expression 4,4, function 6.5, loop parameter 5.5, overloading 8,5,

*-. rilslng of exceptions 11, range 3,3, relation 4.4, subprogram 6, subprogram call 8.4, subtype 33, type 3.3, type mark
* 3.3.2

4.8 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the
object.

S." 2 allocator
new subtype-indication now qualified-expresslon

4,/.. 4-24

-4,8 Allocators 4-24

Names and Expressions

The type of the object created by an allocator Is the base type of the type mark given In either the 3

subtype indication or the qualified expression, For an allocator with a qualified expression, this
expression defines the initial value of the created object. The type of the access value returned by
an allocator must be determinable solely from the context, but using the fact that the value
returned is of an access type having the named designated type,

The only allowed forms of constraint in the subtype Indication of an allocator are index and dis-
"criminant constraints, If an allocator includes a subtype indication and if the type of the object
created is an array type or a type with discriminants that do not have default expressions, then the

*;• subtype indication must either denote a constrained subtype, or include an explicit index or dis-
criminant constraint.

If the type of the created object Is an array type or a type with discriminants, then the created ,
object Is always constrained. If the allocator includes a subtype Indication, the created object Is
constrained either by the subtype or by the default discriminant values. If the allocator Includes a
qualified expression, the created object is constrained by the bounds or discriminants of the Initial
value, For other types, the subtype of the created object is the subtype defined by the subtype
indication of the access type definition.

For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of the ,
qualified expression is performed first. The new object is then created. Initializations are then per-
formed as for a declared object (see 3.2.1); the Initialization is considered explicit in the case of a
qualified expression; any initializations are implicit in the case of a subtype Indication. Finally, an
access value that designates the created object is returned, I..

-*', An implementation must guarantee that any object created by the evaluation of an allocator ,
remains allocated for as long as this object or one of Its subcomponents Is accessible directly or.'"
indirectly, that Is, as long as It nan be denoted by some name. Moreover, if an object or one of its
subcomponents belongs to a task type, it is considered to be accessible as long as the task Is not
terminated. An Implementation may (but need not) reclaim the storage occupied by an object

* .created by an allocator, once this object has become Inaccessible.

*•; When an application needs closer control over storage allocation for objects designated by values ,
of an access type, such control may be achieved by one or more of the following means:

(a) The total amount of storage available for the collection of objects of an access type can be set ,"
by means of a length clause (see 13.2),

* (b) The pragma CONTROLLED Informs the Implementation that automatic storage reclamation o0
must not be performed for objects designated by values of the access typo, except upon leav-
Ing the innermost block statement, subprogram body, or task body that encloses the access
"type declaration, or after leaving the main program,

pragma CONTROLLED (eccess.type.simple.name);

A pragma CONTROLLED for a given access type is allowed at the same places as a .,
representation clause for the type (see 13.1). This pragma Is not allowed for a derived type,

(c) The explicit deallocation of the coject designated by an access value can be achieved by call- i2

ing a procedure obtained by Instantlation of the predefined generic library procedure
UNCHECKEDDEALLOCATION (see 13.10.1),

The exception STORAGE-ERROR Is raised by an allocator If there Is not enough storage. Note also fl
that the exception CONSTRAINT-ERROR can be raised by the evaluation of the qualified
expression, by the elaboration of the subtype Indication, or by the Initialization.

4-25 Allocators 4,8

ANSI/MIL-STD-1815A Ada Reference Manual

14 Examples (for access types declared In section 3.8).

new CELL(O, null, null) -- initialized explicitly
new CELL'(VALUE => 0, SUCC => null, FPED => null) -- Initialized explicitly
new CELL -- not initialized

new MATRIX(1 10, 1 .. 20) -- the bounds only are given
new MATRIX'(1 10 => (1 ., 20 => 0-0)) -- Initialized explicitly

new BUFFER(O00) -- the discrIminant only is given

new BUFFER'(SIZ:. => 80, POS => 0, VALUE => (1 ,, 80 => 'A')) -- initialized explicitly

References: access type 3,8, access type definition 3,8, access value 3.8, array type 3,6, block statement 5,6, bound .-
of an array 3.6.1, collection 318, constrained subtype 313, constraint 3,3, constraint-error exception 11,1, context of
overload resolution 8,7, derived type 3A4, designate 3.8, discriminant 3,3, discrlmirient constraint 3.7,2, elaboration
3.9, evaluation of a qualified expression 4.7, generic procedure 12,1, Index constraint 3,6,1, Initial value 312.1, A
initialization 3.2.1, Instantlation 12,3, length clauwe 13,2, library unit 10,1, main program 10,1, name 4,1, object
3,2.1, object declaration 3,2,1, pragma 2.8, procedure 8, qualified expression 4,7, raising of exceptions 11, represen-
tation clause 13.1, simple name 4.1, storage-error exception 11,1, subcomponent 3,3, subprogram body 6.3, subtype
3.3, subtype indication 3.3.2, task body 9.1 task type 9.2, terminated task 9.4, type 3.3, type declaration 3.3.1, type
mark 3.3,2 type with discriminants 3,3

4.9 Static Expressions and Static Subtypes

Certain expressions of a scalar type are said to be static. Similarly, certain discrete ranges are said
to be static, and the type marks of certain scalar subtypes are said to denote static subtypes.

2 An expression of a scalar type Is said to be static It and only if every primary is one of those listed in
(a) through (h) below, every operator denotes a predefined operator, and the evaluation of the
expression delivers a value (that Is, It does not raise an exception):

S (a) An enumeration literal (including a character literal),

4 (b) A numeric literal.

.• (c) A named number,

1 (d) A constant explicitly declared by a constant declaration with a static subtype, and initialized .

with a static expression.

(e) A function call whose function name Is an operator symbol that denotes a predefined
operator, including a function name that Is an expanded name; each actual parameter must
also be a static expression.

(f) A language-defined attribute of a static subtype; for an attribute that is a function, the actual
parameter must also be a static expression,

4.9 Static Expressions and Static Subtypes 4-26

..A.

Names and Expressions

(g) A qualified expression whose type mark denotes n static subtype and whose operand is a
static expression.

(h) A static expression enclosed In parentheses, 0

A static range Is a range whose bounds are static oxpressions, A static range constraint is a range it

constraint whose range Is static, A static subtype is either a scalar base type, other than a generic
formal type; or a scalar subtype formed by Imposing on a static subtype either a static range con-
straint, or a floating or fixed point constraint whose range constraint, if any, is static. A static dis-
crete range is either a static subtype or a static range. A static index constraint is an index con-
straint for which each Index subtype of the corresponding array type is static, and in which each
discrete range is static. A static discriminant constraint is a discriminant constraint for which the . "
subtype of each discriminant Is static, and In which each expression Is static.

Notes:.

The accuracy of the evaluation of a static expression having a real type is defined by the rules given 12

in section 4.5.7. If the result Is not a model number (or a safe number') of the type, the value I'
obtained by this evaluation at compilation time need not be the same as the value that would be
obtained by an evaluation at run time.

Array attributes are not static: In particular, the RANGE attribute is not static, ,.

References: actual parameter 6,4.1, attribute 4,1.4, base type 3,3, bound of a range 3,5, character literal 2,5, 14 1, d
constant 3.2.1, constant declaration 3,2.1, discrete range 3.6, discrete type 3,5, enumeration literal 3.5.1, exception
11, expression 4.4, function 6.5, generic actual parameter 12.3, generic formal type 12,1,2, Implicit declaratior 3, 1,
Initialize 3,2.1, model number 3.5,6, named number 3,2, numeric literal 2.4, predefined uptretor 4.5, qualified expras-
slon 4.7, raising of exceptions 11, range constraint 3,5, safe number 3.5.6, scalar type 3.5, subtype 3,3, type mark
3,3.2

4.10 Universal Expressions

A universaLexpresslon is either an expression that delivers a result of type universal-integer or .
one that delivers a result of type unlverselereal.

The same operations are predefined for the type universal-integer as for any Integer type, The
same operations are predefined for the type universel__eai as for any floating point type. In addl-
tion, these operations Include the following multiplication and division operators:

Operator Operation Left operand type Right operand type Result type

multiplication universal-real universal-integer universal-real
universal-integer universal-real universal-real

division universal-real universalInteger universal.real

The accuracy of the evaluation of a universal expression of type universal-real Is at least as good 4

as that of the most accurate predefined floating point type supported by the Implementation, apart
from universal-real Itself, Furthermore, If a universal expression Is a static expression, then the
evaluation must be exact,

4 U4

4.-2 7 Universal Expressions 4. 1 0
h..........-.

ANSIIMIL-S TO-181 5A Ada Reference Manual

* ~ For the evaluation of an operation of a nonstatic universal expression, an Implementation Is
* ~aliowed to raise the exception NUMERIC-.ERROR only if the result of the operation Is a real value

* whose absolute value exceeds the largest safe number of the most accurate predefined floating
point type (excluding un/versaI...ree/), or an Integer value greater than SYSTEM .MAX-INT or less
then SYSTEM .MIN-.INT.

Note.

* . It Is a consequence of the above rules that the type of a universal expression Is universel-integer If
(.every primary contained in the expression Is of this type (excluding actual parameters of attributes
that are functions, and excluding right operands of exponentiation operators) and that otherwise

* the type Is unlversaal-eal.

* ~ Examples:

I1+1 -2
*be(-10)*3 -- 30

KILO constant :=1000;
MEGA c~onstant :=KILO*KILO; 1--1.000-.000
LONG constant :~FLOArDIGITS*2:

HALF-.PI constant :-P1/2; - see 3.2.2
DEG-TO-.RAD constant :=HALF-.PI/90:
RAD...TO...DEG constant :=1.0/DEG...TO...RAD; -- equivalent to 1.0/((3.14159-..20536/2)/90)

* a References.: actual parameter 6,41, attribute 4.14, evaluation of an expression 4.5, floating point type 3.5.9,
function 615, Integer type 3.15A4 multiplying operator 4.5 4,5,5, predefined operation 3,33, primary 4,4, real type

* 3.56, safe number 3,5A6, systsm.max-.Int 13.7, sytmt.mmln..lnt 1 3.7, type 3.3, universal-Integer type 3,5.4, unlver-
sal...real type 3.5.6

4, 410 Universal Expressions 4-28

5. Statements

A statement defines an action to be performed; the process by which a statement achieves its
action Is called execution of the statement.

This chapter describes the general rules applicable to all statements. Some specific statements are
discussed In later chapters, Procedure call statements are described in Chapter 6 on subprograms.
Entry call, delay, accept, select, and abort statements are described in Chapter 9 on tf Aks. Raise
statements are described In Chapter 11 on exceptions, and code statements In Chapter 13, The
remaining forms of statements are presented In this chapter.

References,- abort statement 9.10, accept statement 9,5, code statement 13.8, delay statement 9.6, entry call 3

statement 9.5, procedure call statement 6,4, raise statement 11,3, select statement 9.7

5.1 Simple and Compound Statements - Sequences of Statements

A statement is either simple or compound. A simple statement encloses no other statement, A

"compound statement can enclose simple statements and other compound statements.

sequence.of-statements : statement (statementl 2

statement ::=
I labeli simple-statement I flabell compound-statement

simple.statement ::= null-tstatement
I assignment-statement procedure.cell.statement
I exit-statement return-statement

"gotoestatement entry-celL.statement
"I delay-statement aborLtatement

"" r alrse-statement code-statoment

* compound-Jtatement-.
If-statement case-Jtatement

I loop-statement block-statement
a accepLstatement selecLstatement

label <</abeLsimple-name>>

* nullastatement ::= null;

A statement is said to be labeled by the label name of any label of the statement, A label name, 3
and similarly a loop or block name, Is Implicitly declared at the end of the declarative part of the
innermost block statement, subprogram body, package body, task body, or generic body that
encloses the labeled statement, the named loop statement, or the named block statement, as the
"case may be. For a block statement without a declarative part, an implicit declarative part (and
preceding dealers) Is assumed.

5-1 Simple and Compound Statements - Sequences of Statements 5.1
SiA

ANSI/MIL-STD.1815A Ada Reference Manual

4 The Implicit declarations for different label names, loop names, and block names occur in the same
order as the beginnings of the corresponding labeled statements, loop statements, and block state-
ments. Distinct identifiers must be used for all label, loop, and block names that asie implicitly
declared within the body of a program unit, including within block statements enclosed by this
body, but excluding within other enclosed program units (a program unit is either a subproqram, a
package, a task unit, or a generic unit).

Execution of a null statement has no other effect than to pass to the next acti-

a The execution of a sequence of statements consists of the execution of the Individual statements.
In succession until the sequence Is completed, or a transfer of control takes place. A transfer of
control is caused either by the execution of an exit, return, or goto statement; by the selection of a
terminate alternative; by the raising of an exception; or (indirectly) by the execution of an abort
statement.

Examples of labeled statements;

<<HERE>> <<ICI>> <<AQUI>> <<HIER>> null;

<<AFTER>> X 1;

Note:

The scope of a declaration starts at the place of the declaration itself (see 8.2), In the case of a
label, loop, or block name, It follows from this rule that the scope of the implicit declaration starts
before the first explicit occurrence of the corresponding name, since this occurrence Is either In a
statement label, a loop statement, a block statement, or a goto statement, An Implicit declaration
in a block statement may hide a declaration given In an outer program unit or block statement (ac-
cording to the usual rules of hiding explained In section 8.3).

9 References: abort statement 9,10, accept statement 9,5, assignment statement 5.2, block name 5,6, block
statement 5A, case statement 5.4, cods statement 13,8, declaration 3,1, diclarative part 39, delay statement 9.8,
entry call statement 9.5, exception 11, exit statement 5.7, generic body 12,1, generic unit 12, goto statement 5,9,
hiding 8,3, Identifier 23, If statement 5.3, Implicit declaration 3.1, loop name 5,5, loop statement 5,5, package 7,
package body 7.1, procedure call statement 8.4, program unite, raise statement 11,3, raising of exceptions 11, return
statemwit 5.9, scope 8.2, select statement 9.7, simple name 4.1, subprogram 6, subprogram body 6.3, task 9, task
body 9.1, task unit 9,1, terminate alternative 9,71, terminated task 9,4

5.2 Assignment Statement

An assignment statement replaces the current value of a variable with a new value specified by an
expression, The named variable and the right-hand side expression must be of the same type; this
type must not be a limited type.

2 assIgninenL.statement ::•
verl/b/e_,name := expression;

For the execution of an assignment statement, the variable name and the expression are first
evaluated, In some order that is not defined by the language. A check is then made that the value
of the expression belongs to the subtype of the variable, except in the case of a variable that is an
array (ihe assignment then Involves a subtype conversion as described In section 5.2.1). Finally,
the value of the expression becomes the new value of the variable,

5.2 Assignment Statement 5-2

.6 . . .0

Statements

The exception CONSTRAINT-ERROR Is raised If the above-mentioned subtype check fails; in such a
case the current value of the variable Is left unchanged. If the variable is a subcomponent that
depends on discriminants of an unconstrained record variable, then the execution of the assign-
ment is erroneous if the value of any of these discriminants Is changed by this execution.

Examples: •

VALUE MAX-VALUE - 1;
SHADE BLUE;

NEXTFRAME(F)(M, N) := 2.5; -- see 4.1.1
U := DOTPRODUCT(V, W): -- see 6, '"0

WRITER := (STATUS => OPEN, UNIT => PRINTER, LINECOUNT => 60); -- see 3,7.3
NEXTCARall := (72074, null): -- see 38,1

Examples of constraint checks:

I, J INTEGER range 1 ,, 10;
K INTEGER range 1 20;

I := J; -- Identical ranges
K J; -- compatible ranges
J K; -- will raise the exception CONSTRAINT-ERROR If K > 10

Notes:

The values of the discrimlnants of an object designated by an access value cannot be changed (not 7
even by assigning a complete value to the object itself) since such objects, created by allocators,
are always constrained (see 4,8); however, subcomponents of such objects may be unconstialned. L

If the right-hand side expression Is either a numeric literal or named number, or an attribute that .
yields a result of type universal/integer or unlversaL._real, then an Implicit type conversion is per-
formed, as describud In section 4.6,

The determination of the type of the variable of an assignment statement may require considaa-
tion of the expression If the variable name can be Interpreted as the name of a variable designated
by the access value returned by a function call, and similarly, as a component or slice of such a
variable (see section 8.7 for the context of overload resolution).

References: access type 3,8, allocator 4,8, array 3,6, array assignment 5,2,1, component 3,6 3,7, constraint-error Io

exception 11,1, designate 3,8, discrlminant 3,7,1, erroneous 1,6, evaluation 4,5, expression 4A4, function call 6,4,
Implicit type conversion 4.6, name 4.1, numeric literal 2,4, object 3,2, overloading 6.6 8,7, slice 4,1,2, subcomponent
3,3, subtype 3.3, subtype conversion 4.6, type 3.3, universal-integer type 3.5.4, universal-real type 3,5,6, variable
3-2,1

5.2.1 Array Assignments 0

If the variable of an assignment statement is en array variable (including a slice variable), the value
of the expression Is Implicitly converted to the subtype of the array variable; the result of this sub-
type conversion becomes the new value of the array variable.

5-3 Array Assignments 5,2,1

ANSI/M/L-STD-1815A Ada Reference Manual

This means that the new value of each component of the array variable Is specified by the
matching component In the array value obtained by evaluation of the expression (see 4,5.2 for the
definition of matching components). The subtype conversion checks that for each component of
the array variable there Is a matching component in the array value, and vice versa, The exception
CONSTRAINTEPROR is raised If this check falls; in such a case the value of each component of
the arrey variable is left unchanged,

Examp/es:

A STRING(1 .. 31):
8 STRING(3 ,. 33);

A B; -- same number of components

A(1 ,O 9) "tar sauce";i
A(4 ,, 12) := A(1 ,O 9); - A(1 O, 12) ' tartar sauce"

Notes,*

4 Array assignment Is defined cven In the case of overlapping slices, because tile expression on the
right-hand side Is evaluated before performing any component assignment, In the above example,
an Implementation yielding A(1 ,, 12) =. "tartartartar" would be Irtcorrect,

The implicit subtype conversion described above for assignment to an array variable Is performed
only for the value of the right-hand side expression as a whole; it Is not performed for subcompo-
nents that are array values.

5 References' array 3,8, assignment 5.2, conutraint-arror exception 11,1, matching array components 4,5.2, slice
4.12, subtype conversion 4,6, type 3.3, variable 3,2.1

5.3 If Statements

An If statement selects for execution one or none of the enclosed sequences of statements,
depending on the (truth) value of one or more corresponding conditions.

2 Ifstatement
if condition then

sequence,oftstatements
I elelf condition then

sequence-of..statemente}
[else

sequence-of-statements)
end If;

condition ::.= boolean-expression

3 An expression specifying a condition must be of a boolean type,

4 For the execution of an If utatement, the condition specified after If, and any conditions specified
after laif, are evaluated In sr'ccesslon (treating a final else as elslf TRUE then), until one evaluates
to TRUE or all conditions are evaluated and yield FALSE. If one condition evaluates to TRUE, then
the corresponding sequence of statements Is executed; otherwise none of the sequences of state-
ments is executed,

5.3 If Statements 5-4

Statements

"Examples:

"if MONTH ' DECEMBER and DAY 31 then
"MONTH JANUARY;
DAY 1;
YEAR YEAR + 1;

end if;

if LINETOOSHORT than
raise LAYOUT-ERROR;

uelsf LINE-FULL then
NEW-LINE;
PUT(ITEM); ".0

else
PUTOITEM);

end If:

it MYCAR.OWNERVEHICLE -- MY-CAR then -- see 3,8
REPORT ("Incorrect data");

end If:

"References: boolean type 3.5,3, evaluation 4,5, expression 4,4, sequence of statements 5,1 .

5.4 Case Statements

A case statement selects for execution one of a number of alternative sequences of statements;
the chosen alternative Is defined by the value of an expression,

case-statement ::: .. 6,
"case expression Is

"came-setatemenLalternatlve
I case-statemenLsalternativel

end case;

case-statementalternatlve ::-
when choice I1 choice I =>

sequence-of-statements

The expression must be of a discrete type which must be determinable Independently of the con-
text in which the expression occurs, but using the fact that the expression must be of a discrete
type. Moreover, the type of this expression must not be e generic formal type, Each choice In a
case statement alternative must be of the same type as the expression; the list of choices specifies
for which values of the expression the alternative Is chosen,

If the expression is the name of an object whose subtype Is static, then each value of this subtype
must be represented once and only once In the set of choices of the case statement, and no other
value Is allowed; this rule Is likewise applied If the expression Is a qualified expression or type con-

,, version whose type mark denotes a static subtype, Otherwise, for other forms of expression, each
value of the (base) type of the expression must be represented once and only once In the set of
choices, and no other value Is allowed.

•9 ,,9

""55 Case Statements 6,4

a ,11

ANSIIMIL-STO-1815A Ada Reference Manual

5 The simple expressions and discrete ranges given as choices In a case statement must be static. A
choice defined by a discrete range stands for all values in the corresponding range (none If a null
range), The choice others Is only allowed for the last alternative and as its only choice; It stands
for all values (possibly none) not given In the choices of previous alternatives. A component simple
name is not allowed as a choice of a case statement alternative.

(3 The OeeCUtion of a case statement consists of the evnluation of the expression followed by the *

execution of the chosen sequence of statements.

Examples.

cueSENSOR Is
when ELEVATION ~>RECORD-.ELEVATION (SENSOR-VALUE);
when AZIMUTH ->RECORD-..AZIMUTH (SENSOR-.VALUE);
when I)ISTANCE =~> RECORD-D.ISTANCE (SENSOR...VALUE);
when others >null;

end case;

case TODAY Is
when MON - COMPUTE-JNITIAL-BALANCE;
when FRI =~> COMPUTE-CLOSING-1ALANCE:
when TUE ,THU ý> GENERATE..REPORT(TODAY);

%! when SAT .. SUN =..> null:
1.4 and case,

eieBIN-.N1JMRER(COUNTil Is4
when 1 ~ >UPDATE...BIN(1);

whon 2 ->UPDATE....6N(2);

when 3 14 ->

EMPTY..BIN(2);
when others ý> ralse ERROR; ~1

enid case:

Notes.,

8 The execu~tion of a case statement choosen one and only one alternative, since the choices are
exhaustive and Mutually exclusive. Qualification of the expression of a case statement by a static
SUbtype) ran often be used to limit the number of choices that need be given explicitly.

0 Ani others choice Is required In a case statement If the type of the expression Is the type univer-
sal/.nteger (for example, If the expression Is an Integer literal), since this Is the only way to cover
all vOIlues Of the type un/versal.nteger

W Rferences,' Ibasi typo 3,3, cholce 3.7,3, context of overlood resolution 8,7, dIscrate type 3,5, expression 4.4.
furwtlon call 6i.4, floneric forimal type 12.1, conversion 4,6, dlscroto typo 3.5, onuma~intion literal 3,151, expression 4A,4

unano 4.1. obiuct 3.2.1, overloading 8,6 8.7, qualifled expression 4,7, sequence of statemeints 5.1, static discrete
rani10 4.9, Stlitc iUbtypo 4.9, subtype 3,3, type 3.3, type conversion 4.13, typo mnark 3.3.2

15,41 Case Stotemnentv 5-6

Statements

*0-

5.5 Loop Statements

A loop statement Includes a sequence of statements that Is to be executed repeatedly, zero or
more times.

loop-statement
[Ioop..simple-name:1

[iteration-schemej loop
sequence-of-statements

end loop Iloop-simple-nameI;

iteration-scheme ::z-- while condition
I for loop-paraineter..specification

loop-parameteraspecification
identifier In (reverse] dlscrete-range

If a loop statement has a loop simple name, this simple name must be given both at the beginning 3 "
and at the end,

A loop statement without an Iteration scheme specifies repeated execution of the sequence of 4

statements, Execution of the loop statement Is complete when the loop is left as a consequence of
the execution of an exit statement, or as a consequence of some other transfer of control (see 5.1).

For a loop statement with a while iteration scheme, the condition is evaluated before each execu- .
tion of the sequence of statements; If the value of the condition Is TRUE, the sequence of
statements Is executed, If FALSE the execution of the loop statement is complete,

For a loop statement with a for Iteration scheme, the loop parameter specification is the declare- "
tion of the loop parameter with the given Identifier, The loop parameter is an object whose type is '
the base type of the discrete range (see 3.6,1). Within the sequence of statements, the loop
parameter Is a constant, Hence a loop parameter Is not allowed as the (left-hand side) variable of
an assignment statement, Similarly the loop parameter must not be given as an out or In out
parameter of a procedure or entry call statement, or as an In out parameter of a generic Instantla-
tion,

For the execution of a loop statement with a for Iteration scheme, the loop parameter specification
Is first elaborated, Trhis elaboration creates the loop parameter and evaluates the discrete range,

If the discrete range Is a null range, the execution of the loop statement Is complete, Otherwise,
the sequence of statements Is executed once for each value of the discrete range (subject to tin
loop not being left as a consequence of the execution of an exit statement or as a consequence of
some other transfer of control). Prior to each such Iteration, the corresponding value of the discrete
range is assigned to the loop parameter, These values are assigned in Increasing order unless the
reserved word reverse Is present, In which case the values are assigned in decreasing order,

Example of a loop statement without an Iteration scheme.-

loop 6
GET (CURRENTCHARACTER);
exit when CURRENT-CHARACTER

end loop;

5-7 Loop Statements 5.5
'I .S

ANSI/MIL-STD-1815A Ads Reference Manual

a0 Example of a loop statement with a while iteration scheme:

while BID(N;,PRICE < CUTOFF.PRICE loop
R ECOR DBID(BID(N), PR ICE);
N :- N + 1;

end loop; .

Example of a loop statement with a for iteration scheme:

for J in BUFFF.R'RANGE loop -- legal even with a null range
if BUFFER(J) /= SPACE then -

PUT(BUFFER(J));
end if;

end loop;

Example of a loop statement with a loop simple name:.

SUMMATION:
while NEXT /= HEAD loop -- see 3.8

SUM SUM + NEXT.VALUE;
NEXT NEXT.SUCC;

end loop SUMMATION;

44

Notes:.

13 The scope of a loop parameter extends from the loop parameter specification to the end of the loop
statement, and the visibility rules are such that a loop parameter is only visible within the sequence
of statements of the loop.

14 The discrete range of a for loop is evaluated just once. Use of the reserved word reverse does not
alter the discrete range, so that the following iteration schemes are not equivalent; the first has a
null range.

for J in reverse 1 .. 0
for J In 0 . 1I

15 Loop names are also used in exit statements, and in expanded names (in a prefix of the loop
parameter).

16 References, actual parameter 6.4,1, assignment statement 5.2, base type 3,3, bound of a range 3,5, condition 5,3,
constant 3,2.1, context of overload resolution 8.7, conversion 4.6, declaration 3.1, discrete range 3.6.1, elaboration
3.1, entr;' call statement 9.5, evaluation 4.5, exit statement 5.7, expanded name 4,1.3, false boolean value 315.3,
generic actual parameter 12.3, generic Instantlation 12.3, goto statement 5,9, identifier 2,3, Integer type 3.6.4, null
range 3,5, object 3,2,1, prefix 4,1, procedure call 6.4, raising of exceptions 11, reserved word 2,9, return statement
5.8, scope 8.2, sequence of statements 5,1, simple name 4.1, terminate alternative 937 1, true boolean value 3.5,3
3.5.4. visibility 8,3

5.5 Loop Statements 5-8

Statements

5.6 Block Statements

A block statement encloses a sequence of statements optionally preceded by a declarative part
and optionally followed by exception handlers,

block-statement :
[b/ock-simple-name:]

I declare
declarative-part]

begin
sequence-of-statements

exception
exception-handler

Iexceptlon-handlerl]
end [block-simple.name];

if a block statement has a block simple name, this simple name must be given both at the beginn- 3

ing and at the end. '

The execution of a block statement consists of the elaboration of Its declarative part (if any) fol- 4

lowed by the execution of the sequence of statements. If the block statement has exception
handlers, these service corresponding exceptions that are raised during the execution of the
sequence of statements (see 11.2).

Example: ,

SWAP,
declare

TEMP INTEGER;begin "TEMiP V; V U; U := TEMP:

end SWAP;

Notes:

If task objects are declared within a block statement whose execution Is completed, the block
statement Is not left until all its dependent tasks are terminated (see 9.4). This rule applies also to
a completion caused by an exit, return, or goto statement; or by the raising of an exception,

Within a block statement, the block name can be used In expanded names denoting local entities
such as SWAP ,TEMP In the above example (see 4.1.3 (f)).

References: declarative part 3,9, dependent task 9.4, exception handler 11,2, exit statement 5,7, expanded name a
4,1.3, goto statement 5.9, raising of exceptions 1 1, return statement 5,8, sequence of statements 5.1, simple name
4.1, task object 9,2

1 .
- 5-9 Block Statements 5.6'

A1V.1M1-Z;U-7~bAAda ileterence Manual
*,0

5.7 Exit Statements

An exit statement is used to complete the execution of an enclosing loop statement (called the
loop in what follows); the completion Is conditional if the exit statement includes a condition,

2 exiLtstatement
exit [/oop-name] [when condition);

3' An exit statement with -q loop name is only allowed within the named loop, and applies to that
loop; an exit statement without a loop name Is only allowed within a loop, and applies to the
innermost enclosing loop (whether named or not). Furthermore, an exit statement that applies to a "
given loop must not appear within a subprogram body, package body, task body, generic body, or
accept statement, if this construct Is Itself enclosed by the given loop.

4 .For the execution of an exit statement, the condition, If present, Is first evaluated. Exit from the
loop then takes place If the value is TRUE or If there is no condition,

"5 Examples:

for N in 1 ,, MAXNUMITEMS loop
G ELNEW_-TEM(N EWTEM);
"MERGEITEM(NEWITEM, STORAGEFILE);
exit when NEW-ITEM = TERMINAL-ITEM; ,

end loop;

MAIN-CYCLE.
loop

-- Initial statements
exit MAIN-CYCLE when FOUND;
-- final statements

end loop MAIN-CYCLE;

Note:

' Several nested loops can be exited by an exit statement that names the outer loop.

" I• 7 References: accept statement 9.5, condition 5,3, evaluation 4,5, generic body 12.1, loop name 5,5, loop statement
5.5. package body 7.1, subprogram body 8.3, true boolean value 3.5.3

5.8 Return Statements

A return statement Is used to complete the execution of the innermost enclosing function,
procedure, or accept statement.

2 return-statement ::= return [expression);

"3 A return statement Is only allowed within the body of a subprogram or generic subprogram, or
within an accept statement, and applies to the innermost (enclosing) such construct; a return
statement Is not allowed within the body of a task unit, package, or generic package enclosed by
this construct (on the other hand, It Is allowed within a compound statement enclosed by this con-
struct and, in particular, In a block statement).

"5.8 Return Statements 5-10

Statements

'0
A return statement for an accept statement or for the body of a procedure or generic procedure
must not include art expression. A return statement for the body of a function or generic function
must include an expression.

The value of the expression defines the result returned by the function. The type of this expression 5

must be the base type of the type mark given after the reserved word return In the specification of .
the function or generic function (this type mark defines the result subtype),

For the execution of a return statement, the expression (if any) is first evaluated and a check is 6
made that the value belongs to tne result subtype. The execution of the return statement is thereby
completed If the check succeeds; so also is the execution of the subprogram or of the accept
statement. The exception CONSTRAINT-ERROR Is raised at the place of the return statement if the
check fails.

Examples:

return; -- In a procedure
return KEYVALUE(LASTINDEX); -- In a function .

Note:

If the expression Is either a numeric literal or named number, or an attribute that yields a result of a
type unlversaluinteger or unlversel-ieal, then an Implicit conversion of the result Is performed as
described In section 4.6.

References: accept statement 9,5, attribute A, block statement 5,6, constraint-error exception 11.1, expression 4,4,
function body 6.3, function call, 6.4, generic body 12.1, Implicit type conversion 4,6, named number 3.2, numeric
literal 2.4, package body 7,1, procedure body 6.3, reserved word 2,9, result subtype 6,1, subprogram body 6.3, sub-
program specification 6.1, subtype 3.3, task body 9.1, type mark 3.3,2, universal-integer type 3.,,4, unlveral..resl
type 3.5.6

5.9 Goto Statements

A goto statement specifies an explicit transfer of control from this statement to a target statement
named by a label,

goto-statement goto /abeLoname; 2

The innermost sequence of statements that encloses the target statement must also enclose the 3 .. .
goto statement (note that the goto statement can be a statement of an Inner sequence), Further-
more, if a goto statement Is enclosed by an accept statement or the body of a program unit, then
the target statement must not be outside this enclosing construct; conversely, it follows from the
previous rule that If the target statement is enclosed by such a construct, then the goto statementcannot be outside,

The execution of a goto statement transfers control to the named target statement. 4

.11

d 5-11! Gore Statements 5,9

.

[ANS1/MIL-SIO-1815A Ada Reference Manual

Note.

The above rules allow transfer of control to a statement of an enclosing sequence of statements
but not the reverse, Similarly, they prohibit transfers of control such as between alternatives of a
case statement, If statement, or select statement; between exception handlers: or from an excep-
tion handler of a frame back to the sequence Of statements of this frame.

a Example:

< <COMPARE>,>
if All) < ELEMENT then

if LEFT(I) /-~ 0 then
I =LEFT(l);

goto COMPARE;
end If;

-- some statements
end If:

7 References,, accept statement 9.5, block statement 5,8, case stetmment 5.4, compound statement 5.1, exception
handler 11.2. frame 11.2, generic body 12.1, If statement 5.3, label 6.1, package body 7.1, program unit86, select
statement 9.7, sequence of statements 5. 1, statement 5. 1, subprogram body 8.3, task body 9. 1, transfer of control
5.1

5,9 Goto Statements 5-12

S. Subprograms

Subprograms are one of the four forms of program unit, of which programs can be composed. The
other forms are packages, task units, and generic units.

A subprogram is a program unit whose execution Is Invoked by a subprogram call. There are two 2

forms of subprogram: procedures and functions, A procedure call is a statement; a function call Is
an expression and returns a value. The definition of a subprogram can be given in two parts: a sub..
program declaration defining its calling conventions, and a subprogram body defining its execu-
tion.

Referencos: function 6.5, function call 8.4, generic unit 12, package 7, procedure 8.1, procedure call 84, subprogram
body (.3, subprogram call 64, subprogram declaration 6,1, task unit 9

6.1 Subprogram Declarations

A subprogram declaration declares a procedure or a function, as Indicated by the Initial reserved
word,

subprogram-declaration ::= subprogram..pscification:

subprogram-jpeclflcation ::=
procedure Identifier [formal-part)

I function designator [formal-part) return type.mark

designator ::= Identifier I operator-symbol

operator-symbol ::= string-literl"

formal.part
(parameter-specification 1; paremeter-specification 1)

parameter.jpecification ::=
Identifier-list : mode type-mark [:= expression)

mode :: [in) In out I out

The specification of a procedure specifies Its Identifier and its formal parameters (if any). The 3 .9
specification of a function specifies Its designator, Its formal parameters (if any) and the subtype of
the returned value (the result subtype). A designator that Is an operator symbol Is used for the
overloading of an operator. The sequence of characters represented by an operator symbol must
be an operator belonging to one of the six classes of overloadable operators defined In section 4,5
(extra spaces are not allowed and the case of letters Is not significant).

6-1 Subprogram Declarations 6. 1

ANSI/MIL.-SrDT-815A Ada Reference Manual

4 A parameter specification with several identifiers is equivalent to a sequence of single parameter
specifications, as explained In section 3.2, Each single parameter specification declares a formal
parameter. If no mode is explicitly given, the mode in is assumed, If a parameter specification
ends with an expression, the expression Is the default expression of the formal parameter, A
default expression Is only allowed In a parameter specification if the mode is In (whether this mode
is indicated explicitly or implicitly). The type of a default expression must be that of the cor-
responding formal parameter.

The uset of a name that denotes a formal parameter is not allowed in default expressions of a for-
mal part if the specification of the parameter is itself given in this formal part. ",

a The elaboration of a subprogram declaration elaborates the corresponding formal part, The
elaboration of a formal part has no other effect,

Examples of subprogram declarations:

procedure TRAVERSETREE;
procedure INCREMENT(X : In out INTEGER);
procedure RIGHTINDENT(MARGIN : out LINESIZE); -- see 365.4
procedure SWITCH(FROM, TO In out LINK): see 318,1

function RANDOM return PROBABILITY; -- see 3,15.7

function MINCELL(X : LINK) return CELL: -- see 3.8.1
function NEXTFRAME(K : POSITIVE) return FRAME; -- see 3.8
function DOT-PRODUCT(LEFT,RIGHT: VECTOR) return REAL; -- see 3,6

function ",ý"(LEFTRIGHT MATRIX) return MATRIX: -- see 3,6

I Examples of in parameters with default expressions.

procedure PRINTHEADER(PAGES : In NATURAL;
HEADER In LINL ;= (1 ,, LINE'LAST =>); -- see 3.6
CENTER in BOOLEAN := TRUE);

Notes,-

9 The evaluation of default expressions Is caused by certain subprogram calls, as described in sec-
tion 6.4.2 (default expressions are not evaluated during the elaboration of the subprogram declara-
tion)....

10 All subprograms can be called recursively and are reentrant,

References, declaration 3,1, elaboration 3.9, evaluation 4,5, expression 4,4, formal parameter 6.2, function 6.5,
Idrlntfier 2.3. idntlfier list 3,2, mode 6,2. name 4,1, elaboration has rao other effect 3.9, operator 4,5, overloading 6,6 '

8.'. prn"orture 6, string literal 2,6, subprogram call 6.4, type mark 3.3.2

6gr

6. Subprogram Declarations 6.-2,

=-." -- • '. • ,• • ,• • ,.L•.• ,.=. .,••. . ,; ••,•,• .,, •,••',.,.,•' •, ., ,...,, ,, '.,.",,• •.• . ,,, .. . ,9

Subprograms

*" 6.2 Formal Parameter Modes

- The value of an object Is said to be read when this value is evaluated; It Is also said to be read
- when one of its subcomponents Is read, The value of a variable Is said to be updated when an

assignment is performed to the variable, and also (indirectly) when the variable is used as actual -

parameter of a subprogram call or entry call statement that updates Its value; it Is also said to be
"updated when one of Its subcomponents Is updated.

A formal parameter of a subprogram has one of the three following modes:

in The formal parameter Is a constant and permits only reading of the value of the "
associated actual parameter. '"

in out The formal parameter Is a variable and permits both reading and updating of the value of the "
associated actual parameter.

_ out The formal parameter Is a variable and permits updating of the value of the associated actual
parameter.

The value of a scalar parameter that Is not updated by the call Is undefined upon return; the
same holds for the value of a scalar subcomponent, other than a discriminant, Reading
the bounds and discriminants of the formal parameter and of Its subcomponents Is allowed,
but no other reading.

For a scalar parameter, the above effects are achieved by copy: at the start of each call, If the mode
Is In or In out, the value of the actual parameter is copied Into the associated formal parameter;
then after normal completion of the subprogram body, if the mode Is In out or out, the value of the
formal parameter is copied back Into the associated actual parameter, For a parameter whose
type Is an access type, copy-in Is used for all three modes, and copy-back for the modes In out and

* out.
- For a parameter whose type Is an array, record, or task type, an Implementation may likewise

achieve the above effects by copy, as for scaler types, In addition, If copy Is used for a parameter of

mode out, then copy-in Is required at least for the bounds and dlscriminants of the actual
,, parameter and of Its subcomponents, and erso for each subcomponent whose type Is an access

type, Alternatively, an Implementation may achieve these effects by reference, that Is, by arranging
that every use of the formal parameter (to read or to update its value) be treated as a use of the
associated actual parameter, throughout the execution of the subprogram call. The language does " 4,

not define which of these two mechanisms Is to be adopted for parameter passing, nor whether
different calls to the same subprogram are to usa the same mechanism. The execution of a"•

program Is erroneous If Its effect depends on which mechanism Is selected by the Implementation.

For a parameter whose type Is a private type, the above effects are achieved according to the rule
that applies to the corresponding full type declaration,

Within the body of a subprogram, a formal parameter Is subject to any constraint resulting from
the type mark given In Its parameter specification. For a formal parameter of an unconstrained
array type, the bounds are obtained from the actual parameter, and the formal parameter is con-
"strained by these bounds (see 3.6,1), For a formal parameter whose declaration specifies an
"unconstrained (private or record) type with discrlminants, the discriminants of the formal

_- parameter are Initialized with the values of the corresponding diacriminants of the actual
parameter; the formal parameter Is unconstrained If and only if the mode Is In out or out and the
variable name given for the actual parameter denotes an unconstrained variable (see 3,7.1 and
6.4.1).
If the actual parameter of a subprogram call Is a subcomponent that depends on discriminarnts of 0
an unconstrained record variable, then the executiorn of the call is erroneous If the value of any of
the discriminants of the variable Is changed by this execution; this rule does not apply if the mode
Is In and the type of the subcomponent Is a scalar type or an access type.

6-3 Formal Parameter Modes 6,2

....-..

ANSI/MIL-STD-1815A Ada Reference Manual

Notes:

For parameters of array and record types, the parameter passing rules have these consequences:

12 0 If the execution of a subprogram Is abandoned as a result of an exception, the final value of an
actual parameter of such a type can be either its value before the call or a value assigned to
the formal parameter during the execution of the subprogram.

13 0 If no actual parameter of such a type is accessible by more than one path, then the effect of a
subprogram call (unless abandoned) Is the same whether or not the implementation uses
copying for parameter passing. If, however, there are multiple access paths to such a
parameter (for example, if a global variable, or another formal parameter, refers to the same
actual parameter), then the value of the formal is undefined after updating the actual other
than by updating the formal. A proprcrr using such an undefined value is erroneous,

14 The same parameter modes are defined th: fvmal parameters of entries (see 9.5) with the same
meaning as for subprograms. Different parameter modes are defined for generic formal
parameters (see 12.1.1).

For all modes, If an actual parameter designates a task, the associated formal parameter
designates the same task; the same holds for a subcomponent of an actual parameter and the cor-
responding subcomponent of the associated formal parameter,

15 References: access type 3.8, actual parameter 8,4.1, array type 3,6, assignment 5,2, bound of an array 3,51,
constraint 3.3, dapend on a dlscriminent 3.7.1, discriminant 3.7,1, entry call statement 9.5, erroneous 1.8, evaluation
4,5, exception 11, expression 4,4, formal parameter 6.1, generic formal parameter 12,1, global 8,1, mode V,1, null
access value 318, object 3.2, parameter specifloatlon 6,1, private type 7.4, record type 3.7, scaler type 3,5, subcompo-
nent 3,3, subprogram body 6,3, subprogram cell statement 6,4, task 9, task type 9,2, type mark 3,3.2, unconstrained
array type 36, unconstrained type with discriminents 3.7.1, unconstrained variable 3,2,1, variable 3,2,1

6.3 Subprogram Bodies

A subprogram body specifies the execution of a subprogram, 6

2 subprogram-body ::=
subprogram-speciflcstion Is

I declaratlve-part)
begin

sequence-of-statements
exception

excption-handier
I exception-handler]"

end (designator]:

The declaration of a subprogram Is optional. In the absence of such a declaration, the subprogram
specification of the subprogram body (or body stub) acts as the declaration, For each subprogram
declaration, there must be a corresponding body (except for a subprogram written In another
language, as explained In section 13.9). If both a declaration and a body are given, the subprogram
specification of the body must conform to the subprogram specification of the declaration (see
section 6.3.1 for conformance rules),

-A

6.3 Subprogram Bodies 6-4

'0

Subprogra•m,

If a designator appears at the and of a subprogram b .y, it must repeat the designator of the sub-
program specification.

The elaboration of a subprogram body has no other effect than to establish that the body can from
then on be used for the execution of calls of the subprogram.

The execution of a subprogram body Is invoked by a subprogram call (see 6.4). For this execution, .
after establishing the association between formal parameters and actual parameters, the
declarative part of the body Is elaborated, and the sequence of statement• of the body is then
executed, Upon completion of the body, return Is made to the caller (and any necessary copying
back of formal to actual parameters occurs (see 6.2)). The optional exception handlers at the end
of a subprogram body handle exceptions raised during the execution of the sequence of state-
ments of the subprogram body (see 11.4).

Note:

It follows from the visibility rules that If a subprogram declared In a package is to be visible outslie 7

the package, a subprogram specification must be given In the visible part of the package. The same
rules dictate that a subprogram declaration must be given If a call of the subprogram occurs tax-
tually before the subprogram body (the declaration must then occur earlier than the call In the
program text). The rules given In sections 3.9 and 7.1 Imply that a subprogram declaration and the
corresponding body must both occur Immediately within the same declarative region,

Fxampie of subprogram body: -

procedure PUSH(E : In ELEMENT-TYPE; S In out STACK) Is
begin

If S.INDEX - S.SIZE then
ralse STACK-OVERFLOW;cime ,'1.•,

SINDEX := SINDEX + 1;
S.SPACE(S.INDEX) := E,

end if;
end PUSH;

References: actual parameter 6.4.1, body stub 10,2, conform 6.3,1, declaratlon 3,1, declarative part 3,9, declarative
region 8,11, designator V,1 elaboration 3,9, elaboration has no other effect 31, exception 11, exception handler 11.2,

formal parameter 6.1, occur Immediately within 8.1, package 7, sequence of statements .1A, subprogram 6, sub-
program call 6.4, subprogram declaration 8,1, subprogram specification 6,1, visibility 8.3, vlalble part 7,2

6.3.1 Conformanoe Rules

Whenever the language rules require or allow the specification of a given subprogram to be
provided In more than one place, the following variations are allowed at each place:

0 A numeric literal can be replaced by a different numeric literal If and only if both have the
same value,

e A simple name can be replaced by an expanded name In which this simplu name Is the selec-
tor, if and only If at both places the meaning of the simple name is given by the same declare-
tion.

e A otring literal given as an operator symbol can be replaced by a different string literal If and
only If both represent the same uperator,

6-5 Conformence Rules 6,3, 1

ANSI/MIL-STD-1815A Ada Reference Manual

Two subprogram specifications are said to conform if, apart from comments and the above
allowed variations, both specifications are formed by the same sequence of lexical elements, and
corresponding lexical elements are given the same meaning Ly the visibility and overloading rules.

Conformance is likewise defined for formal parts, discriminant -arts, and type marks (for deferred
constants and for actual parameters that have the form of a type conversion (see 64.1)).

Notes:

A simple name can be replaced by an expanded name even If the simple name is itself the prefix of
a selected component. For example, Q R can be replaced by P. Q.R if Q Is declared immediately ."0
within P.

0 The following specifications do not conform since they are not formed by the same sequence of
lexical elements:

procedure P(X,Y :INTEGER)
procedure P(X : INTEGER, Y : INTEGER)
procedure P(X,Y :In INTEGER)

References: actual parameter 6.4 684.1, allow 1,1, comment 2,7, declaration 3,1, deferred constant 7,4,3, direct
visibillty 8,3, discrlminmnt part 3.7.1, expended name 4,1.3, formal part 6.1, lexical element 2, name 4.1, numeric
literal 2,4, operator symbol 6.1, overloading 866 8,7, prefIx 4.1, selected component 4,1.3, selector 4,1.3, simple , .
name 4.1, subprogram specification 861, type conversion 4,6, visibility 8,3

6.3.2 Inline Expansion of Subprograms

The pragma INLINE Is used to Indicate that inline expansion of the subprogram body Is desired for
every call of each of the named subprograms. The form of this pragma Is as follows:

progma INLINE (name {, name);

Each name is either the name of a subprogram or the name of a generic subprogram, The pragma
INLINE is only allowed at thu place of a declarative item In a declarative part or package specifica-
tion, or after a library unit In a compilation, but before any subsequent compilation unit.

If the pragma appears at the place of a declarative item, each name must denote a subprogram ur
a generic subprogram declared by an earlier declarative Item of the Eari•i declarative part or
package specification. If several (overloaded) subprograms satisfy this requirement, the pragma
applies to all of them. If the pragma appears after a given library unit, the only name allowed Is the
name of this unit. If the name of a generic subprogram Is mentioned in the pragma, this indicates
that inline expansion is desired for calls of all subprograms obtained by Instantlation of the named
generic unit.

The meaning of a subprogram is not changed by the pragma INLINE. For each call of the named . - 9
subprograms, an Implementation Is free to follow or to Ignore the recommendation expressed by
the pragma, (Note, In particular, that the recommendation cannot generally be follcwed for a
recursive subprogram,)

E References: allow 1.6, compilation 10,1, compilation unit 10.1, dec'arative item 3,9, declarative part 3.9, generic .. "
subprogram 121, generic unit 12 12.1, Instantlation 123, library unit 10.1, nama 4,1, overloading 6,6 8,7, package
specification 7,1, pragma 2.8, subprogram 6, subprogram body 6,3, subprogram call 6.4

6,3,2 In/ine Expans/on of Subprograms 6-6

.* Subprograms

6.4 Subprogram Calls

A subprogram call is either a procedure call statement or a function call; it Invokes the execution
of the corresponding subprogram body, The call specifies the association of the actual parameters,
if any, with formal parameters of the subprogram.

procedure--call-statement ,
procedure-name (actual-parameter.part];

function-call
function-name [actual-parameter-part] 0

actual.parameter-part
(parameter-association f, parameterai;oc! Ltlnon ")

parameter-assoclation ::=

I formalIparameter =>I actual-parameter

formal-parameter parametersImple-name

actual-parameter
expression I varlable-name I tVpemark(variablename)

Each parameter association associates an actual parameter with a corresponding formal 3
parameter, A parameter association Is said to be named If the formal parameter Is named explicit-
ly; It is otherwise said to be posItIonal. For a positional association, the actual parameter corres-
ponds to the formal parameter with the same position in the formal part,

"Named associations can be given In any order, but If both positional and named associations are 4
used in the same call, positional associations must occur first, at their normal position, Hence
once a named association Is used, the rest of the call must use only named associations,

" For each formal parameter -)f a subprogram, a subprogram call must specify exactly one cor- .
responding actual parameter, This actual parameter Is specified either explicitly, by a parameter
association, or, In the absence of such an amioclation, by a default expression (see 6.4.2).

The parameter associations of a subprogram call are evaluated In some order that Is not defined by e

the language, Similarly, the language rules do not define In which order the values of In out or out
parameters are copied back Into the corresponding actual parameters (when this Is done).

Examples of procedure calls:

TRAVERSE-TREE; -- see 6.1
TABLEMANAGER.INSERT(E); -- see 7.5
PRINT.HEADER(128, TITLE, TRUE); -- see 8,1

SWITCH(FROM _> X, TO -> NEXT); -- see 6,1
PRINT.HEADER(128, HEADER => TITLE, CENTER => TRUE); -- see 6.1 •
PRINTHEADER(HEADER -> TITLE, CENTER => TRUE, PAGES => 128); -- see 6.1

Examples of function calls.,

DOT..PRODUCT(U, V) -- see &.1 end 6.5
CLOCK -- see 9,.

6-7 Subprogram Cells 6.4
,•l h "

ANSI/MIL-STD-1815A Ada Reference Manual

9 References: default expression for a formal parameter 8,1, erroneous 1,6, expression 4.4, formal parameter 6,1,
formal part 6.1, name 4.1, simple name 4,1, subprogram 6, type mark 3.32, variable 3,2.1

6.4,1 Parameter Associations

"Each actual parameter must have the same type as the corresponding formal parameter.

2 An actual parameter associated with a formal parameter of mode In must be an expression; It Is
evaluated before the call, 6

3 An actual parameter associated with a formal parameter of mode in out or out must be either the
, name of a variable, or of the form of a type conversion whose argument le the name of a variable,

In either case, for the mode In out, the variable must not be a formal parameter of mode out or a
subcomponent thereof, For an actual parameter that has the form of a type conversion, the type
mark must conform (see 8.3.1) to the type mark of the formal palameter; the allowed operand and 1
target types are the same as for type conversions (see 4,6),

4 The variable name given for an actual parameter of mode In out or out Is evaluated before the call,
If the actual parameter has the form of a type conversion, then before the call, for a parameter of
mode in out, the variable Is converted to the specified type; after (normal) completion of the sub-
program body, for a parameter of mode In out or out, the formal parameter Is converted back to the
type of the variable. (The type specified in the conversion must be that of the formal parameter,)

5 The following constraint checks are performed for parameters of scalar and access types:

- * Before the call, for a parameter of mode in or in out, it Is checked that the value of the actual
parameter belongs to the subtype of the formal parameter, ,

7 9 After (normal) completion of the subprogjram body: for a parameter of mode In out or out, It Is
checked that the value of the formal parameter belongs to the subtype of the actual variable,
In the case of a type conversion, the value of the formal parameter Is converted back and the
check applies to the result of the conversion.

8 In each of the above cases, the execution of the program Is erroneous if the checked value Is
undefined,

9 For other types, for all modes, a check Is made before the call as for scalar and access types; no
check Is made upon return,

-0 The exception CONSTRAINT.ERROR Is raised at the place of the subprogram call if either of these

checks falls,

Note.,

For array types and for types with discriminants, the check before the call Is sufficient (a check
upon return would be redundant) If the type mark of the formal paramewr denotes a constrained
subtype, since neither array bounds nor dlscriminants can then vary,

"6,4.1 Parameter Associatlons 6-8

Subprograms
0

If this type mark denotes an unconstrained array type, the formal parameter is constrained with the i•
bounds of the corresponding actual parameter and no check (neither before the call nor upon
return) Is needed (see 3.6.1). Similarly, no check Is needed If the type mark denotes an
unconstrained type with discriminants, since the formal parameter Is then constrained exactly as
the corresponding actual parameter (see 3.7.1), 0

References: actual parameter 8.4, array bound 3,6, array type 3.6, call of a subprogram 6.4, conform 6.3.1, i.
constrained subtype 3.3, constraint 3,3, constralnLerror exception 11.1, discrlmlnnnl 3.7,1, erroneous 1.6, evaluation
4,5, evaluation of a name 4,1, expression 4.4, formal parambtar 8.1, mode 6.1, name 4.1, parameter association 6.4,
subtype 3.3, type 3.3, type conversion 4A6, type mark 3.3.2, unconstrained array type 3.6, unconstrained type with
Sdlacriminants 3.7.1, undefined value 3,2.1, variable 3,2.1

* 6.4.2 Default Parameters

,a If a parameter specification Includes a default expression for a parameter of mode In, then cor-
responding subprogram calls need not include a parameter association for the parameter. If a
parameter associatlo., Is thus omitted from a call, then the rest of the call, following any initial
positional associations, must use only named associations,

For any omitted parameter association, the default expression Is evaluated beforo the call and the 2
resulting value Is used as an Implicit actual parameter,

Examples of procedures with default values: 3

procedure ACTIVATE(PROCESS In PROCESSNAME:
AFTER In PROCESSNAME N NO-PROCESS;
WAIT In DURATION :0. 0;0: . "
PRIOR In BOOLEAN :• FALSE):

procedure PAIR(LEFT, RIGHTr PERSON-NAME := new PERSON);

Examples of their cas811. 4

ACTIVATE(X);
ACTIVATE(X, AFTER -> Y);
ACTIVATE(X, WAIT => 60,0, PRIOM re> TRUE);
ACTIVATE(X, Y, 10,0, FALSE);

"* PAIR;
PAIR(LEFT -t> new PERSON, RIGHT => new PERSON);

Note:

S'"If a default expression Is used for two or more parameters In a multiple parameter specification,
the default expression Is evaluated once for each omitted parameter, Hence In the above exam-
pies, the two calls of PAIR are equivalent, 0

References. actual parameter 8,4.1, default expresslon for a formal parameter 6.1, evaluation 4.5, formal parameter 0
8 1, mode 6,1, named parameter association 6.4, parameter association 6.4, I erameter specification 6.1, positional
parameter association 8,4, subprogram call 8,4

9 ,m

S6-9 Defauit Parameters 6,4,2

" -. ks-/ ".t** 2X--------- <I

ANSI/MIL-STD-1815A Ada Reference Manual

6.5 Function Subprograms

A function is a subprogram that returns a value (the result of the function call), The specification of
a function starts with the reserved word function, and the parameters, if any, must have the mode
in (whether this mode Is specified explicitly or implicitly), The statements of the function body (ex-
cluding statements of program units that are inner to the function body) must include one or more
return statements specifying the returned value,

2 The exception PROGRAMERROR Is raised If a function body is left otherwise than by a return
statement. This does not apply If the execution of the function is abandoned as a result of an
exception.

3 Example:.

function DOTPRODUCT(LEFT, RIGHT VECTOR) return REAL is
SUM : REAL := 0.0;

begin '
CHECK(LEFT'FIRST = RIGHT'FIRST and LEFT LAST = RIGdT'LAST);
for J in LEFT'RANGE loop

SUM := SUM + LEFT(J)*RIGHT(J);
end loop;
return SUM;

end DOT-PRODUCT;

4 References. exception 11, formal parameter 6,1, function 6.1, function body 6,3, function call 6,4, function
specification 6.1, mode 6,1, program-error exception 111, raising of exceptions 11, return statement 5.8, statement
5

6.6 Parameter and Result Type Profile - Overloading of Subprograms

Two formal parts are said to have the same parameter type profile if and only if they have the same
number of parameters, and at each parameter position corresponding parameters have the same
base type, A subprogram or entry has the same parameter and result type profile as another sub-
program or entry If and only if both have the same parameter type profile, and either both are func-
tions with the same result base type, or neither of the two is a function.

2 The same subprogram Identifier or operator symbol can be used In several subprogram specifica-
tions, The identifier or operator symbol Is then said to be overloaded; the subprograms that have
this identifier or operator symbol are also said to be overloaded and to overload each other. As
explained in section 8.3, if two subprograms overload each other, one of them can' hide the other
only if both subprograms have the same parameter and result type profile (see section 8.3 for the
other requirements that must be met for hiding),

A call to an overloaded subprogram Is ambiguous (end therefore Illegal) If the name of the sub-
progr "m, the number of parameter associations, the types and the order of the actual parameters,
the names of the formal parameters (If named associations are used), arid the result type (for func-
tions) are not sufficient to determine exactly one (overloaded) subprogram specification.

6.6 Prarmeter and Result Type Profile - Overloading of Subprograms 6-10
'1,.i

Subprograms

Examples of overloaded subprograms: 4

procedure PUT(X :INTEGER);
procedure PUT(X : STRING);
procedure SET(TINT COLOR);
procedure SET(SIGNAL : LIGHT);

Examples of calls:

PUT(28);
PUT("no possible ambiguity here");

SET(TINT => RED);
SET(SIGNAL => RED);
SET(CO LOR'(RED));

SET(RED) would be ambiguous since RED may
-- denote a value either of type COLOR or of type LIGHT

Notes:

The notion of parameter and result type profile does not Include parameter names, parameter -
modes, parameter subtypes, default expressions and their presence or absence,

Ambiguities may (but need not) arise when actusl parameters of the call of an overloaded sub- 7

program are themselves overloaded function calls, Ilterals, or aggregates, Ambiguities may also
(but need not) arise when several overloaded subprograms belonging to different packages are
visible. These ambiguities can usually be resolved in several ways: qualified expressions Can be
used for some or all actual parameters, and for the result, if any; the name of the subprogram can
be expressed more explicitly as an expanded name; finally, the subprogram can be renamed,

References: actual parameter 6,4,1, aggregate 4,3, base type 3,3, default expression for a formal psrometer 6.1, a
entry 9.5, formal parameter 6,11, function 6.5, function call 5.4, hiding 8,3, Identifier 2.3, Illegal 1.6, literal 4.2, mode
6.1, named parameter association 6,4, operator symbol 6,1, overloading 8.7, package 7, parameter of a subprogram
6.2, qualified expression 4,7, renaming declaration 8,5, result subtype 6.1, subprogram 6, subprogram specification
6,1, subtype 3.3, type 3.3

6.7 Overloading of Operators

The declaration of a function whose designator is an operator symbol is used to overload an
operator. The sequence of characters of the operator symbol must be either a lugical, a relational, a
binary adding, a unary adding, a multiplying, or a highest precedence operator (see 4,5), Neither
membership tests nor the short-circuit control forms are allowed as function designators,

The subprogram specification of a unary operator must have a single parameter, The subprogram 2

specification of a binary operator must have two parameteru; for each use of this operator, the first
parameter takes the left operand as actual parameter, the second parameter takes the right
operand, Similarly, a generic function Instantlatlon whose designator Is an operator symbol is only
allowed If the specification of the generic function has the corresponding number of parameters,
Default expressions are not allowed for the parameters of an ooerator (whether the operator Is
declared with an explicit subprogram specification or by a generic instentlatlon).

"6-11 Overloading of Operators 6.7

ANS//MIL-STD-1815A Ada Reference Manual

3 For each of the operators "+ and "-", overloading Is allowed both as a unary and as a binary
operator,

4 The explicit declaration of a function that overloads the equality operator "=", other than by a
renaming declaration, Is only allowed if both parameters are of the same limited type. An
overloading of equality must deliver a result of the predefined type BOOLEAN; it also implicitly
overloads the Inequality operatoi "/=" so that this still gives the complementary result to the
equality operntor. Explicit overloading of the In,,,quallty operator Is not allowed,

, A renaming declaration whose designator is the equality operator Is only allowed to rename
another equality operator, (For example, such a renaming declaration can be used when equality is
visible by selection but not directly visible.)

Note.'

s Overloading of relational operator,, does not affect basic comparisons such as testing for
membership In a range or the cholues In a case statement.

I Examples:

function "+" (LEFT, RIGHT MATRIX) return MATRIX;
function "+" (LEFT, RIGHT VECTOR) return VECTOR;

assuming that A, B, and C are of the type VECTOR
-- the three following assignments are equivalent

A B + C;

A "+"(8, C)
A "+"(LEFT -> B, RIGHT => C);

' References: allow 1,6, actual parameter 6,4.1, binary adding operator 4.5 4,5,3, boolean predefined type 3.5.3,
character 2.1, complementary result 4.5.2, declaration 3,1, default expression for e formal parameter 6,1, designator
.61, directly visible 8.3, equality opersaor 4,5, formal parameter 6.1, function declaration 6.1, highest precedence

operator 4.5 4.5,6, Implicit declaration 3.1, inequalty operator 4,5.2, limited type 7,4.4, logical operator 4,5 4.5.1,
membership test 4.5 4,5,2, multiplying operator 4,1 4,5.5, operator 4,5, opera(or symbol 6.1, overloading 6,6 8.7,
relational operator 4,5 4.5.2, short-circuit control form 4,5 45.1, type definition 3,31, unary adding operator 4.5
4.5A4, visible by selection 8,3

6, Overloading of Operators 6-12

7. Packages

Packages are one of the four forms of program unit, of which programs can be composed. The
other forms are subprograms, task units, and generic units,

"0•

Packages allow the specification of groups of logically related entities. In their simplest form pac- 2

kages specify pools of common object and type declarations, More generally, packages can be
used to specify groups of related entitles including also subprograms that can be called from outsi-
de the package, while their Inner workings remain concealed and protected from outside users.

tr

References: generic unit 11, program unit 6, subprogram 6, taok unit 9, type declaration 3.3.1 3

7.1 Package Structure

A package Is generally provided In two parts: a package specification and a package body. Every
package has a package specification, but not all packages have a package body,

package-declaration ::= package-Jpeciflcatlon;
package-specification : ',;•

package Identifier Is

{basic-deolarative-item "
private

(basic.declarative-item)]
end [package..slrple.nams

package-body
package body packackse.impleoname Is

I declarative.part"
Ibegin

soquence.of.statements
(exception

exception-handler
1 exception.handler}]]

end LneckageJsImple-name];

The simple name at the start of a package body must repeat the package Identifier. Similarly If a I
simple name appears at the end of the package specification or body, it must repeat the package
identifier.

If a subprogram declaration, a package declaration, a task declaration, or a generic declarstlon Is a
declarative Item of a given package specification, then the body (if there Is one) of the program unit
declared by the declarativa Item must Itself be a declarative Item of the declarative part of the body
of the given package.

7,.-1 "c 7

"'7-1 Pec/sage Structure 7. !

LANSI/MIL-STD-181 6A Ada Reference Manual

Notes:

A simple form of package, specifying a pool of objects and types, does not require a package body.
: One of the possible uses of the sequence of statements of a package body Is to initialize such

objects. For each subprogram declaration there must be a corresponding body (except for a sub-
program written in another language, as explained in section 13.9). If the body of a program unit
is a bodi stub, then a separately compiled subunit containing the corresponding proper body is
required for the program unit (see 10.2). A body Is not a basic declarative item and so cannot

-'appear in a package specification.

A package declaration is either a library package (see 10.2) or a declarative item declared within
another program unit.

7 References: basic declarative Item 3,9, body stub 10,2, declarative item 3.9, declarative part 3,9, exception handler
11.2, generic body 12.2, generic declaration 12,1, Identifier 2.3, library unit 10.1, object 3,2, package body 7.3, pro-
gram unit 6, proper body 3.9, sequence of statements 5.1, simple name 4.1, subprogram body 6.3, subprogram decla-
ration 6.1, subunit 10.2, task booy 9.1, task declaration 9.1, type 3.3

7.2 Paokage Specifloations and Declaratlons

The first list ot declarative Items of a package specificatinn Is called the visible part of the packs-
ge. The optional list of declarative Items after the reserved word private Is called the private part of
the package,

2 An entity declared in the private part of a package Is not visible outside the package Itself (a name
denoting such an entity Is only possible within the package), In contrast, expanded names deno-
ting entities declared In the visible part can be used even outside the package; furthermore, direct
visibility of such entities can be achieved by means of use clauses (aee 4.1,3 and 8.4).

3 The elaboration of a package declaration consists of the elaboration of Its basic declarative Items
In the given order,

Notes:

4 The visible part of a package contains all the Information that another program unit Is able to know
about the package, A package consisting of only a package specification (that is, without a packs-
ge body) can be used to represent a group of common constants or variables, or a common pool of
objects and types, as in the examples below,

Example of a package describing a group of common variables:

package PLOTTING-DATA Is
PEN-UP : BOOLEAN:

CONVERSION-FACTOR,
XOFFSET, YOFFSET,
XMMIN, Y_..MIN,
)LMAX, YMAX: REAL; see 3.5.7

XVALUE array (1 . 500) of REAL;
Y.VALUE array (1 *. 500) of REAL;

end PLOTTING-DATA;

7.2 Package Specifications and Declarations 7-2

J.-, . •,

Packages

Example of a package describing a common pool of objects and types.

package WORK-DATA is
type DAY In (MON, TUE, WED, THU, FRI, SAT, SUN):
type HOURS-SPENT Is delta 0.25 range 0.0 ,. 24.0; O
type TIME-TABLE I1 array (DAY) of HOURS-SPENT:

WORK-HOURS TIMELTABLE;
NORMAL-HOURS constnt TIME-TABLE

(MON .. THU => 8.25, FRI => 7.0, SAT I SUN => 0.0);
end WORK-DATA;

References,, basic declarative Item 3.9, constant 3.2,1, declarative Item 3,9, diruct viflbility 8.3, elaboration 3.9,
expanded name 4,1.3, name 4, 1, number declaration 322, object declaration 3,2.1, package 7, package declaration
71, package identifier 7,1, package specification 7,1, scope 812, simple name 4,1, type declaration 3.3,1, use clause
8A4, variable 3,2.1

7.3 Package Bodlee

In contrast to the entitles declared In the visible part of a package specification, the entities decla-
red In the package body are only visible within the package body itself, As a consequence, a packa-
go with a package body can be used for the construction of a group of related subprograms (a pec-
kage in ths usual sense), In which the logical operations available to the users are clearly isolated
from the Internal entities,

For the elaboration of a package body, Its declarative part Is first elaborated, and Its sequence of
statements (if any) Is then executed. The optional exception handlers at the end of $ package body
service exceptions raised during the execution of the sequence of statements of the package body,

Notes:

* A variable declared In the body of a package is only visible within this body and, consequently, Its 3

value can only be changed within the package body. In the absence of local tasks, the value of
such a variable remains unchanged between calls Issued from outside the package to subprograms
declared in the visible part, The properties of such a variable are similar to those of an "own"
variable of Algol 60.

The elaboration of the body of a subprogram declared In the visible part of a package is caused by
the elaboration of the body of the package, Hence a call of such a subprogram by an outside pro-
gram unit raises the exception PROGRAM-ERROR If the call takes place before the elaboration of
the package body (see 3.9),

I S

7-3 Package Bodies 7T3

........... .

ANSI/MIL-STD-1815A Ads Reference Manual

Example of a package:

package RATIONAL-NUMBERS Is

type RATIONAL is
record

NUMERATOR :INTEGER;
DENOMINATOR POSITIVE;

end record;

function EQUAL (XY : RATIONAL) return BOOLEAN;

function "/ K (X,Y : INTEGER) return RATIONAL; -- to construct a rational number

hinotlon "+" (XY : RATIONAL) return RATIONAL;
function " MY (X, : RATIONAL) return RATIONAL;
function K (X,Y : RATIONAL) return RATIONAL;
function KY" (X, : RATIONAL) return RATIONAL;

and:

package body RATIONAL-NUMBERS Is

procedure SAME-DENOMINATOR (X,Y : In out RATIONAL) Is
begin

-- reduces X and Y to the same denominator:

and;

function EQUALXY RATIONAL) return BOOLEAN Is
U,V : RATIONAL;

begin;:' ~U :=X;'"•

V := Y;
SAME-DE NOMINATOR (UNV);
return UNUMERATOR -' V.NUMERATOH:

end EQUAL;

function "/" (X,Y : INTEGER) return RATIONAL Is
begin

"If Y > 0 then
return (NUMERATOR => X, DENOMINATOR => Y):

6l46
return (NUMERATOR = -X, DENOMINATOR => .-Y);

end If;
end "/";

function "+" XY RATIONAL) return RATIONAL Is .,, end +"; . -
function .- (XY RATIONAL) return RATIONAL Is ... end .- ,-
function "" (X,Y : RATIONAL) return RATIONAL Is .., end "0":
function "/" (XY RATIONAL) return RATIONAL Is ,. end "/"; .. ,9

end RATIONALNUMBERS;

References, daclaratlon .J. 1, declarative part 3.9, elaboration 3.1 3.9, exception 11, exception handler 11.2, name
4.1. package specification 7.1, program unit 6, program-error exception 11, 1. sequence of statements 5,1, subpro-
gram 6, variable 3,2,1, visible part 7.2

7.3 Package Bodies 7-4

Packages

7.4 Private Type and Deferred Constant Declarations

The declaration of a type as a private type In the visible part of a package serves to separate the
characteristics that can be used directly by outside program units (that is, the logical properties)
from other characteristics whose direct use is confined to the package (the details of the definition
of the type itself), Deferred constant declarations declare constants of private types.

private..type...decleration :=2
type Identifier IdlscriminantLpart) Is (limited] private;

deferred-constanL.declaration ;:=
Identifier-list : constant type-mark:

A private type declaration Is only allowed as a declarative Item of the visible part of a package, or "
as the generic prrameter declaration for a generic formal type In a generic formal part,

The type mark of a deferred constant declaration must denote a private type or a subtype of a pri- 4

vate type; a deferred constant declaration and the declaration of the corresponding private type
must both be declarative Items of the visible part of the same package, A deferred constant decla-
ration with several identifiers Is equivalent to a sequence of single deferred constant declarations
as explained In section 3.2.

Examples of private type declarations:

type KEY Is private;
type FILE-NAME Is limited private:

Example of deferred constant declaration; .

NULL-KEY constant KEY:

References: constant 3,2,1, declaration 3.1, declarative item 3,9, deferred constant 7,4,3, discrimlnant part 3,7,1,
• :generic formal part 12.1, generic formal type 12.1, generic parameter declaration 12,1, Identifier 2,3, identifier list

"* 3.2, limited type 7,4,4, package 7, private type 7,4,1, program unit 8, subtype 3.3, type 3,3, type mark 3,3.2, visible
part 72

7.4.1 Private Types

If a private type declaration Is given In the visible part of a package, then a corresponding declara-
tion of a type with the same Identifier must appear as a declarative Item of the private part of the 9
package, The corresponding declaration must be either a full type declaration or the declaration of
a task type, In the rest of this section explanations are given In terms of full type declarations; the
same rules apply also to declarations of task types.

7-5 Private Types 7.4. 1
4 '

ANSI/MIL-STD-?AR15A Ada Reference Manual

2 A private type declaration and the corresponding full type declaration define a single type. The
private type declaration, together with the visible part, define the operations that are available to
outside program units (see section 7.4.2 on the operations that are available for private types). On
the other hand, the full type declaration defines other operations whose direct kise is only possible
within the package itself.

If the private type declaration Includes a discriminant part, the full declaration must include a dis-
criminant part that conforms (see 6.3.1 for the conformance rules) and its type definition must be a
record type definition. Conversely, If the private type declaration does not include a discrimlnant
part, the type declared by the full type declaration (the ful! type) must not be an unconstrained type
with discriminants, The full type must not be an unconstrained array type. A limited type (in par-
ticular a task type) Is allowed for the full type only if the reserved word limited appears in the
private type declaration (see 7.4.4).

4 Within the specification of the package that declares a private type and before the end of the cor-
responding full type declaration, a restriction applies to the use of a name that denotes the private
type or a subtype of the private type and, likewise, to the use of a name that denotes any type or
subtype that has a subcomponent of the private type. The only allowed occurrences of such a
name are In a deferred constant declaration, a type or subtype declaration, a subprogram specifica-
tion, or an entry declaration; moreover, occurrences within derived type definitions or within sim-
ple expressions are not allowed,

The elaboration of a private type declaration creates a private type. If the private type declaration
has a discriminant part, this elaboration Includes that of the discriminent part, The elaboration ofthe full type declaration consists of the elaboration of the type definition; the discriminant part, if

any, Is not elaborated (since the conforming discriminant part of the private type declaration has
already been elaborated).

Notes:

6 It follows from the given rules that neither the declaration of a variable of a private type, n or the
creation by an allocator of an object of the private type are allowed before the full declarntion of
the type. Similarly before the full declaration, the name of the private type cannot be used In a
generic Instantlation or In a representation clause,

References.' allocator 4.8, array type 3,6, conform 6,3,1, declarative item 3.9, deferred constant declaration 7,4,3,
derived type 3.4, discrimlnant pert 3.7,11, elaboration 3.9, entry declaration 9.6, expression 4.4, full type declaration
3.3.1, generic instantlation 12,3, Identifier 2,3, incomplete type declaration 3,8,1, limited type 7,4.4, name 4.1, opera..

* tion 3.3, package 7, package specification 7.1, private part 7.2, private type 7.4, private type declaration 7A4, record
type definition 3,7, representation clause 13. 1, reserved word 2,9, subcomponent 3,3, subprogram specification 6,1,
subtype 3.3, subtype declaration 3,312, type 3.3, type declaration 313,1, type definition 3,3.1, unconstrained array
type 3.6, variable 3,2,1, visible part 7,2

7.4.2 Operations of a Private Type

The operations that are Implicitly declared by a private type declaration include basic operations.

These are the operations Involved In assignment (unless the reserved word limited appears in the
declaration), membership tests, selected components for the selection of any discriminant,
qualification, and explicit conversions,

7,4.2 Operations of a Private Type 7-6

,•. ... 6

Packages

For a private type T, the basic operations also Include the attributes T'BASE (see 3,313) and T'SIZE
(see 13.7.2). For an object A of a private type, the basic operations include the attribute
A'CONSTRAINED If the private type has discriminants (see 3.7,4), and in any case, the attributes
A'SIZE anrl A'ADDRESS (see 13.7.2).

Finally, the operations Implicitly declared by a private type declaration include the predefined comr-
parison for equality and Inequality unless the reserved word limited appears in the private type
declaration.

The above operations, together with subprograms that have a parameter or result of the private .
type and that are declared In the visible part of the paLokage, are the only operations from the
package that are available outside the package for the private type,

Within the package that declares the private type, the additional operations Implicitly declared by
the full type declaration are also available. However, the redefinition of these Implicitly declared
operations Is allowed within the sanoe declarative region, Including between the private type
declaration and the corresponding full declaration. An explicitly declared subprogram hides an
Implicitly declared operation that has the same parameter and result type profile (this is only possi-
ble If the Implicitly declared operation Is a derived subprogram or a predefined operator),

If a composite type has subcomponents of a private type and Is declared outside the package that
declares the private type, then the operations that are Implicitly declared by the declaration of the
composite type Include all operations that only depend on the characteristics that result from the
private type declaration alone. (For example the operator < Is not Included for a one-dimensional
array type.)

If the composite type Is Itself declared within the package that declares the private type (Including
within an Inner package or generic package), then additional operations that depend on the
characteristics of the full type are implicitly declared, as required by the rules applicable to the
composite type (for example the operator < Is declared for a one-dimensional array type If the full
type Is discrete). These additional operations are Implicitly declared at the earliest place within the
Immediate scope of the composite type and after the full type declaration,

The same rules apply to the operations that are implicitly declared for arn access type whose -
designated type Is a private type or a type declared by an incomplete type declaration,.

For every private type or subtype T the following attribute is defined:

T'CONSTRAINED Yields the value FALSE If T denotes an unconstrained nonformal private type 1o
with discriminants; also yields the value FALSE if Tr denotes a generic formal
private type, and the associated actual subtype Is either an unconstrained type
with dIscrimInants or an unconstrained array type; yields the value TRUE
otherwise, The value of this attribute Is of the predefined type BOOLEAN,

Note.-

A private type declaration and the corresponding full type declaration define two different views of
one and the same type, Outside of the defining package the characteristics of the type are those
defined by the visible part, Within these outside program units the type is just a private type and
any language rule that applies only to another class of types does not apply. The fact that che full
declaration might hvrplemnont the private type with a type of a particular class (for example, as an
array type) Is only relevant within the package Itself.

7-7 Operations of a Private Type 7.4.2

.

"ANSI/MIL-STD-1815A Ada Reference Manual

12 The consequences of this actual implementation are, however, valid everywhere, For example:
any default Initialization of components takes place; the attribute SIZE provides the size of the full
type; task dependence rules still apply to components thbt are task objects,

13 Example.-

package KEY-MANAGER Is
type KEY Is private;
NULL-KEY : constant KEY;
procedure GETKEY(K : out KEY);
function "X' (X, Y : KEY) return BOOLEAN:

private
type KEY Is new NATURAL:
NULLKEY constant KEY = 0;

end:

* package body KEY-MANAGER Is -

LAST-KEY : KEY :- 0:
procedure GETKEY(K : out KEY) Is
begin ,,

LAST-KEY -= LASTKEY + 1;
K :- LAST-KEY; 4,

end GETKEY;

function "<" (X, Y : KEY) return BOOLEAN Is
begin

return INTEGER(X) < INTEGER(Y);
end X t';

end KEYMANAGER;

Notes on the example.,

14 Outside of the package KEY-.MANAGER, the operations available for objects of type KEY include
assignment, the comparison for equality or Inequality, the procedure GET-KEY and the operator

"<"; they do not Include other relational operators such as ">=", or arithmetic operators,

The explicitly declared operator %<" hides the predefined operator %"" Implicitly declared by the
full type declaration, Within the body of the function, an explicit conversion of X and Y to the type
INTEGER is necessary to invoke the "<" operator of this type, Alternatively, the result of the func.-
tion could be written as not (X >= Y), tince the operator ">=" Is not redefined,

16 The value of the variable LAST-KEY, declared In the package body, remains unchanged between
calls of the procedure GET-KEY. (See also the Notes of section 7.3.)

References., assignment 5.2, attribute 4,1,4, basic operation 33.3, component 3.3, composite tyne 3.3, conversion
4.6, declaration 3,1, declarative region 8,1, derived subprogram 3A4, derived type 3,4, dimension 3.6, discrlminant
3,3. equality 4.5.2, full type 7,4.1, full type declaration 3.3.1, hiding 8.3, Immediate scope 8,2, Implicit declaradtfnn 3.1,
Incompleto type declarration 3.8,1, membership test 4,5, operation 3.3, package 7, parameter of a subprogram 6,2 .. .
predefined function 8,6, predefined operator 4., private type 7,4, private type declaration 7,4, program unit 8,
qualification 437, reiational operator 4.5, selected component 41,3, subprogram 8, task dependence 9,4, visible part
72

7.4.2 Operations of a Private Type 7-8

• " " " " " ' " ' " "i , , , .

Packages

S7.4.3 Deferred Constants

If a deferred constant declaration Is given In the visible part of a package then a constant declara-
tion (that is, an object declaration declaring a constant object, with an explicit Initialization) with
the same identifier must appear as a declarative item of the private part of the package, This
object declaration is called the full declaration of the deferred constant, The type mark given In the
full declaration must conform to that given In the deferred constant declaration (see 6,3.1). Multi-
pie or single declarations are allowed for the deferred and the full declarations, provided that the

" equivalent single declarations conform.

Within the specification of the package that declares a deferred constant and before the end of the
* corresponding full declaration, the use of a name that denotes the deferred constant Is only

allowed In the default expression for a record component or for a formal parameter (not for a
generic formal parameter),

The elaboration of a deferred constant declaration has no other effect. 3

The execution of a program is erroneous if it attempts to use the value of a deferred constant 4

before the elaboration of the corresponding full declaration,

Note,,

The full declaration for a deferred constant that has a given private type must not appear before
the corresponding full type declaration, This Is a consequence of the rules defining the &llowed
u~ea of a name that denotes a private type (see 7,4.1),

References.' conform 8,3,1, constant declaration 3.2,1, declarative Item 3,A, default expression for a discriminant
3,7.1, deferred constant 7,4, deferred constant declaration 7.4, elaboration has no other affect 3,1, formal parameter
6,1, generic formal parameter 12,1 12,3, Identfier2,3, obleot declaration 3.2,1, package 7, package speclfication 7,1,
private part 7,2, record component 3.7, type mark 3,3.2, visible part 7.2

"4 -

7.4.4 Limited Types

A limited type is a type for which neither assignment nor the predefined comparison for equality
and Inequality Is Implicitly declared.

A private type declaration that Includes the reserved word limited declares a limited type, A task . ,

type is a limited type, A type derived from a limited type Is Itself a limited typo, Finally, a Com-
posite type Is limited If the type of any of Its aubcomponents Is limited,

The operations available for a private type that Is limited are as given In section 7,42 for private
types except for the absence of assignment and of a predefined comparison for equality and Ine-
quality.

For a formal parameter whose type Is limited and whose declaration occurs In an explicit sub-
program declaration, the mode out Is only allowed If this type Is private and the subprogram
declaration occurs within the visible part of the package that declares the private type, The same
holds for formal parameters of entry declarations and of generic procedure declarations, The cor-
responding full type must not be Ilmiteo If the mode out Is used for any such formal parameter,
Otherwise, the corresponding full type Is allowed (but not required) to be a limited type (in par-
ticular, It Is allowed to be a task type). If the full type corresponding to a limited private type Is not
Itself limited, then assignment for the type Is available within the package, but not outside.

7-9 Limited Types 7,4.4

ANSI/MIL-STD-1815A Ada Reference Manual

The follo,,I0n are consequences of the rules for limited types:

* 0 An explicit Initialization Is not allowed In an object declaration if the type of the object is
limited,

0 A default expression Is not !ilowed in a component declaration if the type of the record com-
ponent Is limited.

9 An explicit initial value is not allowed In an allocator If the designated type Is limited,

* A generic formal parameter of mode in must not be of a limiltd type,

Notes:

w0 The above rules do not exclude a default expression for a formal parameter of a limited type; they
do not exclude a deferred constant of a limited type If the full type Is not limited, An explicit
declaration of an equality operator Is allowed for a limited type (see 6.7).

Aggregates are not available for a limited composite type (see 3.8,2 and 3.7,4), Catenation Is not
available for a limited array type (see 3.6,2).

12 Example:

package 1-O-PACKAGE Is
type FILE-NAME Is limited private;

procedure OPEN (F : In out FILENAME;.
procedure CLOSE (F ; In out FILELNAME);
procedure READ (F In FILE-NAME: ITEM out INTEGER):
procedure WRITE (F : In FILE-NAME; ITEM In INTEGER);

private
type FILE-NAME Is

record
INTERNAL-NAME : INTEGER :- 0:

end record;
end ILOPACKAGE:

package body 1-0-PACKAGE Is
LIMIT : constant :-- 200:
type FILEDESCRIPTOR Is record ... end record;
DIRECTORY : array (1 .. LIMIT) of FILEDFSCRIPTOR;

procedure OPEN (F In out FILE-NAME) Is ... end; "
procedure CLOSE (F In out FILE-NAME) Is ... end;
procedure READ (F In FILE-NAME; ITEM : out INTEGER) Is .,. end;
procedure WRITE (F In FILE-NAME; ITEM In INTEGER) Ie s, end;

begin

end ILOPACKAGE;

Notes on the examplew

13 In the example above, an outside subprogram making use of LO--ACKAGE may obtain a file
name by calling OPEN and later usao It In calls to READ and WRITE. Thus, outside the package, a
file name obtained from OPEN acts as a kind of password; Its Internal properties (such as
containing a numeric value) are not known and no other operationri (such as addition or com.
parlson of Internal names) can be performed on a file name.

" 7,4.4 Limited Types 7-10.d !,.

Packages

This example is characteristic of any case where complete control over the operations of a type Is 14
desired, Such packages serve a dual purpose, They prevent a user from making use of the internal
structure of the type. They also Implement the notion of an encapsulated data type where the only
operations on the type are those given in the package specification.

References. aggregate 4.3, allocator 4.8, assignment 5,2, catenation operator 4.5, component declaration 3.7, .
component type 3,3, composite type 1.3, default expresiion for a discriminent 3.7, deferred constant 7.4.3, derived
type 3,4, designate 3,8, discrlmlnant specification 37.11, equality 4.5.2, formal parameter 61, full type 7,4.1, full type
declaration 3,3.1, generic formal parameter 12.112.3, Implicit declaration 3,1, Initial value 32.1, mode 12 1 1, obiect
3.2, operation 3,3, package 7, predeflned operator 4,1, private type 7,4, private type declaration 7.4, record compo-
nent 3,7, record type 3,7, relational operator 4.5, subcomponent 3.3, subprogram 6, task type 9,1 9,2, type 3,3 "

7.5 Example of a Table Management Package

The following example Illustrates the use of packages In providing high level procedures with a
simple Interface to the user,

The problem Is to define a table management package for Inserting and retrieving Items. The 2
items are inserted Into the table as they are supplied, Each Inserted Item has an order number, The
items are retrieved according to their order number, where the Item with the lowest order number
Is retrieved first.

From the user's point of view, the package 'a quite simple, There Is a type called ITEM designating 3
table Items, a procedure INSERT for Inserting Items, and a procedure RETRIEVE for obtaining the
item with the lowest order number, There Is a special Item NULLITEM that Is returned when the
table Is empty, and an exception TABLEFULL which Is raised by INSERT if the table Is already full,

A sketch of such a package Is given below, Only the specification of the package is exposed to the

user,

package TABLE-MANAGER Is

type ITEM Is
record

ORDERNUM INTEGER;
ITEM-CODE INTEGER:
QUANTITY :INTEGER;
ITEM-TYPE CHARACTER;

and record;,

NULLITEM : constant ITEM :,.

(ORDERNUM I ITEM-CODE I QUANTITY ,> 0, ITEMTYPE => ,

"procedure INSERT (NEW-ITEM In ITEM);
prooedure RETRIEVE (FIRST .ITEM out ITEM);

TABLE.-.FULL exception; raised by INSERT when table full
end;

7-11 Example of a Table Management Package 7,5

ANSI/MIL-STD-1815A Ada Reference Manual

• 6.The details of implementing such packages can be quite complex; in this case they involve a two-
way linked table of Internal Items. A local housekeeping procedure EXCHANGE Is used to move an
internal item between the busy and the free lists. The initial table linkages are established by the
initialization part, The package body need not be shown to the users of the package.

.*.. package body TABLE-MANAGER In
SSIZE : constant :- 2000;

-:* subtype INDEX Is INTEGER range 0 SIZE;

type INTERNAL-ITEM is
record

CONTENT ITEM;
SUCC INDEX;
PRED INDEX;

end record;

TABLE : array (INDEX) of INTERNALITEM;
FIRSTBUSYITEM INDEX 0;
FIRSTFREEITEM INDEX 1; ;

function FREELISTEMPTY return BOOLEAN Is ,,, end;
function BUSY.LISTEMPTY return BOOLEAN is ... end;
procedure EXCHANGE (FROM * in INDEX; TO In INDEX) Is ... end;

procedure INSERT (NEW-ITEM in ITEM) Is
begin

if FREE.LIST-EMPTY then
raise TABLELFULL;

end if;
-- remaining code for INSERT

end INSERT;

, procedure RETRIEVE (FIRST-ITEM out ITEM) Is ... end:

"begin
- initialization of the table linkages

end TABLE.,MANAGER;

• . * ,,

7.6 Example of a Text Handling Package

This example illustrates a simple text handling package. The users only have access to the visible
part; the implementation Is hidden from them In the private part and the package body (not
shown).

'"From a user's point of view, a TEXT Is a variable-length string, Each text object has a maximum
length, which must be given when the object is declared, and a current value, which Is a string of
some length between zero and the maximum, The maximum possible length of a text object Is an

4i implementatlon-dflned constant.

S. 3 The package defines first the necessary types, then functions that return some characteristics of
objects of the type, then the conversion functions between texts and the predefined CHARACTER

* and STRING types, and finally some of the standard operations on varying strings, Most operations
are overloaded on strings and characters as well as on the type TEXT, In order to minimize the

.4 number of explicit conversions the user has to write.

7.6 Example of a Text Handling Package 7-12

Packages

0,O

package TEXTHANDLER ia
MAXIMUM :constant :=SOMEVALUE; -- Implementatlon-deflned -
subtype INDEX Ii INTEGER range 0 ,,MAXIMUM;

type TEXT(MAXIMUM_.LENGTH :INDEX) Is limited private;

function LENGTH (T :TEXT) return INDEX;,'•-
function VALUE (T ,TEXT) return STRING; :.

function EMPTY (T ,TEXT) return BOOLEAN; : ,

function TO_..TEXT (S :STRING; MAX :INDEX) return TEXT; -- m',xim•.,'n length MAX .. i..,:_
function TO_.TEXT (C :CHARACTER; MAX :INDEX) return TEXT .. -. ,,
function TOTEXT (S :STRING) return TEXT; -- ,•axlnum length S'LENGTH "0::
function TOTEXT (C :CHARACTER) return TEXT; -

function "&" (LEFT :TEXT;, RIGHT :TEXT) return TEXT; .
function "&" (LEFT :TEXT; RIGHT :STRING) return TEXT; .:

function "&" (LEFT :STRING; RIGHT :TEXT) return TEXT; ...
function "&" (LEFT :TEXT; RIGHT CHARACTER) return TEXT; - ---':
function "&" (LEFT :CHtARACTER; RIGHT :TEXT) return TEXT; . ,P

function "•" (LEFT :TEXT; RIGHT :TEXT) return •OOLEAN;
function "<=" (LEFT :TEXT; RIGHT :TEXT) return BOOLEAN:
function " (LEFT :TEXT; RIGHT :TEXT) return BOOLEAN',, .
function "•>" (LEFT :TEXT; RIGHT :TEXT) return BOOLEAN: .;.i;:
function "•=" (LEFT :TEXT; RIGHT :TEXT) return BOUI.EAN;

procedure SET (OBJECT : h) out TEXT; VALUE :in TEXT); . :
procedure SET (OBJECT :in out TEXT; VALUE :In STRING);
procedure SET (OBJECT :In out TEXT; VALUE :in CHARACTER)::; :

procedure APPEND (TAIL :in TEXT; TO :In out TEXT); . :
procedaure APPEND (TAIL :In STRING; TO :In out TEXT); •...''~•
procedure APPEND (TAIL :In CHARACTER; TO :in out TEXT); :...•

procedure AMEND (OBJECT :in out TEXT; BY 'in TEXT; POSITIONIdi:h INDEX);:" .""--

procedure AMEND (OBJECT :In out TEXT; BY :In STRING; POSITION :In INDEX); =
procedura AMEND (OBJECT :in out TEXT; BY :In CHARACTER; POSITION :in INDEX), ''"•

-- amend replaces part of the object by the given text, string, or character .- _-

-- starting at the given position In the object .•!

function LOCATE (FRAGMENT :TEXT; WITHIN '.TEXT) retumn INDEX; .:
function LOCATE (FI•AGMENT :STRING; WITHIN :TEXT) return INDEX;
function LOCATE (FRAGMENT :CHARACTER; WITHIN :TEXT) return INDEX:"

-- all return 0 If the fragment Is not located '".... -

Sprivate, -"
type TEXT(MAXIMUM_.LENGTH :INDEX) Is

recoo.d ,'
POS :INDEX 0-. ; "
V.',LUE :STRING(1 ,, MAXIMUM_.LENGTH);.....:

end record; -.
ena TEXT_.HANDLER; ;

, 7.13 Example of c Text Hand/hng Package 7.6'

,,4 ,,• I. .. .

ANSI/MVL-STO-1785A Ada Reference Manual

Example of use of the text handling package.'

6 A program opens an Output file, whose name is supplied by the string NAME. This string has thp
form

IDEVICE :1 (FILENAME [.EXTENSIONJ])

There are standard defaults for device, filename, and extension. The user-supplied name is passed
to EXPAND-FILE...NAME as a parameter, and the result Is the expanded version, with any necessary
defaults added,

8 ~function EXPAND...FLE-.NAME (NAME STRING) return STRING Is
use TEXT-.HANDLER;

DEFAULT-DEVICE constant STRING "Y"
DEFAULT-FILE-NAME constant' STRING "= RESULTS";
DEFAULT-.EXTENSION constant STRING ".DAT";

,MAXIMLJM..YLEý..NAMELENGTH constant INDEX :=SOME-.APPROPRIATE.-VALUE;
FILE-NAME TEXT(MAXIMUM.-FILE-NAME-LENGTH);

begin

SET(FILE-NAME, NAME);

if EMPTY(FILE-NAME) thern
SET(FILENAME, DEFAULT.FILE.-NAME);

and If;

If LOCATE(*-', FILE-.NAME) =0 then
SET(FILE...NAME, DEFAULT-.DEVICE & FILE-.NAM E);

end if;

if LOCATE('.', FILE-..NAME) =0 then
APPEND(DEFAULT-.EXTENSION, TO => FILE-NAME);

end If;

ruturn VALUE(FILE..NAME);

end EXPAND..YILE-NAME;

7.6 Example of a Text Handling Package 7-14

8. Visibility Rules

The rules defining the scope of declarations and the rules defining which Identifiors are visible at
various points in the text of the program are described in this chapter. The formulation of these
rules uses the notion of a declarative region.

References, declaration 3.1, declarative region 8.1, Identifier 2,3, scope P.2, visibility 8.3

8.1 Declarative Region . _-

A declarative region Is a portion of the program text. A single declarative region Is formed by the
text of each of the following:

0 A subprogram declaration, a package declaration, a task declaration, or a generic declaration, "
together with the corresponding body, If any, If the body is a body stub, the declarative region
also Includes the corresponding subunit, If the program unit has subunits, they are also
Included,

0 An entry declaration together with the corresponding accept statements, 3

0 A record type declaration, together with a corresponding private or Incomplete type declara- 4
tion If any, and together with a corresponding record representation clause If any,

0 A renaming declaration that includes a formal part, or a gen3ric parameter declaration that 5
includes either a formal part or a dlecriminant part.

0 A block statement or a loop statement, 6

In each of the above cases, the declarative region Is said to be associated with th" corresponding 7
declaration or statement. A declaration Is said to occur Immediately within a declarative region If
this region Is the innermost region that encloses the declaration, not counting the declarative
region (if any) associated with the declaration Itself,

A declaration that occurs Immediately within a declarative region Is said to be local to the region, 8
Declarations In outer (enclosing) regions are said to be global to an Inner (enclosed) declarative
rt gloi. A local entity Is one declared by a local declaration; a global entity Is one declared by a
global declar-ation,

Some of the above forms of declarative region include several disjoint parts (for example, other
declarative Items can be between the declaration of a package and Its body), Each declarative
region Is nevertheless considered as a (logically) continuous portion of the program text. Hence If
any rule defines a portion of ixt as the text that extends from some specific point of a declarative
regik-w 4c. the erdl of this region, then this portion Is the corresponding subset of the declarative
rr f .. It does not Include Intermediate declarative Items between the two parts of a

Declaraative Region 8. 1

k . , h . I. L .as.a. 3bL.. at .& .L�...t , .. S. ~ - - - -

ANS//MIL-STD-1815A Ada Reference Manual

Notes:

ro As defined in section 3.1, the term declaration Includes basic declarations, Implicit declarations,

and those declarations that are part of basic declarations, for example, discriminant and parameter
specifications. It follows from the definition of a declarative region that a discriminant specification
occurs immed;ately within the region associated with the enclosing record type declaration.
Similarly, a parameter specification occurs Immediately within the region associated with the
enclosing subprogram body or accept statement.

The package STANDARD forms a declarative region which encloses all library units: the implicit
declaration of each library unit Is assumed to occur immediately within this package (see sections
8.6 and 10.1.1).

Declarative regions can be nested within other declarative regions. For example, subprograms,
packages, task units, generic units, and block statements can be nested within each other, and can
comtain record type declarations, loop statements, and accept Rtatements.

13 References: accept statement 9,5, basic declaration 3.1, block statement 5,, body stub 10.2, declaration 3.1,
discriminant part 3.7,1, discrimlnent specification 3,7.1, entry declaration 9.5, formal part 6,1, generic budy 12.2,
generic declaration 12,1, generic parameter declaration 12,1, implicit de'laratlon 3,1, Incomplete type declaration
3,8,1, library unit 10,1, loop statement 5,5, package 7, package body 7,1, package declaration 7,1, parameter
specification 6.1, private type declaration 7A4, record representation clause 13.4, record tyre 3.7, renaming declare-
tlon 8.5, standard package 8.6, subprogram body 8.3, subprogram declaration 6,1, subunit 10.2, task body 9.1, task
declaration 9,1, task unit 9

8.2 Scope of Declarations

For each form of declaration, the language rules define a certain portion of the program text oalled
the scope of the declaration. The scope of a declaration Is also called the scope of any ontity
declared by the declaration. Furthermore, If the declaration assoclatus some notation with a
declared entity, this portion of the text Is also called the scope of this notation (either an Identifier,
a character literal, an operator symbol, or the notation for a basic operation). Within the scope of
an entity, and only there, there are places where It Is legal to use the associated notation In order
to refer to the declared entity. These places are defined by the rules of vibibility and overloading.

2 The scope of a declaration that occurs Immediately within a declarative region extends from the
beginning of the declaration to the end of the declarative region; this part of the scope of a declara-
tion is called the Immediate scope. Furthermore, for any of the declarations listed below, the scope
of the declaration extends beyond the Immediate scope:

3 (a) A declaration that occurs immediately within the visible part of a package declaration,

4 (b) An entry declaration,

5 (c) A component declaration.

S (d) A discriminant specification.

I (e) A parameter specificatlon.

a (f) A generic parameter declaration.

"8.2 Scope of Declarations 8-2
_'.

"* , V!siblllty Rules
'hl 'O

In each of these cases, the given declaration occurs Immediately within some enclosing declare- o
tion, and the scope of the given declaration extends to the end of the scope of the enclosing
declaration.

In the absence of a subprogram declaration, the subprogram specification given in the subprogram 0o

body or In the body stub acts as the declaration and rule (e) applies also in such a case.

Note:

The above scope rules apply to all forms of declaration defined by section 3.1; In particular, they •
apply also to Implicit declarations. Rule (a) applies to a package declaration and thus not to the
package specification of a generic declaration. For nested declarations, the rules (a) through (f)
apply at each level, For example, If a task unit is declared in the visible part of a package, the scope
of an entry of the task unit extends to the end of the scope of the task unit, that Is, to the end of the
"scope of the enclosing package, The scope of a use clause Is defined In section 8.4.

References- basic operation 3,33, body stub 10,2, character literal 2.5, component declaration 3.7, declaration 3,1, 12
declarative reglon 8.1, dlscriminant specification 3.7.1, entry declaration 9,5, extends 8.1, generic declaration 12.1,
generic parameter declaration 12,1, Identifier 2,3, Implicit declaration 3,1, occur Immediately within 8.1, operator
symbol 61, overloading 6,8 8.7, package declaration 7.1, package apecification 7,1, parameter specification 6,1,
record type 3.7, renaming declaration 8.5, subprogram body 6.3, subprogram declaration 6.1, task declaration 9,1,
task unit 9, type declaration 3,3.1, use clause 8.4, visibility 8.3, vIsible part 7,2

. ', F." , %

8.3 Visibility

The meaning of the occurrence of an Identifier at a given place In the text Is defined by the visibility
rules and also, in the case of overloaded declarations, by the overloading rules, The Identifiers con-
sidered In this chapter Include any Identifier other than a reserved word, an attribute designator, a
pregma Identifier, the Identifier of a pregma argument, or an Identifier given as a pragma argu-
ment. The places considered In this chapter are those whore a lexical element (such as an Iden-
tifier) occurs, The overloaded declarations considered In this chapter are those for subprograms,
enumeration literals, and single entries,

For each Identifier and at each place In the text, the visibility rules determine a set of declarations 2

(with this Identifier) that define possible meanings of an occurrence of the Identifier. A deouaration
if. said to be vis!hie at a given place In the text when, according to the visibility rules, the declare-
tion defines a possible meaning of this occurrence. Two cases arise,

SThe visibility rules determine at most one possible meaning. In such a case the visibility rules -

are sufficient to determine the declaration defining the meaning of the occurrence of the Iden-
tifier, or In the absence of such a declaration, to determine that the occurrence Is not legal at
the given point,

e The visibility rules determine more then one possible meaning. In such a case the occurrence
of the identifier Is legal at this point If and only if exactly one visible declaration Is acceptable •
for the overloading rules In the given context (see section 6.8 for the rules of overloading and

" section 8.7 for the context used for overload resolution).

8-3 Visibility 8,3

ANSI/MIL-STD-1815A Ada Reference Manual

5 A declaration Is only visible within a certain part of Its scope; this part starts at the end of the
declaration except In a package specification, In which case It starts at the reserved word is given
after the Identifier of the package specification. (This rule applies, In particular, for implicit
declarations.)

Visibility is either by selection or direct. A declaration Is visible by select/on at places that are
defined as follows.

(a) For a declaration given In the visible part of a package declaration: at the place of the selector
after the dot of an expanded name whose prefix denotes the package.

(b) For an entry declaration of a given task type: at the place of the selector after the dot of a "'
selected component whose prefix Is appropriate for the task type.

(c) For a component declaration of a given record type declaration: at the place of the selector
after the dot of a selected component whose prefix Is appropriate for the type; also at the
place of a component simple name (before the compound delimiter =>) In a named compo-
nent association of an aggregate of the type. 0

(d) For a discriminant specification of a given type declaration: at the same places as for a com-
ponent declaration; also at the place of a discriminant simple name (before the compound
delimiter ->) In a named discrlmlnant association of a discriminant constraint for the type.

(e) For a parameter specification of a given subprogram specification or entry declaration: at the
place of the formal parameter (before the compound delimiter =>) In a named parameter
association of a corresponding subprogram or entry call,

i2 (f) For a generic parameter declaration of a given generic unit: at the place of the generic formal
parameter (before the compound delimiter =>) In a named generic association of a cor-
responding generic Instantlation,

1 Finally, within the declarative region associated with a construct other than a record type declare-
tion, any declaration that occurs Immediately within the region Is visible by selection at the place
of the selector after the dot of an expanded name whose prefix denotes the construct,

,4 Where It Is not visible by selection, a visible declaration Is said to be directly visible. A declaration
is directly visible within a certain part of Its Immediate scope; this part extends to the end of the
Immediate scope of the declaration, but excludes places where the decluration is hidden as
explained below, In addition, a declaration occurring Immediately within the visible part of a
package can be made directly visible by means of a use clause according to the rules described in
section 8A4 (See also section 8.6 for the visibility of library units.)

1 A declaration Is said to be hidden within (part of) an inner declarative region If the Inner region con-
tains a homograph of this declaration; the outer declaration Is then hidden within the Immediate
scope of the Inner homograph, Each of two declarations Is said to be a homogra,.Oi of the other If
both declarations have the same Identifier and overloading Is allowed for at most one of the two. If
overloading is allowed for both declarations, then each of the two Is a homograph of the other If
they have the same Identifier, operator symbol, or character literal, as well as the same parameter
and result type profile (see 8.6).

ls Within the specification of a subprogram, every declaration with the same designator as the sub-
program is hidden; the same holds within a generic Instantiation that declares a subprogram, and
within an entry declaration or the formal part of an accept statement; where hidden In this mannir,
a declaration Is visible neither by selection nor directly.

8.3 Visibility 8-4

• , ',.. "

Visibility Rules *

Two declarations that occur Immediately within the same declarative region must not be
homographs, unless either or both of the following requirements are met: (a) exactly one of them
Is the Implicit declaration of a predefined operation; (b) exactly one of them Is the Implicit declara-
tlon of a derived subprogram. In such cases, a predefined operation Is always hidden by the other
homograph; a derived subprogram hides a predefined operation, but Is hidden by any other
homograph. Where hidden In this manner, an Implicit declaration is hidden within the entire scope
of the other declaration (regardless of which declaration occurs first): the implicit declaration is
visible neither by selection nor directly,

Whenever a declaration with a certain identifier is visible from a given point, the identifier and the
declared entity (if any) are also said to be visible from that point. Direct visibility and visibility by
selection are likewise defined for character literals and operator symbols, An operator Is directly
visible If and only If the corresponding operator declaration Is directly visible. Finally, the notation
associated with a basic operation Is directly visible within the entire scope of this operation,

Example:

procedure P is
A, B : BOOLEAN;

procedure C Is
C : BOOLEAN;
B : BOOLEAN; -- an Inner homoqraph of B

begin

B = A; -- means 0,B : P.A;
C P.B; -- means QC := P.8;

end;
begin.

:= B; -- means P,A 10 ,13;

end:

Note on the v/sibility of /tbrery units:

The visibility of library units is determined by with clauses (see 10.11) and by the fact that library 20 , *
units are Implicitly declared In the package STANDARD (see 8.68)

Note on homographs:

The same Identifier may occur in different declarations and may thus be associated with different
entitles, even If the scopes of these declarationa overlap. Overlap of the scopes of declarations
with the same Identifier can result from overloading of subprograms and of enumeration literals,
Such overlaps can also occur for entities declared In package visible parts and for entries, record
components, and parameters, where there Is overlap of the scopes of the enclosing package
declarations, task declarations, record type declarations, subprogram declarations, renaming
declarations, or generic declarations. Finally overlapping scopes can result from nesting,

Note on immediate scope, hiding, and visibility:

The rulos defining Immediate scope, hiding, and visibility Imply that a reference to an identifier "2
within its own declaration Is illegal (except for packages and generic packages). The Identifier
hides outer homographs within Its Immediate scope, that Is, from the start of the declaration; on
the other hand, the Identifier Is visible only after the end of the declaration, For this reason, all but
the last of the following declarations are Illegal:

18-5 Visibility 8,3

ANSI/MIL-STDO-815A Ada Reference Manual

K INTEGER K K: -- Illegal
T T; -- Illegal
procedure P(X P): - Illegal
procedure Q(X REAL := Q): -- illegal, even If there Is a function named Q
procedure R(R : REAL); -- an inner declaration Is legal (although confusing)

23 References: accept statement 9,5, aggregate 4,3, appropriate for a type 4,1, argument 2,8, basic operation 3,3.3,
character literal 2.5, component association 4.3, component declm ation 3,7, compound delimiter 2.2, declaration 3,1,
declarative region 8.1, designate 3,8, discriminant constraint 3,712, discrIminant specification 3.7.1, entry cell 9,5,
entry declaration 9.5, entry family 9.5, enumeration literal specification 3,5,1, expanded name 4,1,3, extends 8,1,for-
mal parameter 6.1, generic association 12,3, generic formal parameter 12.1, generic instantlation 12.3, generic
packege 12,1, generic parameter declaration 12.1, generic unit 12, Identifier 2,3, Immediate scope 8,2, Implicit
declaration 3.1, lexical element 2,2, library unit 10.1, object 3,2, occur immediately within 8.1, operator 4,5, operator
symbol 6, 1, overloading 6,8 8.7, package 7, parameter 6.2, parameter association 6.4, parameter specification 6,1,
pragma 2,8, program unit 8, record type 3.7, reserved word 2.9, scope 8.2, selected component 4.1.3, selector 4,1,3,
simple name 4,1, subprogram 6, subprogram call 6,4, subprogram declaration 6.1, subprogram specification 8. 1, task
type 9.1, task unit 9, type 3.3, type declaration 3.3,1, use clause 8.4, visible part 7.2

8.4 Use Clauses

A use clause achieves direct visibility of declarations that appear in the vilible parts of named

packages.

'U, use-clause ::= use packge..name I, package.name);

3 For each use clause, there Is a certain region of text called the scope of the use clau'e. This region
starts immediately after the use clause, If a use clause Is a declarative Item of some declarative
region, the scope of the clause extends to the end of the declarative region, If a use clause occurs , :
within a context clause of a compilation unit, the scope of the use clause extends to the end of the
declarative region associated with the compilation unit.

In order to define which declarations are made directly visible at a given place by use clauses, con-
sider the set of packages named by all use clauses whose scopes enclose this place, omitting from
this set any packages that enclose this place, A declaration that can be made directly visible by a
use clause (a potentially visible declaration) Is any declaration that occurs Immediately within the
visible part of a package of the set. A potentially visible declaration is actually made directly visible
except In the following two cases:

5 A p÷-'ntlally visible declaration Is not made directly visible If the place considered Is within
the ,gnmedlate scope of a homograph of the declaration.

e Potentially visible declarations that have the some Identifier are not made directly visible
unless each of them Is either an enumeration literal specification or the declaration of a sub-
program (by a subprogram declaration, a renaming declaration, a generic instantlatlon, or an
Implicit declaration),

The elaboration of a use clause has no other effect,

Note.

The above rules guarantee that a declaration that Is made directly visible by a use clause cannot
hide an otherwise directly visible declaration. The above rules are formulated In terms of the set of
packages named by use clauses,

8.4 Use Clauses 8-6
.. ..A.

Visibility Rules

Consequently, the following lines of text all have the same effect (assuming only one package P).

use P;
use P; use P. P;

Example of con flctIng names In two packages: 10

procedure R Is
package TRAFFIC Is

type COLOR Is IRED, AMBER, GREEN);

end TRAFFIC;

peackage WATER-.COLORS Is
type COLOR Is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);

end WATER...COLORS;

use TRAFFIC;:- COLOR, RED, AMBER, and GREEN are directly visible
use WATER-.COLORS: - two homographs of GREEN are directly visible

-but COLOR Is no longer directly visible

subtype LIGHT Is TRAFFIC.COLOR; -- Subtypes are used to resolve
subtype SHADE Is WATER-.COLORS.COLOR; -- the conflicting type name COLOR

SIGNAL LIGHT;
PAINT SHADE;

begin
SIGNAL :=GREEN; -- that of TRAFFIC
PAINT ~=GREEN; - that of WATER-COLORS

end R;

Example of name Identification with a use, clause,-

package D Is
T, U, V : BOOLEAN;

end D:

procedure P Is
package E Is

B. W, V :INTEGER;
end E;

procedure Q Is
T, X :REAL,
use D, E.,

begin
the name T means Q.T, not DT

-- the name U means D.U
-- the nime B means E.8

the name W means EW
the name X means Q.X

-- the name V Is Illegal either D.V or F..V must be used

end 0;
begin

end P:

8-7 (Ise Clauses 8.4

A NINFiIL- f - 7W bA1 AaW Keterence Manuel

12 References: compliaticn unit 10. 1, context clause 10. 1, declaration 3.1, declarative item 3.9, declarative region 8, 1,
direct visibility 8,3, elaboration 3,1 3.9, elaboratlcn has no other effect 3.1, enumeration literal specification 3,5.1,
extends 8.1, hiding 8.3, homograph 8.3, identifier 2.3, immediate scope 8.2, name 4.1, occur immediately within 8. 1,
package 7, scope 8,2, subprogram declaration 8,1, visible part 7.2

8.6 Renaming Declarations

A ronaming declaration declares another name for an entity.

2 renamring.declaration
Identifier type.mark renames ob/ect.nome;

I identifier exception renames exception-name;
I package Identifier renames package-name;
I subprogram.speciflcation renames subprogram.or..entry.name;

3 The elaboration of a renaming declaration evaluates the name that follows the reserved word
renames and thereby determinas the entity denoted by this name (the renamed entity), At any
point where a renaming declaration Is visible, the Identifier, or operator symbol of this declaration
denotes the renamed entity,

4 The first form of renaming declaration Is used for the renaming of objects. The renamed entity
must be an object of the base type of the type mark, The properties of the renamed object are not
affected by the renaming declaration, In particular, Its value and whether or not It Is a constant are
unaffected: similarly, the constraints that apply to an object are not affected by renaming (any
constraint Implied by the type mark of the renaming declaration Is Ignored), The renaming declare-
tion Is legal only If exactly one object has this type and can be denoted by the object name,

The following restrictions apply to the renaming of a subcomponent that depends on discriminant.
of a variable. The renaming Is not allowed If the subtype of the variable, as defined In a cor-
responding object declaration, component declaration, or component subtype Indication, Is an
unconstrained type; or if the variable Is a generic formal object (of mode in out), Similarly If the
variable Is a formal parameter, the renaming Is not allowed If the type mark given in the parameter
specification denotes an unconstrained type whose discriminants have default expressions,

The second form of renaming declaration Is used for the renaming of exceptions; the third form,
for the renaming of packages,

The last form of renaming declaration Is used for the renaming of subprograms and entries, The
renamed subprogram or entry and the subprogram specification given In the renaming declaration
must have the same parameter and result type profile (see 6,6). The renaming declaration Is legal
only if exactly one visible subprogram or entry satisfies the above requirements and can be
denoted by the given su'bprogram or entry name. In addition, parameter modes must be Identicail
for formal parameters that are at the same parameter position,

0 a The subtypes of the parameters and result (if anyl of a renamed subprogram or entry are not
affected by renaming. These subtypes are those given In the original subprogram declaration,
generic Instantlation, or entry declaration (not those of the renaming declaration); even for calls
that use the now name, On the other hand, a renaming declaration can Introduce parameter names
and default expressions that differ from those of the renamed subprogram; named associations of
calls with the new subprogram name must use the new parameter name; calls with the old sub-
program name must use the old parameter names,

8.5 Renaming Declarations -8

* vIDIII11y nulum

A procedure can only be renamed as a procedure. Either of a ucto or operator ca be renarned 0
as either of a function or operator; for renaming as an operator, the subpi-ogram specification given
in the renaming declaration Is subject to the rules given In section 6.7 for operator declarations.

* Enumeration literal. can be renamed as functions; similarly, attributes defined as functions (such
as SUcc and PRED) can be renamed as functions, An entry can only be renamed as a procedure;
the new name Is only allowed to appear In contexts that allow a procedure name. An entry of a
family can be renamed, but an entry family cannot be renamed as a whole.

Examples: i

declare
L : ERSON renames LEFTMOST..PERSC)N; see 3.8.1

begin
L.AGE :=L.AGE + 1;

end;

FULL : exception renames TAB LE.MANAGE RTAS LE..ULLý see 7.5

package TM renames TABLE-MANAG ER;

function REAL..PLUS(LEFT, RIGHT RESAL)return REAL renames +

function INT..P).US (LEFT, RIGHT INTEGER) return INTEGER renames ""

function ROUGE return COLOR renemqes RED;- - see 3..151
function ROT return COLOfl risrmes RED); Afunction ROSS'O return 4COLOP rerames ROUGE;

function N EXT(X :COLOR) return COLON renames COL.OR'SUCC; -see 3.5,15

Example of a renaming decloratlon with' new parameter neme~s:

function "*" KXY : /GCTOR) return REAL renames DOTiPRODUCT; 6-se .1

* ~~Example of a renernhi'g declaration with' o now default express/un:

function MINIMUM(L LINK :~HEAD) return CELL, renames MIN...CELL; see 8.1

Notes.,

* Renaming may be used to resolve name conflicts and to act es a shorthand. Renaming with a dif-
ferent Identifier or operator symbol does rnot hide the old name; the now name and the old name

* need not be visible at the same points. The attributes POS and VAL cannot be renamed mince the
corresponding specifications cannot be written; the same holds for the predefined multiplying
operators with a unIversaIJlxed rosul%.

Calla with the new name of a renamed entry ere pitocedure call statements and are not allowed at
places where the syntax requires an entry cuil statsment in conditional and timed entry calls;
similarly, the COUNT attribute Is not avalieble for the new name,

A task object that Is declared bV an object deviarstlon con ba renamed as an object. However, a
single task cannot be renamed since the corresponding took type Is anonymous, Foi- similar
reasons, an object of an anonymous arroy type cannot be renamed. No syntactic form exists for

* renaming a generic unit.

A subtype can be used to achieve the effect of renaming a type (Including a took type) as In

subtype MODE Is TEXT..O. FILE-MOUE:

8-9 Renaming 0ecierstIons 8.6

A.S

ANS//MIL-STD-1815A Ada Reference Manuai

References. allow 1,8, attribute 4,1.4, base type 3,3, conditional entry call 9,7.2, constant 3.2.1, constrained subtype
3,3, constraint 3.3, declaration 3V1, default expression 6,1, depend on a dlicrlmlnant 3,7.1, dlscriminant 3,7,1,

elaboration 31 3,9, entry 9,5, entry call 9,5, entry call statement 9,5, entry declaration G,S, entry family 9,5, enumera-
tion literal 3,5,1, evaluation of a name 4.1, exception 11, formal parameter 6. 1 iuuction 8.5, Identifier 2,3, legal 1,5,

mode 6.1, name 4,1, object 3,2, object declaration 3,2, operator 6.7, operator declaetitlon 6,7, operator symbol 6.1,'
package 7, parameter 8,2, parameter specification 8.1, procedure 6.1, procedure cal! statement 6.4, roserved word
2.9, subcomponent 3,3, subprogram 8, subprogram call 6.4, subprogram declaration 6,1, subprogram specification
8.1, subtype 3.3,2, task object 9,2, tImed entry call 9.7.3, type 3,3, type mark 3,.02, variable 3,2,1, visibility 8.3

8.6 The Package Standard

The predefined types (for example the types BOOLEAN, CHARACTER and INTEGER) are the types
that are declared In a predefined package called STANDARD; this package also includes the
declarations of their predefined operations. The package STANDARD Is described in Annex C,
Apart from the predefined numeric types, the specification of the package STANDARD must be the
same for all Implementations of the language,

The package STANDARD forms a declarative region which encloses every library unit and
consequently the main program; the declaration of every library unit Is assumed to occur
Immediately within this package. The implicit declarations of library units are assurned to be
ordered In such a way that the scope of a given library unit Includes any compilation unit that men-
tions the given library unit In a with clause, However, the only library units that are visible within a
given compilation unit are as follows: they Include the library units named by all with cleuses thot
apply to the given unit, and moreover, If the given unit Is a secondary unit of some library unit, they
Include this library unit,

Notes:

If all block statements of a program are named, then the name of each program unit can always be
written as an expanded name starting with STANDARD (unless this package Is Itsolf hidden),

4 If a type Is declared In the visible part of a library package, than It Is a consecquence of the visibility
rules that a basic operation (such as assignment) for this type Is directly visible at places where the
type itself Is not visible (whether by selection or directly), However this operation can only be
applied to operands that are visible and the declaration of these operands roqul;-Os the vlIsbIlity of
either the type or one of Its subtypes,

References. appiloable with clause 10,11, block name 6,8, block statimryient 51, declaration 3.1, dealarstive region
8,1, expanded naryte 4,1,3, hiding 8,3, Identifier 2,3, Implicit declaration 3,1, library unit 10,1, loop statement 5,5,...
main program 10, 1, must 1,8, name 4.1, occur Immediately within 8,1, opesetnr 8,7, package 7, program unit 8,
secondary unit 10,1, subtype 3.3, type 313, visibility 8,3, with clause 10,,1

8.7 The Context of Overload Resolution

Overloading is defined for suupc'grems, enumeration literals, operators, and single entries, and
also for the operations that are Inhorent In several basic operations such as assignment,
membership tests, allocators, the literal null, aggregates, and string literals,

8.7 'The Context of Overload Resolutlon 8-10
, , ,

Visibility Rules

For ov'erloaded entities, overload resolution detiermInes the actual meaning that sri occurrence of
an Identifier has, whenever the visibility rules how&' determined that more than one meaning Is
acceptable at the place of this occurrence; ovetrload resolution likewise determineR the actual
meaning of an occurrence of an o~ra(iror or same basic opsratlori,

At such a place all visible declarations are considered. The occurrence Is only legal if there Is
exactly one Intarpretation of each constituent of tho Innermost complete context; a comrplete ton-
text Is one of the following:

0 A declaration.

* A statement.

* A represtentation olause,

When considering possible Interpretations of a complete context, the only ruleo cocnuidered are the
syntax rule&i, the scope and visibility rules, and the rules of the form described below.

Wn Any rule that requires a namne or expresialon to have a certain type, oi to ha~ve the zamb type as
another name or expression,

(b Any rule that requiires the type of a mime or exprasolon to be a type of a certain clatms, similar g
ly, any rule -that Pequires & certain type to be a discrete, integer, real, universal, character,
booltian, or rionlinited type.

(c) Any rule that requIres a pretlx to be appropriate for a certain type,
(d) Any rule that spocifisu a certain type as the result type of a baslo operation, and arty rule that ~

specifies that this type Is of a certain class,

(a) The rules that require the type of mn aggrogate or string literal to be deoterminabie solely from
the enclosing complete context (see 4.3 end 4.2). Simillarly, the rulso that require the type of
the prefix of an attribute, the tipe of the expression of a case statement, or the type of the
operand uf a type conversion, to be deatorminabie Independently of the context (teo 4.,14, 5.4,
4.8, and 0,.41),

(f) The rules givenf In section 8,A for the rasolutlon of overloaded subprogram calls; IT,' aection 13
4,1, for the Implicit convoramlcna of univerisi expressions; In section 16,.1, for the lnt'. rtst-
tic', of discrete rariges with bounds havIng a universe, type:' and In section 4.1,3, for the
Interprcate.tion of on expanded name whose proofix denotes a Aulbprogramn or an accept aQ'te-
MOMt,

Subprogram names u~t J1 as pragma ar~uments follow a different rule: the oregm,,, can apply to 14

severil overloaded subprograms, as explained In section 6.,12 for the pragma INLINEIn section
11,7 for the pragme SUPPReSS, and In cectior 13,9 for the pragma INTERFACE*

Similarly, the simple names given In uontext clauseis (nee 10.1.1) end In address clauses (see 13,6) '

fellow different rules,

8_11 The Context of Overload Resolutlon 8.7

ANSI/M/L-STD-1815A Ada Reference Manual

Notes:

le If there is only one possible Interpretation, the Identifier denotes the corresponding entity.
However, this does not mean that the occurrence is necessarily legal since other requiements
oxist which are not considered for overload resolution; for example, the fact that an expression Is
static, the parameter modes, whether an object is constant, conformance rules, forcing occur-
rences for a representation clause, order of elaboration, and so on.

i~ Similarly, subtypes are not considered for overload resolution (the violation of a constraint does *
not make a program Illegal but raises an exception during program execution).

I ~s A loop parameter specification is a declaration, and hence a complete context. '0

Rulgs that require certain constructs to have the same parameter and result type profile fall under
thb category (a); the same holds for rules that require conformance of two constructs since con-
formance requires that corresponding names be given the same meaning by the visibility and
overloading rules.

20 References: aggregate 4.3, allocator 4A8, assignment 5.2, basic operation 3.3.3, case sLatement 5.4, class of type
3.3, declaration 3.1, entry 9,5, enumeration literal 3.5.1, exception 11, expression 4.4, formal part 6,1, Identifier 2.3,
legal 1.6, literal 4.2, loop parameter specification 5.5, membership test 4.5.2, name 4.1, null literal 3.8, operation
3.13, operator 4,5, overloading 86, pragma 2.8, representation clause 13.1, statement 5, static expression 4.9, static
subtype 4,9, subprogram 6, subtype 3,3, type conversion 4.8, visliblity 8.3

2 1 Rules of the form (a): address clause 13.5, assignment 5.2, choice 3,7,3 4.3.2 5.4, component association 4.3.1
"4.3.2, conformance rules 9.5, default expression 3.7 3.7.1 6.1 12.1.1, delay statement 9.8, discrete range 3.4.1 5.5
9.5, discilmlnant constraint 31.2, enumeration representation clause 13.3, generic parameter association 12.3.1,
index constraint 3.6.1, Index expression 4.1,1 4.1.2 9.5, Initial value 3.2.1, membership teso 4.5.2, parameter assocla-

tion 8.4.1, parameter and result type profile 8,5 12.3.6, qualified expression 4.7, range constraint 3.5, renaming of an ,

object 85, result expression 5.8

22 Rules of the form (b): abort statement D,10, assignment 5.2, case expression 5A4, condition 5.3 5.5 5.7 9.7.1,
discrete range 3,6.1 5.5 9.5, fixed point type declaration 3.5.9, floating point type declaration 3.5.7, Integer type
declaration 3.5,4, longth clause 13.2, membership test 4.4, number declaratic 3.2.2, record representation clause
113.4, selected component 4.1.3, short-circuit control form 4.4, val attribute 3.5.5

23 Rules of the form (c): Indexed component 4.1.1, selected component 4.1.3, slice 4.1.2

24 flules of the form (d): aggregate 4.3, allocator 4.8, membership test 4.4, null literal 4.2, numeric literal 2.4, short-
circuit control iorm 4.4, string literal 4.2

8. 7 The Context of Overload Resolution 8-12

I

9. Tasks -

The execution of a program that does not contain a task is defined in terms of a sequential execu-
tion of its actions, according to the rules described in other chapters of this manual. These actions
can be considered to be executed by a single logical processor,

"Tasks are entities whose executions proceed In parallel In the following sense, Each task can be 2

considered to be executed by a logical processor of Its own. Different tasks (different logical
"processors) proceed Independently, except at points where they synchronize.

Some tasks have entries, An entry of a task can be called by other tasks. A task accepts a call of
one of Its entries by executing an accept statement for the entry, Synchronization Is achieved by
rendezvous between a task Issuing an entry call and a task accepting the call, Some entries have
parameters; entry calls and accept statements for such entries are the principal means of corn-

,- municating values between tasks,

The properties of each task are defined by a corresponding task unit which consists of a task 4

specification and a task body. Task units are one of the four forms of program unit of which
programs can be composed. The other forms are subprograms, packages and generic units, The
properties of task units, tasks, and entries, and the statements that affect the interaction between
tasks (that is, entry call statements, accept statuments, delay statements, select statements, and
abort statements) are described In this chapter,

Note.,

"Parallel tasks (parallel logical processors) may be Implemented on multicomputers, multiprotes-

sors, or with Interleaved execution on a single physical processor. On the other hand, whenever an
Implementation can detect that the same effect can be guaranteed It parts of the actions of a givwn
task are executed by different physical processors acting In parallel, it may choose to execute them
In this way; In such a case, several physical processors Implement a single logical processor,

References: abort statement 9,10, accept statement 9,5, delay statement 9.e. entry 9.5, entry call statement 9.5,
"generic unit 12, package 7, parameter In an entry call 9.5, program unit 6, rendezvous 9.5, select statement 9,7, suLk-
program 6, task body 9.1, task specification 9.1

9.1 Task Specifications and Tmek Bodies

A task unit consists of a task specification and a task body, A task specification that starts w!th the
*,'-O, reserved words task type declares a task type, The value of an object of a task type designates a . .

"task having the entries, If any, that are declared In the task specification; these entries are also cal-
led entries of this object. The execution of the task Is defined by the corresponding task body.

9-1 Task Specifications aad Task Bodies 9, 1

ANSIIMIL-STD-1815A Ada Reference Manual

A task specification without the reserved word type defines a single task, A task declaration with
this form of specification is equivilent to the declaration of an anonymous task type immediately
followed by the declaration of an object of the task type, and the task unit identifier names the
object. In the remainder of this chapter, explanations are given In terms of task type declarations;
the corresponding explanations for single task declarations follow from the stated equivalence.

3 task-declaration task-specification;

task.-.peclfication
task [type] identifier (Is

Jentry-deIsrmtlon I
Irepresentation.clause'

enid [task.jlmple-name]]

taskbody
task body task..imple.name Is

[declaratlve.epart]begin .".,

sequence-of-statements ":,
[exception .

exception-handlerI exueption-handleri]"li
end (taskJlimple.na me];

,'
The simple name at the start of a task body must repeat the task unit Identifier. Similarly if a simple
name appears atbody the na of the task specification or body, it must repeat the task unit identifier.
Within a task body, the name of the corresponding task unit can also be used to refer to the task
object that designates the task currently executing the body; furthermore, the use of this name as a
type mark Is not allowed within the task unit Itself,

For the elaboration of a task speciflcal on, entry declarations and representation clauses, If any, are
elaborated in the order given, Such representation clauses only apply to the entries declared in the
task specification (see 13.5).

The elaboration of a task body has no other effect than to establish that the body can from then on
be used for the execution of tasks designated by objects of the corresponding task type,

The execution of a task body Is Invoked by the activation of a teak object of the corresponding type

(see 9.3). The optional exception handlers at the end of a tusk body handle exceptions raised dur-
Ing the execution of the sequence of statements of the task body (see 11.4).

Examples of specifications of task types:

task type RESOURCE Is
entry SEIZE;
entry RELEASE;

end RESOURCE;

took type KEYBOARDDRIVER Is -
entry READ (C out CHARACTER);
entry WRITE(C In CHARACTER);

end KEYBOARD-DRIVER;

9.1 Task Specifications end Task Bodies 9-2

'Tasks

* ~Examples of specIfications of single tasks:

task PRODUCER..CON$UMERi Is
entry READ (V out ITEM):
entry WRITE (E In IT EM I,

end;

task CONTROLLER Is
*entry REQUEST(LEVEL)(D) :ITEM); a- fa~illy of entries

end CONTROLLER;

ta~k USER; -- has no entries

Example of tesk sgpeulficatlon and corrisponding body: 1

task PROrECTED-.ARRAY Is
-- INDEX and rTEM wes global types

entry READ (N In INDEX; V :out ITEM);
entry WRITE(N In INDEX; E in ITEM);0

and;

teak body PROTECTED-..ARRAY Is
TABLE ; rray(INDEX) of ITEM (INDEX => NULLITEM);

* begin
loop

~i~aect
accept READ (N : In INDEX; V out ITEM) do

V := TABLE(N);
end R EAD;

or
aocept WRITE(N :In INDEX; E :In ITEM) do

end WRITE;
end select:

ond loop;
o~nd PROTECTED-.ARRAY;

Note:

A task specification specifies the Interface of tasks of the task type with other tasks of the samte or

of different types, and also with the main program,

FRefurence..:, declaration 3.1, declarative part 3.9, elaboration 39, entry 9,15, entry declaration 9.5, exception handlor 1
* 11,2, Identifier 2.3, main program 10.1, object 3,2, object declaration 3.2.1, representation clause 13.1, reserv&C

word 2.9), sequence of statements 15,11, simple name 4.1, type 3.3, type dclacirutioii 3.3.1

* 9.2 Task Types and Tuok Objects

A task type Is a limited type (tee 7.4,4). Hence neither assignment nor the predefined comparison
for equality and Inequality are defined for objects of task types; moreover, the mode out Is not
allowed for a formal parameter whose type Is a task type.

9-3 Task Types and Task Objects 9.2

i.''l!/MIL-STD-1815A Ads Reference Manual

2 A task object Is an object whose type is -, , i , ,lue of a task object designates a task
that has the entries of the corresponding i,', . , •d w,,e execution is specified by the car-
responding task body. If a task object is the s., , l c, ,' aubc 'ponent of the object, declared by
an object declaration, then the value cf the t,sk obje,. ,• dethiuo by the elaboration of the object
declaration, If a task object is the object, or a 'suhrcmpo'ent of th8 object, created by the evalue-

.. tion of an allocator, then the value of the tack object Is defined by the rvaluetlon of the allocator.
For all parameter modes, If an actual parameter designates a task, the associated formal
parameter designates the same task; the same holds for a subc:"'mponent of an actual parameter
and the corresponding subcomponent of the associated formal paromete(; finally, tho same holds
for generic parameters.

3 Examples.-

CONTROL RESOURCE:,•'TELETYPE KEYBOARD-DRIVER;
POOL o rrayll1 .. 10) of KEYBOAR D-0RIVER; ..

,.. see also examples of declarations of single tasks In 9.1

.• Example of access type designating task ob/ects:

type KEYBOARD Is esoeam KEYBOARD-DRIVER; :.

TERMINAL : KEYBOARD := new KEYBOARD-DRIVER;

Notes:

" Since a task type is a limited type, It can appear as the definition of a limited private type In a
private part, and as a generic actual parameter associated with a formal parameter whose type Is a
limited type. On the other hand, the type of a generic formal parameter of mode In must not be a
limited type and hence cannot be a task type.

a Task objects behave as constants (a task object always designates the same task) since their
values are Implicitly defined either at declaration or allocation, or by a parameter association, and
since no assignment Is available, Howevor the reserved word oonstent is not allowed In the
declaration of a task object since this would require an explicit Initialization, A task object that Is a
formal paramater of mode In Is a constant (as Is any formal parameter of this mode),

"., • If an application needs to store and exchange taek Identltiei,, It can do so by defining an access
type designating the corresponding task objects and by using access values for Identification pur-
"poses (see above example). Assignment Is available for such an access type as for any access
"type.

.= Subtype declarations are allowed for task types as for other types, but there are no constraints

a References: access type 3,8, actual parameter 6,41, allocator 4.8, assignment 5.2, component declaration 3,7,
composite type 3,3, constant 3.2,1, constant declaration 3,21, ,onstraint 3.3, designate 3.8 9.1, elaboration 319,
entry 9.5, equality operator 4,5,2, formal parameter 8.2, formal parameter mode 6.2, generic actual parameter 12,3,
gene,'dc association 12.3, generic formal parameter 12.1, generic formal parameter mode 12,1 1, generic unit 12, ine-
quality operator 4,5,2, Initialization 3,2,1, limited type 7,4,4, object 32, object declaration 3.2,1, parameter associa-
tion 6.4, private part 7.2, private type 7.4, reserved word 2.9, subcomponent 3.3, subprogram 6, subtype declaration
332, task body 9,1. type 3.3

9.2 Task Types and Task Objects 9-4

Tasks

9.3 Task Execution - Task Activation

* A task body defines the execution of any task that Is designated by a task object of the cor-
responding task type. The initial part of this execution is called the activation of the task object,
and also that of the designated task; It consists of the elaboration of the declarative part, if any, of
the task body. The execution of different tasks, In particular their activation, proceeds in purallel.

!, If an ob ect declaration that declares a task object occurs immediately within a declarative part,
then the activation of the task object starts after tho elaboration of thn decInr'ative part (that is,
after passing the reserved word begin following the declarative part); similarly if such a declara-
tion occurs immediately within a package specification, the activation starts after the elaboration
of the declarative part of the package body. The same holds for the activation of a taok object that
Is a subcomponent of an object declared Immediately within a declarative part or package
specifIcation, The first statement following the declarative part is executed only after conrlusion of
the activation of these task objects,

Should an exception be raised by the activation of one of these tasks, that task becomes a com,. ,
pleted task (see 9.4); other tasks are not directly affected, Should one of these tasks thus become
completed during Its activation, the exception TASKING-ERROR Is raised upon conclusion of the
activation of all of these tasks (whether successfully or not); the exception Is raised at a place that
"Is Immediately before the first statement following the declarative part (immediately after the
reserved word begin). Should several of these tasks thus become completed during their active- -

• -* tion, the exception TASKING-ERROR Is raised only once.

Should an exception be raised by the elaboration of a declarative part or package specification,
then any task that Is created (directly or Indirectly) by this elaboration and that Is not yet activated

* becomes terminated and Is therefore never activated (see section 9.4 for the definition of a ter-'11 ~minated task), r •

For the above rules, In any package body without statements, a null statement Is assumed, For any
package without a package body, an Implicit package body containing a single null statement Is
assumed, If a package without a package body Is declared Immediately within some program unit
or block statement, the Implicit package body occurs at the end of the declarative part of the
program unit or block statement; If there are several such packages, the order of the Implicit
package bodies Is undefined,

A task object that Is the object, or a subcomponent of the object, created by the evaluation of an e
allocator Is activated by this evaluation. The activation starts after any Initialization for the object
created by the allocator; If several aubcomponents are task objects, they are activated In parallel,
The access value designating such an object Is returned by the allocator only after the conclusion -

"* of these activations,

Should an exception be raised by the activation of one of these tasks, that task becomes a com-
pleted task; other tasks are not directly affected, Should one of these tasks thus become com-
pleted during Its activation, the exception TASKING-ERROR Is raised upon conclusion of the
activation of all of these tasks (whether successfully or not); the exception is raised at the place 0
where the allocator Is evaluated. Should several of these tasks thus become completed during

Stheir activation, the exception TASKING.ERROR Is raised only once,

' Should an exception be raised by the Initialization of the object nreated by an allocator (hence a

before the start of any activation), any task designated by a subcomponent of this object becomes
"terminated and Is therefore never activated,

9-5 Task Execution - Task Activation 9.3

*i• . W .fA. -, .,

ANSIIMIL-STO-t1815A Ada Reference Manual

r s Example:

procedure P Is
A, 8 RESOUJRCE, -- elaborate the task objects A, B3
C RESOURCE; -- elaborate the task object C

begin
-- the tasks A, 8, C are activetod in parallel before the first statement

end;

Notes: 'p to An entry of ai task can be called before His task ties been activated. If several tasks ere activated In
parallel, the execution of any of these tasks need not await the end of the activation of the other
tasks. A task may becrime completed during Its activation either because of an exception or
because It Is aborted Waee 9.11011, *.-

11 References: allocator 481, completed took 9,4, donlarstlve part 3.9, elaboration 3.9, entry 9,15, exception 11, hansdling
an exception 11A4, paokage body 7,11, upaellal execution 9, statement 5, subcomnponent 33, task body 9.1, task object
9.2, task termination 9.4, taok type 11,1, tosklng...rror exception 11. 1

9.4 Task Dependence - Termination of Tasks

Each task depends on at tedest one master. A master Is a construct that is either a task, a currently
executing block statement or subprogram, or a library package (a package declared within another
program unit Is not a masterl, The dependence on a master Is a direct dependence In the following
two cases: -

(a) The task designated by a tosk object that Is the object, or a subcomponent of the object,
created by the evaluation of en allocator depends on the master that elaborates the cor-
responding access type definition.

3 (b) The task designated by any other task object depends on the master whose execution creates
the task object,

4 Furthermore, If a task depends on a given master that is a block statement executed by another
master, then the task depends also on this other master, in an Indirect manner; the same holds If
the given master Is a subprogram called by another master, and If the given master Is a task that
depends (directly or Indirectly) on another master, Dependences exist for objects of a private type
whose full declaration Is In terms of a task type.

5 A task Is said to have completed Its execution when It has finished the execution of the sequence
of statements that appears after the reserved word begin In the corresponding body, Similarly a
block or a subprogram Is said to have completed Its execution when It has finished the execution of
the corresponding sequence of statements. For a block statement, the execution is also said to be
completed when It reaches an exit, return, or goto statement transferring control out of the block,
For a procedure, the execution Is also said to be completed when a corresponding return state-
ment Is reached, For a function, the execution Is also said to be completed after the evaluation of
the result expression of a return statement. Finally the execution of a task, block statement, or sub-

* program Is completed If an exception Is raised by the execution of Its sequence of statements and
there is no corresponding handler, or, If there Is one, when It has finished the execution of the cor-
responding handler,

9.4 Task Dependence - Termination of Tasks 9-6

Tasks

If a task has no dependent task, Its termination takes place when it has completed its execution.
After its termination, a task is said to be terminated. If a task has dependent tasks, its termination
takes place when the execution of the task is completed and all dependent tasks are terminated. A
block statement or subprogram body whose execution is completed is not left until all of its depen- .
dent tasks are terminated.

Termination of a task otherwise takes place if and only If its execution has reached an open ter-
minate alternative in a select statement (see 9.7.1), and the following conditions are satisfied:

a Tne task depends on some master whose execution Is completed (hence not a library a
package).

a Each task that depends on the master considered Is either already terminated or similarly
waiting on an open terminate alternative of a select statement.

When both conditions are satisfied, the task considered becomes terminated, together with all 1o
tasks that depend on the niaseter considered.

Example,-

declare
t~pe GLOBAL is amess RlESOURCE; ,. tee 9.1
A, B : RESOURCE;
G GLOBAL: b",,!begin', ,., ,
-- activation of A and 8
declare

type LOCAL is saees RESOURCE;
X GLOBAL :, new RESOURCE; ,- activation of Xsll i:,
L LOCAL :• new RESOURCE: -- activation of Luall
C RESOURCE;

bogin
-- activation of C
G :- X; -- both G and X designate the same task object

end' -- await termination of C and Lull (but not Kell)

end; -- await tormnination of A, B, and Guil

Notes:

'The rules given for termination imply that all tasks that depend (directly or Indirectly) on a given 12

master and that are not already terminated, can be terminated (collectively) If and only if each of
them Is waiting on an open terminate altsirnative of a select statement and the execution of the
given master Is completed.

The usual rules apply to the main program, Consequently, termination of the main program awaits
termination of any dependent task even If the cor'asponding task type is declared in a library
package, On the other hand, termination of tho main program does not await termination of tasks
that depend on library packages; the language does not define whether such tasks are required to
terminate,

For an access type derived from another access type, the coiresponding access type definition is 14

that of the parent type; the dependence Is on the master that elaborates the ultimate parent access
type definition.

9-7 Task Dependence - Termination of Tasks 9,4i• t~,. .

ANSI/MIL-STD-1816A Ado Reference Manual

' i A renaming declaration defines a new name for an existing entity and hence creates no further
'- 'dependence,

References: access type 3.8, allocator 4.8, block statement 5.6, declaration 3.1, designate 3.8 9.1, exception 11,
exception handier 11,2, exit statement 5.7, function 6.5, goto statement 5,9, library unit 10.1, main program 10.1,
object 3,2, open Alternative 9,7.1, package 7, program unit 8, renaming declaration 8.5, return statement 5,8, selec-

"-. tive wait 9.7,1, sequence of statements 5,1, statement 5, subcomponent 3.3, subprogram body 8,3, subprogram call
6.4, task body 9.1, task object 9.2, terminate alternative 9.71

9.5 Entries, Entry Calls, and Accept Statements

"Entry calls and accept statements are the primary means of synchronization of tasks, and of com-
municating values between tasks. An entry declaration Is similar to a subprogram declaration and ..
Is only allowed In a task specification, The actions to be performed when an entry is called are
specified by corresponding accept statements,

2 ent ry.decia ration :~
entry Identifier ((discrete.range)] [formal.parti;

entry.call-statement ::- entry.name (actual.parameter.part);

acoepLstatement "..

accept entry.simple.name [(entryIndex)] (formal-part] (do
sequeno.of_-statement'

"end (entry..simple.namej]];

entry-index :" expression

3 An entry declaration that includes a discrete range (see 3.8.1) declares a family of distinct entries
having the same formal part (If any); that Is, one such entry for each value of the discrete range,
The term single entry Is used In the definition of any rule that applies to any entry other than one of
a family, The task designated by an object of a task type has (or owns) the entries declared In the
specification of the task type, I. ,

; Within the body of a task, each of Its single entries or entry families can be named by the -or..
responding simple name. The name of an entry of a family takes the form of an Indexed compo-
nent, the family simple name being followed by the Index in parentheses: the type of this Index
must be the same as that of the discrete range In the corresponding entry family declaration, Out-
side the body of a task an entry name has the form of a selected component whose prefix denotes
the task object, and whose selector Is the simple name of one of Its single entries or entry families.

5 A single entry overloads a subprogram, an enumeration literal, or another single entry if they have
"the same Identifier, Overloading Is not defined for entry families. A single entry or an entry of an
entry family can be renamed as a procedure as explained In section 8.5.

6 The parameter modes defined for parameters of the formal port of an entry declaration are the
same as for a subprogram declaration and have the same meaning (see 8.2), The syntax of an
entry call statement Is similar to that of a procedure call statement, and the rules for parameter

*i assoclation& are the same as for subprogram calls (see 6.4,1 and 6,4.2).

9,5 Entries. Entry Calis, and Accept Statements 9-8

S....... 1 ' " l" ISSIOiN* • . . .

Tasks

An accept statement specifies the actions to be performed at a call of a named entry (it can be an
entry of a family), The formal part of an accept statement must conform to the formal part given in
the declaration of the single entry or entry family named by the accept statement (see section 6.3,1
for the conformance rules). If a simple roame appears at the end of an accept statement, it must
repeat that given at the start.

An accept statement for an entry of a given task is only allowed within the corresponding task
body; excluding within the body of any program unit that Is, Itself, Inner to the task body; and
excluding within another accept statement for either the same single entry or an entry of the same
family, (One consequence of this rule is that a teak can execute accept statements only for Its own 0,
entries.) A task body can contain more than one accept statement for the same entry,

For the elaboration of an entry declaration, the discrete range, If any, Is evaluated and the formal o
part, If any, Is then elaborated as for a subprogram declaration.

Execution of an accept statement starts with the evaluation of the entry Index (In the case of an ,
entry of a family). Execution of an entry call statement starts with the evaluation of the entry name;
this Is followed by any evaluations required for actual parameters In the same manner as for a sub-
program call (see 6.4). Further execution of an accept statement and of a corresponding entry call
statement are synchronized,

If a given entry is called by only one task, there are two possibilities:

9 If the calling task Issues an entry call statement before a corresponding accept statement Is
reached by the task owning the entry, the execution of the calling toas iU

9 If a task reaches an accept statement prior to any call of that entry, the execution of the task Is
suspended until such a call Is received.

When an entry has been called and a corresponding accept statement has been reached, the
sequence of statements, If any, of the accept statement Is executed by the called task (while the
calling teak remains suspended). This Interaction is called a rendezvous. Thereafter, the calling
task and the task owning the entry continue their execution In parallel,

If several tasks call the same entry before a corresponding accept statement Is reached, the calls
are queued: there Is one queue associated with each entry. Each execution of an accept state..
ment removes one call from the queue, The calls are processed In the order of arrival,

An attempt to call an entry of a task that has completed Its execution relies the exception n'
TASKING-ERROR at the point of the call, In the calling task; similarly, this exception Is raised at the
point of the call If the called task completes Its execution before accepting the call (see also 9.10
for the case when the called task becomes abnormal), The exception CONSTRAINT-ERROR Is
raised if the Index of an entry of a family Is not within the specified discrete range,

Examples of entry declarations:"

entry READ(V : out ITEM);
entry SEIZE;
entry REQUEST(LEVEL)(D :ITM); -- a family of entries

Examples of entry calls:

CONTROL, RELEASE; -- sue 9,2 and 9,1
PRODUCER.CONSUMERWRITE(E); -- see 9.1POOL(B).READ(NEXTCHAR); see 9,.2 nd 9.1
CONTROLLERREQUEST(LOW)(SOMLITEM); -- see 9.1

9-9 EntrIes, Entry Calls, and Accept Statements 9,5

ANSI/MIL-STD-1815A Ada Reference Manual

Examples of accept statements.,

accept SEIZE:

accept READ(V : out ITEM) do
V := LOCAL-ITEM;

end READ;

accept REQUEST(LOW)(D ITEM) do

end REQUEST:

Notes:

2o The formal part given In an accept statement Is not elaborated; it Is only used to Identify the cor-
responding entry,

2 An accept statement can call subprograms that Issue entry calls, An accept statement need not
have a sequence of statements even If the corresponding entry has parameters. Equally, It can
have a sequence of statements even if the corresponding entry has no parameters. The sequence
of statements of an accept statement can include return statements, A task can call Its own entries
but It will, of course, deadlock, The language permits conditional and timed entry calls (see 9.7.2
and 9,7.3), The language rules ensure that a task can only be in one entry queue at a given time,

22 If the bounds of the discrete range of an entry family are Integer literals, the index (in an entry
name or accept statement) must be of the predefined type INTEGER (see 3.6.1),

22 References: abnormal task 9,10, actual parameter part 6.4, completed task 9.4, condltional entry call 9,7.2,
conformance rules 8.3,1, conatrainLerror exception 11.1, designate 9, 1, discrete range 3.6,., elaboration 3,1 3.9,
enumeration literal 3,1,1, evaluation 4.6, expression 4.4, formal part 6.1, identifier 2.3, Indexed component 4,11,1,
integer type 3,5,4, name 4.1, object 3,2, overloading 6,A 8.7, parallel execution 9, prefix 4,1, procedure 6, procedure
call 6,4, renaming declaration 8.6, return statement 5,8, scope 8.2, selected coomiponent 4,1.3, selector 4,1.3,
sequence of statementa 6,1, simple expression 4.4, sImple name 4.1, subprogram 6, subprogram body 6,3, sub-
program declaration 8,1, task 9. task body 9,1, toak specification 9,1, taskIngmerror exception 11,1, timed entry call

9.6 Delay Statements, Duration, and Time

The execution of a delay statement evaluater the simple expression, and suspends further exeuu-
tion of the task that executes the delay statement, for at learnt the duration specified by the
resulting value,

2 delay-statement ::= delay simple-expression;

3 'The simple expression must be of the predefined fixed point type DURATION; Its value Is
expressed In seconds; a delay statement with a negative value is equivalent to a delay statement
with a zero value,

4 Any implementation of the type DURATION must allow representation of durations (both positive
and negative) up to at least 86400 seconds (one day); the smallest representable duration,
DURATION'SMALL must not be greater than twenty milliseconds (whenever possible, a value not

, greater than fifty microseconds should be chosen). Note that DURATION'SMALL need not
correspond to the basic clock cycle, the named number SYSTEM.TICK (see 13.7).

F'9,6 Delay Statements, Duration, end Time 9-10

Tasks

The definition of the type TIME is provided in the predefined library package CALENDAR. The i
function CLOCK returns the current value of TIME at the time it is called. The functions YEAR,
MONTH, DAY and SECONDS return the corresponding values for a given value of the type TIME;
the procedure SPLIT returns all four corresponding values, Conversely, the function TiMEOF
combines a year number, a month number, a day number, and a duration, Into a value of type ,
TIME. The operators "+" and "-" for addition and subtraction of times and dcurations, and the
relational operators for times, have the conventional meaning,

The exception TIME.-ERROR Is raised by the function TIME..,CF if the actual parameters do not form
a proper date. This exception is also raised by the operators '"--" and "-" if, for the given operands,
these operators cannot return a date whose year number Is In the range of the corresponding sub-
type, or If the operator "-" cannot return a result that is In the range of the type DURATION,

package CALENDAR Is
tyeTIME Is private;

subtype YEAR-NUMBER Is INTEGER ravige 1901 ,, 2099:
subtype MONTH-NUMBER Is INTEGER range '1 12;
subtype DAY-NUMBER Is INTEGER range 1., 31;
subtype DAY-DURATION Is DURATION range 0,0 .. BO.400.0;

function CLOCK return TIME;

function YEAR (DATE TIME) return YEAR-NUMBER; :I..
function MONTH (DATE TIME) return MONTH-NUMBER;
function DAY (DATE TIME) return DAYNUMBER;
function SECONDS (DATE TIME) return DAY-DURATION;

procedure SPLIT (DATE In TIME;,
YEAR out YEAR.-NUMBER; :*
MONTH : out MONTH-NUMBER;
DAY out DAYNUMBER;
SECONDS out DAYDURATION);

tfwotion TIME-OF(YEAR YEAR-NUMBER;
MONTH MONTH..NUMBF.R;
DAY DAY-NUMBER: '

SECONDS DAY-DURATION :, 0.0r return TIME;

function "+" (LEFT TIME; RIGHT DURATION) return TIME;
function "+" (LEFT DURATION; RIGHT TIME) return TIME;
funotion "-" (LEFT TIME; RIGHT DURATION) return TIME;
function "-" (LEFT TIME; RIGHT TIME) return DURATION;

function (" (LEFT, RIGHT : TIME) return BOOLEAN;
function "<'" (LEFT, RIGHT t TIME) return BOOLEAN;
function ">" (LEFT, RIGHT TIME) return BOOLEAN;
function ">=" (LEFr, RIGHT TIME) return BOOLEAN;

0
TIME-ERROR exomptlon; -- can be raised by TIME-OF, "+", and

private
-- implementation-dependent

end;

9-11 Delay Statements, Duration, and Time 9,6

• U

ANSI/M/L.STD.-.815A Ada Reference Manual

. a Examples:

delay 3.0; -- delay 3,0 seconds

declare
use CALENDAR:

INTERVAL Is a global constant of type DURATION
NEXT.-TIME : TIME := CLOCK + INTERVAL;,

begin
loop

delay NEXT-TIME - CLOCK:
- some actions -
NEXT-TIME :- NEXT..TIME + INTERVAL;

end loop:
and;

Notes.,

* The second example causes the loop to be repeated every INTERVAL seconds on average, This
Interval between two successive iterations Is only approximate. However, there will be no
cumulative drift as long as the duration of each Iteration Is (sufficiently) less then INTERVAL.,

iu References: adding operator 4,5, duration C, fixed poir" type 3.519, funotlon call 6.4, library unit 10,1, o|urator 4.5, . .

paokaqe 7, private type 7.4, rilvtlonil operator 445, sImple expresuii. 4,4, statement 5, took 0, typ• 3,3 ''A

9.'/ select statemente

There are three furms of select statements, One form provides a seloctive walt for one or more
altemnatives, The other two provide conditional and timed entry calls,

Ieleat-stoter'ent :*. *aectlve..walt
I oonditlonasl.ontry.oell I timed.entry.cslla.

3 References: selective walt 9.7,1, conditional entry call 9.7,2, timed entry coll 9.7,3

9,7.1 Selective Welts

I This form of the select statement allows a combination of waiting for, and aelecting from, one or
more alternatives, The selection can depend on conditions associated with each alternative of the
selective walt

9ý 7
9,7.1I S~lectlve Wa/ts 9-1 2

.I.

Tasks

selective-wait
select

select-alternative
for

selecLtalternatlve!
[else

sequence-of-statemants]
end select;

selecLtalternstIve ::=
I when condition =>J

selective-waltalternative

aelective.walLailternativo ::- *ccept.alternatlve
I delay-alternatlve I termlnate-alternatlve '

accept. alternative :a caoept-statemant [sequenceof-statements]"

delay., elternative ::= delay&statament (sequence.of-statements] ,

terminate-alternative ::- termilnate;

A selective wilt must contain at least one accept a!ternative, In addition a selective wait can con- ,
tain Other a terminate alternative (only one), or one or more delay alternatives, or an else part;these three possibilities are mutually exclusive.

A select alternative Is said to be upen If It does not start wltth when and a condition, or If the condl, 4

tion Is TRUE, It Is said to be closedotherwlse.

For the execution of a selective wait, any conditions specified attar when arc evaluated In some
order that Is not defined by the language; open alteroatIvea are thus determined. For an open ,
delay alternative, the delay expression Is also evaluated, Similarly, for an open accept alternative
for an entry of a famriily, the entry index Is also evaluated, Seluction and execution of one open
alternative, or of the else pert, then completes the execution of the selective wait; the rules for this
selection are described below,

Open accept alternatives are first considered. Selection of one such alternative takes placi ,
Immediately If a corresponding rendezvous Is possible, th!t Is, If there !s a corresponding entry call
Issued by another task and waiting to be accepted, If several alternatives can thur be selected,
one of them Is selected arbitrarily (that Is, the language does not define which one), When such an
alternative Is selected, the norreoponding accept statemrnt and possible subsequent statements
are executed, If no rendezvous Is immediately possible ano there Is no else part, the task waltm
until an open selective wait alternative can be selected,

Selection of the other forms of alteaative or of an else part Is performed as follows:

0 An open delay alternative will be selected if no accept alternative can be selected before the ,
specified delay has elapsed (Immediately, for a negative oi zero delay In the absence of
queued entry calls); any subsequent statements of the alternative are then executed, If several
delay alternatives can thus bt selected (that is, If they have the same delay), one of them Is
selected arbitrarily,

a The also part Is selected and Its statements are executed If no accept alternative can be
Immediately selected, In particular, If all alternatives are closed,

0 An open terminate alternative Is selected If the conditions stated In section 9.4 are satisfied, to
It Is a consequence of other rules that a terminate alternative cannot be selected while there is
a queued entry call for any entry of the task,

9-13 SelectIve Waits 9,7,1

ANSI/MIL-STD-1815A Ado Reference Manual ""

1 Th.e exception PROGRAM-ERROR Is raised If all alternatives are closed and there Is no else part.

12 Examples of a select statement:

select
accept DRIVERAWAKESIGNAL; .

or
delay 30.O*SECONDS;
STOPTHETRAIN;

end select;

Example of a task body with a select statement:

task body RESOURCE l.
BUSY : BOOLEAN := FALSE;

begin
loop

select
when not 3USY =>

accept SEIZE do
BUSY := TRUE;

and;
or

accept RELEASE do ',

BUSY := FALSE;
end:

or
terminate; ,

and select; ;" "'-
end loop;

end RESOURCE;

Notes.

4 A selective walt Is allowed to have several open delay alternatives. A selective wait Is allowed to
have several open accept alternatives for the same entry.

References, accept statement 9.5, condition 5,3, declaration 3.1, delay expression 9,6, delay statement 9,8, duration
9.6, entry 9,5, entry call 9.5, entry Index 9,5, program.orror exception 11.1, queued entry call 9.5, rendezvous 9,5,
select statement 9,7, sequence of statements 5,1, task 9

9.7.2 Conditional Entry Calls

A conditional entry call Issues an entry call that Is then canceled If a rendezvous Is not Immediately
possible.

2 conditional-entry-call
select

entry-call-statement
I sequence-of-statements]

else
sequenceaof-staterments

end select;

9.7.2 Conditional Entry Calls 9-14

° .. t,......L. .f. ..- - - -'- ,.. - - ,- ' - ,-•

Tasks
.4

For the execution of a corditional entry call, the entry name Is first evaluated, This is followed by -.4
any evaluations required for actual parameters as in the case of a subprogram call (see 6.4),

The entry call Is canceled if the execution of the called task has not reached a point where It is
ready to accept the call (that is, either an accept statement for the corresponding entry, or a select
statement with an open accept alternative for the entry), or If there are prior queued entry calls for
this entry. If the called task has reached a select statement, the entry call is canceled if an accept
alternative for this entry is not selected.

If the entry call Is canceled, the statements of the else part are executed. Otherwise, the rendez-
vous takes place; and the optional sequence of statements after the entry call is then executed.

The execution of a conditional entry call raises the exception TASKING-ERROR if the called task ,"has already completed Its execution (see also 9,10 for the case when the called task becomes"abnormal),

Example: 7

procedure SPIN(R RESOURCE) Is
begin

loop
select

R.SEIZE;
return;

else
null; -- busy waiting

end select;
end loop;

end;

References: abnormal task 9.10, accept statement 9,5, actual parameter part 6,4, completed task 9.4, entry call h
statemant 9.5, entry family 9,5, entry Index 9,5, evaluation 4 75, expressa!on 4,4, open alternative 9,7.1, queued entry
call 9.5, rendezvous 9.5, select statement 9.7, uequence of statements 6.1, task 9, tasking-error exception 11,1

9.7.3 Timed Entry Cells

A timed entry call Issues an entry call that is canceled 'f a rendezvous Is not started withlr"
delay.

t im e d - e n t ry - c a ll , ," A t.. .. ,.0
select

entrvcall-statement
sequence.of...statementsa

or
delay-alternative

end select;

9-15 Timed Entry Calls 9.7.3

t •2. t . fl .J ," , ,. , L.. .d . t ~ . ~ -- ~ 4'L.A P ~

ANS//MIL-STD-1815A Ada Reference Man'jal

For the execution of a timed entry call, the entry name is first evaluated. Tiis Is followed by any
evaluations required for actual parameters as In the case of a subprogram call (see 6.4). The
expression stating the delay id then evaluated, and the entry call is finally issued,

If a rendezvous can be started within the specified duration (or immediately, as for a conditional V
entry call, for a negative or zero delay), It Is performed and the optional sequence of statements
after the entry call is then executed, Otherwise, the entry call is canceled when the specified dura-
tion has expired, and the optional sequence of statement3 of the delay alternative is executed,

5 The execution of a timed entry call raises the exception TASKING-ERROR if the called task
completes its execution before accepting the call (see ilso 9.10 for the case when the called task
becomes abnormal),

6 Example:

select
CONTROLLER.REQUEST(MEDIU M)(SOM1_ITEM); ----

or
delay 45,0;
-- controller too busy, try something else

eard select;

References: abnormial task 9.10, iccept statement 9,5, actual parameter part 6.4, completed task 9.4, conditional
entry calt 9.7,2, delay expression 9.6, delay statement 9,e, duration 9.6, entry uall statement 9.5, entry family 9,5,
entry Index 9,5, evaluation 4,5, expression 4.4, rendezvous 9., sequence. of stktpments 5.V, task 9, lasking-error
.i3xeption 11I1

9.8 PrIorities

"Each tusk may (but need not) have a prioritV, which is a value of the subtype PRIORITY. (of the type
INTEGER) declared In th6 predefined library package SYSTEM (see 13.7), A lower value indicates alower degree of urgency, the range of priorities is Implementation-defIned, A priority Is associated

with t task if a pragm.

pragma PRIORITY (static.explrssio,.);

appears in the corresponding task specification; the prdority is given by the value of the expression.
A priority Is ossoclated with Yhe main program If such a pragma appears in Its outermost
declarative part, At moot one such pregina can' appear within a given task specification or for a
subprogram that is a library unit, and thes" are the only allowed places for this pragma. A pragma ..
PRIORITY has no qffect if It occurs In a sobprogram other than the main program,

The soecification of a priority Is on Indication given to assist the Implementation In the allocation of
processing resources to parallel tasks when there aie more tasks eligible for execution than can be
supported simultaneously by the available processing resources. The effect of priorities on
scheduling1 is defined by the following rule: . ,

If two tasks with different priorities are both eligible lor execution and could sensibly be
executed using the same physical processors arid the same other processing resources, then It
cnnnot be the case that the task with the lower priority is executing while the task with the
higher priority is not.

9.8 Prloritlo,¶ 9-16

:.. I. -

Tasks

For tasks of the same priority, the scheduling order Is not defined by the language. For tasks
without explicit priority, the scheduling rules are not defined, except when such tasks are engaged
in a rendezvous. If the priorities of both tasks engaged In a rendezvous are defined, the rendezvous
is executed with the higher of the two priorities. If only one of the two priorities Is defined, the
rendezvous is exuruted with at least that priority. If neither Is defined, the priority of the rendez- . -

votus is undefined.. ,

Notes:

The priority of a task is static and therefore fixed. However, the priority during a rendezvous is not 6,i. ,
necessarily static since It also depends on the priority of the task calling the entry. Priorities should
be used only to indicate relative degrees of urgency; they should not be used for task synchroniza- .
tion.

References: declarative part 3,9, entry call statement 9,5, Integer type 3.5,4, main program 10,1, package system ,
13,7, pragma 2.8, rendezvous 9,5, static expression 4,9, subtype 3,3, task 9, task specification 9.1

9.9 Task and Entry Attributes

For a task object or value T the following attributes are defined:

T'CALLABLE Yields the value FALSE when the execution of the task designated by T Is 2
either completed or terminated, or when the task Is abnormal. Yields the
value TRUE otherwise. The value of this attribute Is of the predefined type
BOO LEAN.

T'TERMINATED Yields the value TRUE If the task designated by T Is terminated. Yields the 3

value FALSE otherwise. Thte value ot this attribute Is of the predefined type
BOOLEAN.

In addition, the representation attributes STORAGLSIZE, SIZE, and ADDRESS are defined for a
task object T or a task type T (see 13.7.2).

The attribute COUNT Is defined for an entry E of a task unit T. The entry can be either a sinole 5 *- 7..
entry or an entry of a family (in either case the name of the single entry or entry family can be -

either a simple or an expanded name), This attribute Is only allowed within the body o" T, but
excluding within any program unit that Is, itself, Inner to the body of T.

EWCOUrr Yields the number of entry calls presently queued on the entry E (if the
attribute Is evaluated by the execution of an accnpt statement for the entry
E, the count does not include the calling task), The value of this attribute Is
of the type universal-iijieger.

Note.

Algorithms Interrogating the attribute E'COUNT should take precautions to allow for the Increase 7
of the value of this attribute for Incoming entry call3, and Its decrease, for example with timed entry
calls,

References." abnormal task 9.10, accept statement 9.5, attribute 4.1.4, boolean type 3,5.3, completed task 9,4,
deaignate 9.1, entry 9.5, false boolean value 3,5,3, queue of entry calls 9,5, storage unit 13,7, task 9, task object 9,2
task type 9.1, terminated task 9.4, timed entry call 9,713, true boolean value 3,5.3, universalInteger type 3,5.4

9-17 Task and Entry Attributes 9.9

ANS//MIL-STD-1815A Ads Reference Manual

9.10 Abort Statements

An abort statement causes one or more tasks to become abnormal, thus preventing any further
rendezvous with such tasks.

2 abort-statement ::= abort task-nama I, task-namel;

3 The determination of the type of each task name uses the fact that the type of the name is a task
type.

4 For the execution of an abort statement, the given task names are evaluated in some order that Is
not defined by the language, Each named task then becomes abnormal unless it is already ter-
minated; similarly, any task that depends on a named task becomes abnormal unless It is already
terminated.

Any abnormal task whose execution Is suspended at an accept statement, a select statement, or a
delay statement becomes completed; any abnormal task whose execution Is suspended at an entry
call, and that is not yet In a corresponding rendezvous, becomes completed and Is removed from
the entry queue; any abnormal task that has not yet started Its activation becomes completed (and
hence also terminated). This completes the execution of the abort statement,

The completion of any other abnormal task need not happen before completion of the abort state-
ment, It must happen no later then when the abnormal task reaches a synchronization point that Is
one of the following: the end of Its activation; a point where It causes the activation of another
task; an entry call; the start or the and of an accept statement; a select statement; a delay state-
ment: an exception handler; or an abort statement. If a task that calls an entry becomes abnor-
mal while In a rendezvous, Its termination does not take place before the completion of the rendez-
vous (see 11.5).

The call of an entry of an abnormal task raises the exception TASKING-ERROR at the place of the
call. Similarly, the exception TASKING-ERROR Is raised for any task that has called an entry of an
abnormal task, If the entry call Is still queued or If the rendezvous Is not yet finished (whether the
entry call Is an entry call statement, or a conditional or timed entry call); the exception Is raised no
later than the completion of the abnormal task, The value of the attribute CALLABLE Is FALSE for
any task that Is abnormal (or completed).

a If the abnormal completion of a task takes place while the task updates a variable, then the value
of this variable Is undefined,

9 Example: 0

abort USER, TERMINAL~all, POOL(3);

Notes:

in An abort statement should be used only In extremely severe situations requiring unconditional tar-
rmination, A task is allowed to abort any task, Including Itself.

I Ii References: abnormal In rendezvous 111,5, accept statement 9,5, activation 9.3, attribute 4,1,4, callable (predeflned
attribute) 9.9, conditional entry call 9,7,2, delay statement 9.8, dependent teak 9.4, entry call statement 9,5, evalua-
tion of a name 4,1, exception handler 11.2, false boolean value 3,5,3, name 4,1, queue of entry calls 9,5, rendezvous

9,5, select statement 9,7, statement 5, task 9, tasklng-arror exception 11.1, terminated task 9.4, timed entry call 9,7,3 0

9. 10 Abort Statements 9-18

., " -

Teskse'

"9.11 Shared Variables

The normal means of communicating values between tasks Is by entry calls and accept state-
ments.

If two tasks read or update a shared variable (that is, a variable accessible by both), then neither of 2

"them may assume anything about the order in which the other performs its operations, except at
the points where they synchronize, Two tasks are synchronized at the start and at the end of their
rendezvous. At the start and at the end of Its activation, a task Is synchronized with the task that
causes this activation. A task that has completed Its execution Is synchronized with any other task.

"For the actions performed by a program that uses shared variables, the following assumptions can 3

always be made:

9 If between two synchronization points of a task, this task reads a shared variable whose type 4

Is a scalar or access type, then the variable Is not updated by any other task at any time
between these two points.

- If between two synchronization points of a task, this task updates a shared vwrlable whose ,
type is a scalar or access type, then the variable Is neither read nor updated by any other task
at any time between these two points,

"The execution of the program Is erroneous if any of these assumptions Is violated, "

if a given task reads the value of a shared variable, the above assumptions allow an Implements-
tion to maintain local copies of the value (for example, In registers or In some other form of tem-
porary storage); and for as long as the given task neither reaches a synchronization point nor
updates the value of the shared variable, the above assumptions Imply that, for the given task,
reading a local copy Is equivalent to reading the shared variable Itself.

Similarly, If a given task updates the value of a shared variable, the above assumptions allow an .
*' implementation to maintain a local copy of the value, and to defer the effective store of the local

copy Into the shared variable until a synchronization point, provided that every further read or
update of the variable by the given task Is treated as a read or update of the local copy. On the
other hand, an Implementation Is not allowed to Introduce a store, unless this store would also be
executed In the canonical order (seo 11.8).

The pragma SHARED can be used to specify that every read or update of a variable is a "
synchronization point for that variable; that Is, the above assumptions always hold for the given
variable (but not necessarily for other variables). The form of this pragma Is as follows:

pragma SHARED(verlab/ej.impleanam e);

This pragma Is allowed only for a variable declared by an object declaration and whose type is a io
scalar or access type; the variable declaration and the pragma must both occur (in this order)
Immediately within the same declarative part or package specification; the pragma must appear
before any occurrence of the name of the variable, other than In an address clause,

"An implementation must restrict the objects for which the pragma SHARED is allowed to objects
*• for which each of direct reading and direct updating Is Implemented as an Indivisible operation,

References: accept, statement 9,5, activation 9,3, assignment 5.2, canonical order 11,6, declarative part 3.9, entry 2 '
call statement 9.5, erroneous 1,6, global 8,1, package specification 7.1, pragme 2.8, read a value 6.2, rendezvous 9,5,
"simple name 3,1 4,1, task 9, type 3,3, update a value 6.2, variable 3,2.1

9-19 Shared Variables 9, 11
- L ~~..... Il

ANS//MIL-STD- 78?5A Ada Reference Manual

9.12 Exam ple of Tasking

The following example defines a buffering teask to smooth variations between the speed of output
of a producing task and the speed of Input of some consuming task. For instance, the producing
task may contain the statements6

* .. 2loop

* -- produce the next character CHAR
* BUFFER.WRITE(CHAR);

exit when CHAR =ASCII.EOT;
end loop;

3 and the consuming task may contain the statements

4 loop
* BUFFER.READ(CHAR);-

consume the character CHAR
exit when CHAR ASCII.EOT;

end loop;

The buffering task contains an Internal pool of characters processed in a round-oi fahonIh
pool has two Indices, an IN-INDEX denoting the space for the next Input character and arl
OUT-INDEX denoting the space for the next output character.

e task BUFFER Is
entry READ (C :out CHARACTER);
entry WRITE (C In CHARACTER):

end;

took body BUFFER Is
POOL-SIZE constant INTEGER *~ 100;
POOL array(1 ., POOL-SIZE) of CHARACTER;
COUNT INTEGER rang@ 0 .. POOL-SIZE := 0;
IN-INDEX, OUT-INDEX :INTEGER range I . POOL-SIZE 1: 1

begin
loop

$*lent .,'
when COUNT < POOL-SIZE >

accept WRITE(C in CHARACTER) do
POOL(INJNDEX) C;

end;
ININDEX :~IN-INDEX mod POOLSIZE + 1;
COUNT COUNT + 1;

or when COUNT > 0 =>
accept READ(C :out CHARACTER) do

C :=POOL(OUT-INDEX);
end;
OUT-INDEX OUT-INDEX mod POOL-SIZE 1 ;
COUNT COUNT -1;

or
terminate;

end select;
end loop;

and BUFFER;

9.172 Example of TaskIng 9-20

10. Program Structure and Compilation Isues

The overall structure of programs and the facilities for separate compilation are described in this
chapter. A program Is a collection of one or more compilation units submitted to a compiler in one
or more compilations. Each compilation unit specifies the separate compilation of a construct
which can be a subprogram declaration or body, a package declaration or body, a generic deculara-
tion or body, or a generic Instantlation. Alternatively this construct can be a subunit, In which case
it includes the body of a tubprogram, package, taslI unit, or generic unit declared within another .
compilation unit.

References. compilation 101, compilation unit 10,1, generic body 12.2, generic declaration 12,1, generic 2

InstantiatIon 12.3, packago body 7.1, package declaration 7,1, subprogr&m body 63, subprogram declaration 6,1,
subunit 10,2, task body 9.1, task unit 9

10.1 Compilation Units - Ubrary U nits

The text of a program can be submitted to the compiler In one or more compilations, r ? com-
pilation Is a succession of compilation units, . '.

compilation ::-= Icompilation.unitl ,

compilation.-unit ::=
context. 0ause library-unit I context-clause secondary.unit

library-unit ::-
subprogram-declsration package.declaratlon

I generic-declaration I generic..nstantiation
I subprogram-body

secondary..unlt ::l iibrary-unit-body I subunit

library-unit-body ::= subprogram-body I package-body

The compilation units of a program are said to belong to a program library. A compilation unit 3

defines either a library unit or a secondary unit, A secondary unit is either the separately compiled
proper body of a library unit, or a subunit of another compilation unit. The designator of a
separately compiled subprogrom (whether a library unit or a subunit) must be an Identifier, Within
a program library the simple names of all library units ni ist be distinct Identlfiers,

The effect of compiling a library unit Is to define (or redefino) this unit as one that belongs to the 4

program library, For the visibility rules, each library unit acts as a declaration that occurs
immediately within the package STANDARD, '

The effect of compiling a secondary unit Is to define the body of a library unit, or in the case of a
subunit, to define the proper body of a program unit that Is declared within another compilation
unit,

10-1 Compilation Units - Library Units 10, 1

II , A 4-X,'1... t'°. ".',. • ' ~ • . • . " m.', .d.. • • ..L -. *I. * . . .,** *

ANS//MIL-STD-18abA Ada Reference Manual

. A subprogram body given in a compilation unit Is Interpreted as a secondary unit if the program
library already contains a library unit that Is a subprogram with the same name; It is otherwise
interpreted both as a library unit and as the corresponding library unit body (that Is, as a secondary
unit).

The compilation unita of a compilatkun are complied In the given order. A pragma that applies to
the whole of a compilation must appear before the first conmpilation unit of that compilation.

s A subprogram that is a library unit can be used as a maen program In the usual sense, Each main
program acts as If called by some environment task; the means by which this execution is initiated
are not prescribed by the language definition. An Implementation may Impose certain require-
merits on the parameters and on the result, If any, of a main program (these requirements must be
stated in Appendix F). In any case, every implementation is required to allow, at least, main
programs that are parameterless procedures, and every main program must be a subprogram that
"Is a library unit,

Notes,-

9 A simple program may consist of a single compilation unit. A compilation need not have any com-
pliation units; for example, Its text can consist of pragmaes.

1o The designator of a library function cannot be an operator symbol, but a renaming declaration is
allowed to rename a library function as an operator. Two library subprograms must have distinct
simple names and hence cannot overload each other, However, renaming declarations are
allowed to define overloaded names for such subprograms, and a lonally declared subprogram Is ,
allowed to overload a library subprogram. The expariu,' t rimrne STANDPL'• ý., ;.,, used for a
library unit L (unless the name STANDARD Is hldoarO) -since libraiy units act as declarations that
occur Immediately within the package STANDARD,

References: allow 1,0, context clause 10,1,1, declaration 3.1, designator 6,1, environment 10,4, generic declaration
12,1, generic Instantlation 12,3, hiding 8,3, Identifier 2.3, library unit 10,5, local declar4atlon 8, 1, must 1,8, fiame 4,1,.
occur Immediately within 8,1, operator 4,6, operator symbol 6,1, overloading 6,6 8,7, package body 7,1, package
declaration 7,1, parameter of a subprogram 8,2, pragme 2.0, procedure 8.1, program unit 6, proper body 3,9, rensm- ,....
Ing declaration 8,5, simple name 4.1, standard package 8.8, subprogram 8, subprogram body 6.3, subprogram
declaration s1, subunit 10,2, task 9, visibility 8,3

10.1.1 Context Clauses With Clauses

, I A context clause is used to specify the library units whose names are needed within a compilation

unit, L

2 contexLclause ::= IwIth..clauao Iuse.olausell

with-clause ::= with unlteimpleonamse , un/ltarimple.namel;

The names that appear In a context clause must be the simple names of library units, The simple
name of any library unit Is allowed within a with clause, The only names allowed In a use clause of 2..

a context clause are the simple names of library packages mentioned by previous with clauses of
the context clause. A simple name declared by a renaming declaration Is not allowed In a context
clause,

4 The with clauses and use clauses of the context clause of a library unit apply to this library unit and
*' also to the secondary unit that defines the corresponding body (whether such a clause Is repeated

or not for this unit). Similarly, the with clauses and use clauses of the context clause of a compile..
tion unit apply to this unit and also to Its subunits, If any.

10. 1. 1 Context Clauses - WIth Clauses 10-2
; }~... ,l

If a library unit Is named by a with clause that applies to a compilation unit, then this library unit Is
directly visible within the compilation unit, except where hidden; the library unit Is visible as if
declared immediately within the package STANDARD (see 8.6).

Dependences among compilation units are defined by with clauses; that Is, a compilation unit that a -
mentions other library units In Its with clauses depends on those library units. These dependences
between units are taken Into account for the determination of the allowed order of compilation
(arid recompilation) of compilation units, as explained In section 10.3, and for the determination of
the allowed order of elaboration of compilation units, as explained in section 10.5,

Notes:

A library unit named by a with clause of a compilation unit is visible (except where hidden) within
the compilation unit and hence can be used as a corresponding program unit, Thus within the
compilation unit, the name of a library package can be given In use clauses and can be used to
form expanded names; a library subprogram can be called; and instances of a library generic unit
can be declared,

-The rules given for with clauses are such that the same effect Is obtained whether the name of a
library unit Is mentioned once or more than once by the applicable with clauses, or even within a
given with clause,

"',* Example I - A me/n program:

The rollowing le an example of a main program consisting of a single compilation unit: a procedurefor printing the real roots of a quadratic equation. The predefined package TEXT-1O and a user-

defined package REAL-OPERATIONS (containing the definition of the type REAL and of the
', packages REALIO and RALFUNCTIONS are assumed to be already present In the program

library, Such packages may be used by other main programs,

with TEXTIO, REAL-OPERATIONS; use REALOPERATIONS; to '1
procedure QUADRATICEQUATION Is

"A, B, C, D : REAL;
use REAL..IO, -- achieves direct visibility of GET and PUT for REAL ,

TEXTIO, -- achieves direct visibility of PUT for strings and of NEW-LINE
:i REALFUNCTIONS; -- achieves direct visibility of SORT

begin
GET(A); GET(B); GET(C);
"D := B**2 - 4.*A*C;"
If D < 0,0 then

PUT("Imaglnary Roots.');
else

PUTI"Real Roots : Xl);
PUT(.-B - SQRT(D))/(2.0*A)); PUT(" X2 - H).
PUT((-B + SQRT(D))/(2.0*A));

end It;
NEW-LINE;

end QUADRATICEQUATION;

Notes on the example:

The with clauses ot a compilation unit need only mention the names of those library subprograms
"and packages whose vielbility Is actually necessary within the unit. They need not (and should not)
mention other library units that are used In turn by some of the units named In the with clauses,
unless these other library units are also used directly by the current compilition unit, For example,
the body of the package REAL-OPERATIONS may need elementary operations provided by other
packages. The latter packages should not be named by the with clause of QUArJRATICEQUATION
"since these elementary operations are not directly called within Its body.

,ll

.,10-3 Context Clauses - With Clauses 10,.?!

*," . . .

ANSIIMIL-STD-1815A Ads Reference Manual

12 Rleferences,' allow 1.5, compilation unit 10.1, direct visibility 89.3, elaboration 319, generic body 12.2, generic unit
12. 1. hiding 8.3, Instance 12.3, library unit 10. 1, main program 10. 1, must 1.6, name 4. 1, package?7, package body
7T1, package declaration 7T1, procedure 6.1, program unit 6, secondary unit 10,1, simple name 4,1, standard

* ~predelined package 8.6, subprogram body 63, subprogram declaration 6.1, subunit 10.2, tyvpe 3.3, use clause 8A,4
* visibililty 8.3

* 10.1.2 Examples of Compilation Units

A compilation unit can be split Into a number of compilation units. For example, consider the foi-
lowing program.

2 procedure PROCESSOR Is

SMALL aenhtont =20,,

TOTAL I IN T F AR :=0;

package STOCK Is
LIMIT constont :a1000;

TABLE ertay (10 LIMIT) of INTEGER;
procedure RESTARIT:

end STOCK:

pecklogs body STOCK Is
procedure RESTART Is
begin

lotrN In 1. LIMIT loop
TAEJLE(NH~ N;

end loop;
end;

begin
RESTART;

end STOCK;

procedure LJPDATE(X INTEGER) Is
use STOCK;

begin

TABLE(X) :r ABLEWX + SMALL:

and UPDATE;

begin

sTroCK.RESTART; -~roinitializes TABLE

end PROCESSOR;

3 The foliowing three comptlation units define a program with en effect equivalent to the above
example (the broken lines between compilation units serve to remind the reader that these units

* need not be contiguout texts).

10. f,.2 Examples of Cornpl/dt/on Unfts 1 0-4

Program Structure and Compilation lsueus

Example 2 :Sev'erl comp//at/on un/It:4

packnge STOCK Is
LIMIT constant :-1000;
TABLE array (10 LIMIT) of INTEGER;
procedure RESTART; -

end STOCK;
...

package body STOCK Is
procedure RESTART is
beoi N In 1I. LIMIT loop

TABLE(N): N;
and loop;

end;
begin

RESTART;
* end STOCK;

with STOCK:
procedure PROCESSOR In

*SMALL constant -20;,

TOTAL INTEGER :-0;

procedure UPDATEIX :INTEGER) Is
use STOCK:

begin

'I ~TABLEIX : TABLE(X + SMALL;

and UPDATE:

STOCK.RESTART; -- relnitiallies TABLE

* en4 PROCESSOR;,

Note that In thiu latter version, the package STOCK has no visibility of outer Identifiers other than a
the predefined Identifiers (of the package STANDARD). In particular, STOCK does not use any
Identifier declared In PROCESSOR such as SMALL or TOTAL; otherwise STOCK r'ould not have
been extracted from PROCESSOR In the albove manner. The procedure PROCESSOR, on the other

* hand, depends on STOCK and mention@ this package In a with clause. This permits the Inner
occurrences of STOCK In the expanded name STOCK RESTART and In the use clause,

Thea. three compiliation units can be submitted In one or more compilations. For example, It Is
* possible to submit the package specification and the package body together and In this order In a

single compilation.

References: ooamp I atlon u nit 10. 1, d soIsratio n 3. 1, Idsentif Isr 2.3, pa cka ge., pac kago budy 7, 1, p ack agm specif ioa tlo n to
7,11, progrmm 10, standard package 8.6, tise clause 8.4, vIsibliity 8,3, with clousu 10.1.11

10-5 Exampln, of Compllation UnIts 10. 1.2

ANSI/MIL-STD-1815A Ada Reference Manual

10.2 Subunits of Compilation Units

A subunit is used for the separat' compoiatlon of the proper body of a program unit declared within
another compilation unit, his method of splitting a program permits hierarchical program -.-

development.

2 bodystuh
"subprogrampaspeificatlon Is separate;

I package body packageJsimplename Is separate;
I task body task-nimple.name is separate;

subunit :-
separate (p••r~kn._.un~t_nnme) proper-body

3 A body stub Is only allowed as the body of a program unit (a subprogram, a package, a taik unit, or
a generic unit) If the body stub occurs Immediately within either the speolfication of a library
pack-age or the declarative part of another compilation unit,

, if the body of a program unit Is a body stub, a separately compiled subunit containing the 3or-
responding proper body is required. In the case of a subprogam, the subprogram specifications
givwo in the proper body and In the body stub must conform (see 6.3,1).

5 Each subunit mentions the name of Its parent unit, that Is, the compilation unit where the oar-
responding body stub Is given. If the parent unit Is a library unit, it Is called the ancestor Ilbrar/ unit.
If the parent unit Is Itself a subunit, the parent unit name must be given in full as an expanded
,rame, starting with the simple name of the ancestor library unit, The simple names of all subunits
that have the same ancestnr library unit must be distinct Identifiers,

s Visibility withh, the proper body of a subunit Is the visibility that would be obtalned at the place of
the corresponding body stub (within the parent unit) If the with clauses and use clauses of the iub-
unit were appended to the context clause of the parent unit, If the parent unit Is Itself a subunit,
then the same rule Is used to define the visibility within the proper body of the parent unit,

- 'The effect of the elaboration of a body stub Is to elaborate the proper body of the subunit,

Notes,,

., "Two subunits of different library units In the same program library need not have distinct Iden-
tiflers. In any case, their full expanded names ore distinct, since the simple names of library units
are distinct and since the simple names of all subunits that have a given library unit an ancestor
unit are also distinct. By means of renaming declarations, overloaded subprogram namss that
rename (distinct) subunits can be Introduced,

, A library unit that Is named by the with cliuse of a subunit can be hidden by a declaration (with the
same identifier) given In the proper body of the subunit, Moreover, such a library unit can even be
hidden by a declaration given within a parent unit since a library unit acts as if declared in

S",. STANDARD; this however does not affect the Interpretation of the with clauses themselves, since
only names of library units can appear In with clauses, .

1

,•10,2 Sub units of Cornpiletion Units 10-6

Program Structure and Compilation Issues

References: compilation unit 10,1, conform 8,31.1, context clause 10.1.1, declaration 3.11, declarative part 3.9, direct to
visibility 8,3, elaboration 3.9, expanded name 4.1.3, generic body 12.2, generic unit 12, hidden declaration 8.3, iden-
tifier 2.3, library unit 10.,1, local declaration 8. 1, name 4,.1, occur Immediately within 8. 1, overloading 8.3, package 7,
package body 7, 1, package specification 7. 1, program 10, program unit 8, proper body 3.9, renaming declaration 8,5,
separate compilation 10.,1, simple name 4. 1, subprogram 6, subprogram body 8.3, subprogram specification 61, 1teask

9, task body 9.1, task unit 9.1, use clause 9.4, visibility 8,3, with clause 10,1.1

10.2.1 Examples of Subunits

The procedure TOP Is first written as a compilation unit without subunits.

with TEXT-i0:
procedure TOP Is

type REAL Is digits 10:,
A, S REAL :- 1.0;
package FACILITY Is

PI constant :- 3.14159-.26538.,
function F (X : REAL) return REAL;
procedure G (Y, Z - REALII:i end FACILITY:

package body FACILITY Is
-*some local deciarations followed by

function F(X : REAL) return REAL Is
begin

-- squence of statements of F ~ 2

andF

procedure G(Y, Z :REAL) is
-- local procedures using TEXT-10

begin
-- sequence of statements of G

end G;
end FACILITY;

procedure TRANSFORM(U In out REAL) Is
use FACILITY:

begin
U :-M F(U);

end TRANSFORM;
begin -- rop

4 TRANSFORM(R);

FACILITY.(3(R, S);
end TOP;

.j10-7 E-xan'pies of Subunits 10.2.1

ANSIIMIL-STD-1815A Ada Reference l anuaI

3 The body of the package FACILITY and that of the procedure TRANSFORM can be made into
separate subunits of TOP. Similarly, the body of the procedure 0 can be made into a subunit of
FACILITY as follows.

4 Example 3:

5procedure TOP is

type REAL is digits 10;
R, S :REAL :=1.0;

paickage FACIIITY Is
P' constant :=3.14159.2(3536;
fu'iction F (X REAL) r-eturn REAL;
procedure G (Y, Z REAL);

end FACILITY;

package body FACILITY is separate; -- stub of FACILITY
procedure TRANSFORM(U in out REAL) Is sioparate; -- stub of TRANSFORM

begin -- TOP
* . TRANSFORM(R);

FACILITY.G(R, S);
end TOP;

---- --- ---- --- ---- --- ---- --- ---- --- ---

6 separate (TOP)
*procedure TRANSFORM(U In out REAL) Is

use FACILITY;
begin

U := F(U);

and TRANSFORM;

separate (TOP)
packagle body FACILITY Is

-- some locoI declarations followed by

winction F(X REAL) return REAL is
Ileqin

-- seouence of statements of F

end F:

u1roceL~ure "j(Y, Z REAL) Is separate; -*stub of G
*end FACIUTI'Y:

10.2. 1 Examples of SubunIts 10-8

Program Structure and Compilatlon Issues

with TEXTIS;
separate (rOP.FACILITY) full narns of FACILITY
procedure G(Y. Z : REAL) Is

local prowcedures using TEXT-10

begin
- sequence of statern• Ls of G

end G;

In the above example TRANSFORM and FACILITY are subunits of TOP, dnd G is a subunit of
FACILTY. The visibility in the split version Is the same as In the Initial version except for one
change: since TEXT-10 Is only used within G, the corresponding with clause Is written tor G
instead of for TOP. Apart from this change, the same Identifiers are visible at corresponding
program points In the two versions. For example, all of the following are (directl') visible within
the proper body of the subunit G: the procedure TOP, the type REAL, the variables R and S, the .6
package FACILITY and the contained named number PI and subprograms F and G.

References: body stub 10.2, compllitlon unit 10.1, Identifier 2,3, local declaration 8.1, named number 3.2, package "o
7, package body 7,1, procedure 8, procedure body 6.3, proper body 3,9, subprogram 8, type 3.3, varlable 3.2,1,
visibility 8.3, with clause 10,1.1

10.3 Order of Compilation

The rules defining the order in which units can be compiled are direct consequences of the visibility
rules and, in particular, of the fact that any library unit that is mentioned by the context clause of a
compilation unit is visible In the compilation unit,

A compilation unit must be compiled after all library units named by Its context clause. A secon- 2
dary unit that Is a subprogram or package body must be compiled after the corresponding library
unit. Any subunit of a parent compilation unit must be compiled after the parent compilation unit.
If any error Is detected while attempting to compile a compilation unit, then the attempted com- .
pilation is rejected and it has no effect whatsoever on the program lib;ary; the same hclds for
recompilations (no compilation unit can become obsolete becauso of such a recompilation).

The order in which the compilation units of a program are compiled must be consistent with the 4

partial ordering defined by the above rules. .

Similar rules apply for recompllations. A compilation unit Is potentially affected by a change In any 5
library unit named by Its context clause. A secondary unit Is potentially affected by a change In the
corresponding library unit. The subunits of a parent compilation unit are potentially affected by a
change of the parent compilation unit. If a compilation unit is successfully recompiled, the com-
pilation units potentially affected by this change are obsolete and must be recomplled unless they
are no longer needed. An Implementation may be able to reduce the compilation costs If It can
deduce that some of the potentially affected units are not actually affected by the change.

10-9 Order of Compilation 10.3

ANSI/MIL-STD-.815A Ada Reference Manual

The subunits of a unit can be recompiled without affecting the unit itself. Similarly, changes in a
subprogram or package body do not affect other compilation units (apart from the subunits of the
body) since these compilation units only have access to the subprogram or package specification.
An Implementation is only Alowed to deviate from this rule for inline Inclusions, for certain com-
piler optimizations, and for certain Implementations of generic program units, as described below.

0 If a pragma INLINE Is applied to a subprogram declaration given in a package specification,
inline inclusion will only be achieved if the package body is compiled before units calling the
subprogram. In such a case, Inline inclusion creates a dependence of the calling unit on the
package body, and the compiler must recognize this dependence when deciding on the need
for recompilation. If a calling unit Is compiled before the package body, the pragma may be
ignored by the compiler for such calls (a warning that inline inclusion was not achieved may
be issued). Similar considerations apply to a separately compiled subprogram for which an
INLINE pragma Is specified.

s * For optimization purposes, an implementation may compile several units of a given compila-
tion in a way that creates further dependences among these compilation units, The compiler
must then take these dependences into account when deciding on the need for recomplla-
tions.

* An Implementation may require that a generic declaration and the corresponding proper body
bf, part of the same compilation, whether the generic unit is itself separately compiled or Is
loca, to anoter compilation unit. An Implementation may also require that subunits of a
generic unit be part of the same compilation.

.o Examples of Compilation Order.,

(a) In example 1 (see 10.1.1): The procedure QUADRATICEQUATION must be compIled after the
library packages TEXT-_O and REALOPERATIONS since they appear In Its with clause.

(b) In example 2 (see 10.1.2): The package body STOCK must be compiled after the
corresponding package specification,

13 (c) In example 2 (see 10.1.2): The specification of the package STOCK must be compiled before
the procedure PROCESSOR. On the other hand, the procedure PROCESSOR can be compiled
either before or after the package body STOCK.

14• (d) In example 3 (see 10.2.1): The procedure G must be compiled after the package TEXTI J
since this package Is named by the with clause of G. On the other hand, TEXT-1O can be
compiled either Lxofore or after TOP.

(e) In example 3 (see 10.2.1): The subunits rRANSFCAM and FACILITY must be compiled after . .9
the main program TOP. Similarly, the subunit G must be compiled after Its parent unit
FACI LITY.

Notes.:

. • For libi ýiry packages, It follows from the recompilation rules that a package body Is made obsolete
by the recompilation of the correspond;ng specification. If the new package specification is such
"that a package body Is not required (that Is, If the package specification does not contain the
declaration of a program unit), then the recompliatlon of a body for this package Is not required. In

,. any case, the obsolete package body must not be used and can therefore be deleted from the
program library,

10.3 Order of Compilation 10-10[I!

Program Structure and Compilation Issues

*0

References': compilation 10,1, compilation unit 10,1, context clause 10.1.1, elaboration 3.9, generic body 12,2,
generic declaration 12.1, generic unit 12, library unit 10.1, local declaiation 8.1, name 4.1, package 7, package body

7.1, package specification 7.1, parent unit 10,2, pragma inline 6.3.2, procedure 8.1, procedure body 6.3, proper body
3,9, secondary unit 10.1, subprogram body 6.3, subprogram declaration 6,1. subprogram specification 6.1, sukunit

10.2, type 3.3, variable 3,2.1, visibility 8.3, with clause 10.1,1

10.4 The Program Library

Compilers are required to enforce the language rules In the same manner for a program consisting ""0
of several compilation units (and subunits) as for a program submitted as a single compilation,
Consequently, a library file containing Information on the compilation units of the program library
must be maintained by the compiler or compiling environment. This information may Include sym-
borl tables and other Information pertaining to the order of previous compilations,

A normal submission to the compiler consists of the compilation unit(s) and the library file, The 2 ,
latter is used for checks and Is updated for each compilation unit successfully compiled,

Notes,:

A single program library Is Implied for the compilation units of a compilation, The possible 3
existence of different program libraries and the means by which they are named are not concerns
of the language definition; they are concerns of the programming environment,

There should be commands for creating the program library of a given program or of a given family 4
of programs, These commands may permit the reuse of units of other program libraries. Finally,
there shoul' be commands for Interrogating the status of the units of a program library, The form
of these commands Is not specIfle6 by th',e language dufinltion. .7.

References- compilation unit 10,1, context clause 10.1.1, order of compilation 10.3, program 10.1, program library ,
10,1, subunit 10.2 use clause 8,4, with olauue 10.1.1

10.5 Elaboration of Library Units

Before the execution of a main program, all library units needed by the main program are
elaborated, as well as the corresponding library unit bodies, If any. The library units needed by the
main program are: those named by with clauses applicable to the main program, to Its body, and
to Its subunits; those named by with clauses applicable to these library units themselves, to the
corresponding library unit bodies, and to their subunits; and so on, In a transitive manner.

The elaboration of these library units and of the corresponding library unit bodies is performed in 2
an order consistent with the partial ordering defined by the with clauses (see 10.3). In addition, a
library unit mentioned by the context clause of a subunit must be elaborated before the body of the
ancestor library unit of the subunit.

An order of elaboration that Is consistent with this partial ordering does not always ensure that
each library unit body is elaboratod before any other compllntlor, unit whose elaboration neces-
sitates that the library unit body be already elaborated. If the prior elaboration of library unit
bodies is needed, this can be requested by a pragma ELABORATE. The form of this pragma Is as
follows:

pragma ELABORATE (library.-unlt-simple-name {, /ibraryunlt_simplename));

10-11 Elaboration of Library UnIts 10.5

ANSI/MIL-STD-1815A Ada Reference Manual

These pragmas are only allowed Immediately after the context clause of a compilation unit (before
the subsequent library unit or secondary unit). Each argument of such a pragma must be the aim-
pie name of a library unit mentioned by the context clause, and this library unit must have a library
unit body. Such a pragma specifies that the library unit body must be elaborated before the given
compilation unit, If the given compilation unit is a subunit, the library unit body must be
elaborated before the body of the ancestor library unit of the subunit.

The program is illegal if no consistent order can be found (that Is, if a circularity exists). The
"elaboration of the compilation units of the program Is performed In some order that Is otherwise
not defined by the language.

. References.: allow 1.6, argument of a pragma 2.8, compilation unit 10,1, context clause 10.1,1, dependence between
compilation units 10.3. elaboration 3.9. Illegal 1., In some urder 1,6, library unit 1 O 1, name 4.1, maIn program 10. 1,
pragma 2,8, secc-ndary unit 101. separate compilation 10,1, simple name 4.1, subunit 10,2, with clause 10.,1. 1

10.6 Program Optimization

Optimization of the elaboration of declarations and the execution of statements may be performed
by compilers, In particular, a compiler may be able to optimize a prugram by ovaluating certain
expressions, In addition to those that are static expressions. Should one of these expressions,
whether static or not, be such that an exception would be raised by its evaluation, then the code In
that path of the program can be replaced by code to raise the exception; the same holds for excep- ; .
tions raised by the evaluation of names and simple expressions. (See also section 11.6.)

' A compiler may find that some statements or subprograms will never be executed, for example, If
"their execution depends on a condition known to be FALSE. The corresponding object machine
"code can then be omitted, This rule permits the effect of conditional compilation within the
language.

Note:

"" An expression whose evaluation Is known to raise an exception need not represent an error if It
occurs in a statement or subprogram that is never executed, The compiler may warn the program.
mer of a potential error,

4i,; References: condition 5.3, declaration 3,1, elaboration 3,9, evaluation 4.5, exception 11, expression 4.4, false
boolean value 3,.3, program 10, raising of exceptions 113, statement 5, static expression 4.9, subprogram 0

10,6 Program Optimization 1012

;i•: "i':

11. Exceptions S

This chapter defines the facilities for dealing with errors or other exceptional situations that arise
during program execution. Such a situation Is called an exception. To raise an exception Is to .
abandon normal program execution so as to draw attention to the fact that the corresponding
situation has arisen, Executing some actions, in response to the arising of an exception, is called
handling the exception,

An exception declaration declares a name for an exception, An exception can be raised by a raise 2
statement, or It can be raised by another statement or operation th3t propagates the exception.
When an exception arises, control can be transferred to a user-provided exception handler at the
end of a block statement or at the end of the body of a subprogram, package, or task unit,

, References: block statement 5.6, error situation 1.6, exception handler 11.2, name 41, package body 7.1, 3
propagation of an exception 11.4.1 11.4,2, raise statement 11,3, subprogram body 6,3, task body 91

11.1 Exception Declarations

An exception declaration declares a name for an exception, The name of an exception can only be

used In raise statements, exception handlers, and renaming declarations. 'is

exception-declaration ::= Identifler.llst : exception; 2

An exception declaration with several Identifiers Is equivalent to a sequence of single exception 3

"declarations, as explained In section 3.2, Each single exception declaration declares a namo for a
different exception. In particular, If a generic unit Includes an exception declaration, the exception
dec!arations Implicitly generated by different instantlations of the generic unit refer to distinct
exceptions (but all have the same Identifier), The particular exception denoted by an exception
name Is determined at compilation time and Is the same regardless of how many times the excep-
tion declaration Is elaborated. Hence, If an exception declaration occurs In a recursive subprogram,
the exception name denotes the same exceptxn for all Invocations of the recursive subprogram.

The following exceptions are predefined In the language; they are raised when the s9;eatlons 4
described are detected.

CONSTRAINTERROR This ex,.ception Is raised In any of the following situations: upon an 5

attempt to violate a range constraint, an Index constraint, or a dis-
criminant constraint, upon an attempt to use a record component that
does not exist for the current discriminant values; and upon an
attempt to use a selocted component, an Indexed component, a slice,
or an attribute, of an object designated by an access value, if the
object does not exist because the access value Is null.

11-1 Exception Declarations 11. 1 . i1

ANSI/MIL-STD-1815A Ada Reference Manual

*•' NUMERIC-ERROR This exception is raised by the execution of a predefined numeric operation
that cannot deliver a correct result (within the declared accuracy for real
"types); this includes the c3ase where an Implementation uses a predefined
numeric operation for the execution, evaluation, or elaboration of some
construct. The rules given in section 4,5.7 define the cases in which an
"Implementation is not required to raise this exception when such an error
situation arises; see also section 11,6,

"PROGRAM.ERROR This exception is raised upon an attempt to call a subprogram, to activate a
"task, or to elaborate a generic Instantiation, If the body of the cor-
responding unit has not yet bcen elaborated, This exception is also raised if .
-,th end of a function Is reached (see 8.5): or during the execution of a
selective wait that has no else part, If this execution determines that all
alternatives are closed (see 9.7,1). Finally, depending on the implements-
tion, this exception may be raised upon an attempt to execute an action
that Is erroneous, and for Incorrect order dependences (see 1.6).

STORAGE-ERROR This exception Is raised In any of the following situations: when the dyna-
mic storage allocated to a task Is exceeded; during the evaluation of an
allocator, if the space available for the collection of allocated objects Is
exhausted; or during the elaboration of a declarative item, or during the
execution of a subprogram call, If storage Is not sufficient,

' TASKING-ERROR This exception Is raised when exceptions arise during Intertask communi-

cation (see 9 and 11.5).

Note:

10 The situations described above can arise without raising the corresponding exceptions, If the "

pragma SUPPRESS has been used to give permission to omit the corresponding checks (see 11.7).

1i " Examples of user-defined exception declarations:

SINGULAR : exception;
ERROR exception;
OVERFLOW, UNDERFLOW : exoeption;

12, • References. access vaiue 3.8, uollectlon 3,8, declaration 3,1, exception 11, exception handier 11,2, generic body
12,2, generic Instantlatlon 12,3, generic unit 12, Identifier 2,3, Implicit declaration 12.3, Instantlatlon 12.3, name 4.1,
object 3.2, raiee statement 11.3, real type 3.5.6, record component 3,7, return statement 5.8, subprogram 6, sub-
program body 6.3, task 9, task body 9,1

t3 Constrelnt-error exception contexts: aggregate 4,3.1 4,312, allocator 4,8, assignment statement 5.2 5.2,1,
constraint 3.3.2, discrete type attribute 345.5, dlacrimlnent constraint 3.7.2, elaboration of a generic formal parameter
12.3.1 12.3,2 12,3,4 12,3,5, entry Index 9.5, exponentlating operator 4,5,6, Index constraint 3,4,1, indexed compo-
nent 4.1.1, logical operator 45.1, null access value 3,8, object declaration 3,2,1, parcmeter association 6.4.1,
qualified expression 4,7, range constraint 3,5, nelected component 4.1.3, slice 4,112, subtype indication 3,3.2, type
conversion 4.3

"" Numeric-error exception contexts: discrete type attribute 3.5.5, Implicit conversion 3.5,4 3,5,6 4,6, numeric
operation 3.5.5 3.5.8 3.5.10, operator of a numeric type 4.5 4.5.7

I s Program-error exception contexts: collection 3,8, elaboration 3.9, elaboration check 3.9 73 9.3 12,2, erroneous
"1.6, Incorrect order dependence 1.6, leaving a function 8,5, selective wait 9.7,1

11. f Exception Declarations 11 -2

Exceptions

Storage-error exception contexts: allocator 4,8 e "

Tasking error exception contexts: abort statement 9.10, entry call 9.5 9,7,2 9.7,3, sxueptlons during task V7

communication 11,5, task activation 9.3 S

• .11.2 Exception Handlers

The response to one or more exceptions Is specified by an exception, handier.

exception-handler 2

when exception-choice II exception-choicei >.
"sequenceof..statements

exception'-choice : exception-nme I others

An exception handler occurs In a construct that .s either a block statement or the body of a sub- 3

program, package, task unit, or generic unit. Such a construct will be called a frame In this
chapter. In each case the syntax of a frame that has exception handlers includes the following :%
part:

begin 4
sequence-oftatements

exception
exception.,handler

I exception-handlerl
end

The exceptions denoted by the exception names given as exception choices of a frame must all be ,
distinct, The exception choice others Is only allowed for the last exception handier of a frame and
as its only exception choice; It stands for all exceptions not listed In previous handlers of the frame,
Including exceptions whose names are not visible at the place of the exception handler,

The exception handlers of a frame handle exceptions that are raised by the execution of the
sequence of statements of the frame, The exceptions handled by a given exception handler are '

those named by the corresponding exception choices,

Example.

"begin
sequence of statements

exception
when SINGULAR I NUMERIC-.ERROR -

PUT(" MATRIX IS SINGULAR 1;
when others =>

PUT(" FATAL ERROR);
reise ERROR;

end;

Note:

The same kinds of statement are allowed In the sequence of statements of each exception handier s
as are allowed In the sequence of statements of the frame, For example, a return statement Is

9Q allowed in a handier within a function body,

11-3 Exception Handlers 11,2

• , . , ...

"ANSI/MIL-STD-1815A Ada Reference Manuial

References: block statement 6.6, declarative part 3.9, exception 11, exception handling 1 1A4, function body 6,3,
generic body 12,2, genellc unit 12,1, name 4.1, package body 7,1, raise statement 11,3, return statement 5.8,
sequence of statements 5,1, statement 5, subprogram body 6.3, teak body 9.1, task unit 9 9,1, visibilIty 8.3

.9" 11.3 Raise Statements

A raise statement raises an exception.

2 raise.jtatement ::= raise [exception-name];

3 For the execution of a raise statement with an exception name, the named exception Is raised. A
raise statement without an exception name Is only allowed within an exception handler (but not
within the sequence of statements of a subprogram, package, task unit, or cenerl, unit, enclosed
by the handler); It raises again the exception that caused transfer to the innermost enclosing
hondler.

Examples:

raise SINGULAR;
raise NUMERIC-ERROR; -- expliloitly raising a predefined exception

ralset: -- only within an exception handler

5 References.- exception 11, generic unit 12, name 4,1, package 7, sequence of statements 5,1, subprogram 6, task
unit 9

"11.4 Exception Handling

When an exception is raised, normal program execution Is abandoned and control Is transferred to
an exception handier, The selection of this handler depends on whether the exception Is raised
during the execution of statements or during the elaboration of declarations,

S 2 References. declaration 3,1, elaboration 3,1 3,9, exception 11, exception handler 11.2, raising of exceptions 11 .3,
statement 5

"" 11.4.1 Exceptions Raised During the Execution of Statements

The handling of an exception raised by the execution of a sequence of statements depends on
whether the Innermost frame or accept statement that encloses the sequence of statements Is a .
frame or an accept statement, The case where an accept statement Is Innermost Is described In
section 11,5. The case where a frame Is Innermost Is presented here,

14 E

';1 1,4, 1 Except/ons Raised During the Execution of Statements 1 1-4l

Exceptions

Differont actions take place, deperding on whether or not this frame has a handler for the excep- -
tion, and on whether the exception Is raised in the sequence of statements of the frame or In that
of an exception handler.

If an exception Is raised In the sequence of statements of a frame that has a handler for the excep- 3 ,
tion, execution of the sequence of statements of the frame Is abandoned and control Is transferred
to the exception handler. The execution of the sequence of statements of the handler completes
the execution of the frame (or ItR elaboration If the frame is a package body),

If an exception Is raised In the sequence of statements of a frame that does not have a handler for 4
the exception, execution of this sequence of statements is abandoned, The next action depends on '"
the nature of the frame:

(a) For a subprogram body, the same exception Is raised again at the point of call of the sub- s
program, unless the subprogram Is the main program Itself, In which case execution of the
main program Is abandoned.

(b) For a block statement, the same exception Is raised again Immediately after the block state- a
ment (that Is, within the Innermost enclosing frame or accept statement).

ýc) For a package body that Is a declarative Item, the same exception Is raised again Immediately ,
after this declarative Item (within the enclosing declarative part). If the package body Is that of
a subunit, the exception Is raised again at the place of the corresponding body stub, If the
package Is a librAry unit, execution of the main program Is abandoned.

(d) For a task body, the task becomes completed.

An exception that is raised again (as In the above cases (a), (b), and (W)) Is said to be propagated, .
either by the execution of the subprogram, the execution of the block statement, or the elaboration
of the package body. No propagation takes place In the case of a task body. If the frame Is a sub-.I
program or a block statement and If It has dependent tasks, the propagation of an exception takes
place only after termination of the dependent tasks.

Finally, if an exception Is raised In the sequence of statements of an exception handler, execution 0 .
of this sequence of statements Is abandoned. Subsequent actions (including propagation, If any)
are as in the cases (a) to (d) above, depending on the nature of the frame,

,;. Example.

function FACTORIAL (N POSITIVE) return FLOAT Is
hegln

If N -- 1 then
return 1.0;

else
return FI.OAT(N) M FACTORIAL(N-1);

end If:
exception

when NUMERIC-ERROR *>,return FLOAT'SAFELARGE;
end FACTORIAL:

If the multiplication raises NUMERIC-ERROR, then FLOAT'SAFE..LARGE Is returned by the handler, •
This value will cause further NUMERIC-ERROR exceptions to be raised by the evaluation of the
expression In each of the remaining Invocations of the function, so that for large values of N the
function will ultimately return the value FLOAT'SAFELARGE,

11-5 Exceptions Raised During the Execution of Statements 11.4.1

Willi

ANSI/MIL-STD-1815A AdR Reference Manual

13 Example:

procedure P Is
ERROR : exception:
procedure R; S

' procedure 0 Is
begin

-- error situation 42)
exception ",

when ERROR => -- handler E2

end Q;

procedure R Isbegin,. :,
b ,gin error situation (3)

end R,

begin
-- error situation (1)

exception

when ERROR => - handler El

end P;

"14 t The following situations can arise:

s 41) If the exception ERROR In raised In the sequence of statements of the outer procedure P, the
handler El provided within P Is used to complete the execution of P.

(2) If the exception ERROR Is raised In the sequence of statements of Q, the handler E2 provided
"within Q Is used to complete the execution of 0, Control will be returned to the point of cell of
0 upon completion of the handler.

1 • (3) If the exception ERROR Is raised In the body of R, called by Q, the execution of R Is abandoned
and the same exception Is raised In the body of Q0 The handier E2 Is then used to ,omplete
the execution of Q, as In situation (2).

I# Note that In the third situation, the exception raised In R results In (indirectly) transferring control
to e handier that Is part of Q and hence not enclosed by R, Note also that if a handler were
provided within R for the exception choice others, situation (3) would cause execution of this
handler, rather then direct termination of R,

Lastly, if ERROR had been declared In R, rather than In P, the handlers El and E2 could not provide
an explicit handler for ERROR since thhb Identifier would not be visible within the bodies of P and
0, In situation 13), the exception could however be handled In 0 by providing a handier for the
exception choice others.

1 1.4.1 Exceptions Raised During the Execution of Statements 11-6

.. , *. ,,. *. o I I,

Exceptions

Notes,-

The language does not define what happens when the execution of the main program is aban- 20
doned after an unhandled exception,

The predefined exceptions are those that can be propagated by tho basic operations and the 21

predefined operators,

The case of a frame that Is a generic unit ;s already covered by' the rules for subprogram and 2 ?
package bodies, since the sequence of statements of such P frame Is not executed but Is the
template for the corresponding sequences of statements of the subprograms or packages obtained "
by generic instantiation,

4. References,- accept atatement 9.6, basic operation 3.3.3, block statement 5,15, body stub 10.2, completion 9A4, 23
"declarative Item 3.0, deolarative part 3.9, dependent task 94, elaboration 3.1 3,9, exception 11, excepticon handler
11,2, frame 11.2, generic Instantlation 12,3, generic unit 12, library unit 10,1, main program 10,1, numeric-error
exception 1 1,1, package 7, package body 7.1, predefined operator 4.6, procedure fl, 1, sequence of statements 5, 1,
statement 5, subprogram 6, subprogram body 6,3, subprogram cell B,4, subunit 10,2, task 9, task body 9,1

11.4.2 Exceptions Raised During the Elaboration of Declaration@

If an exception Is raised during the elaboration of the declarative part of a given frame, this
elaboration Is abandoned, The next action depends on the nature of the frame:

(a) For a subprogram body, the same exception is raised again at the point of call of the sub- 2

program, unless the subprogram Is the main program Itself, In which case execution of the
main program Is abandoned.

(b) For a block statement, the same exception Is raised again Immediately after the block state- 3

men t.

)(c For a package body that Is a declarative Item, the same exception is raised again Immediately 4

after this declarative Item, In the enclosing declarative part. If the package body is that of a
"subunit, the exception Is raised again at the place of the corresponding body stub, If the
package Is a library unit, execution of the main program Is abandoned,

(d) For a task body, the task becomes completed, and the exception TASKING-ERROR Is raised at
the point of activation of the task, as explained In section 9,3,

Similarly, If an exception Is raised during the elaboration of either a package declaration or a task a
declaration, this elaboration Is abandoned; the next action depends on the nature of the declara-
tion.

(e) For a package declaration or a task declaration, that Is a declarative Item, the exception Is
raised again immediately after the declarative item In the enclosing declarative part or
package specification, For the declaration of a library package, the execution of the main

S•,program Is abandoned.

An exception that Is raised again (as In the above ca,4es (a), (b), (c) and (e)) Is said to be e
propagated, either by the execution of tho subprogram or block statement, or by the elaboration of
tho package declaration, task declaration, or petwkage body,

11-7 Excepttons Raesed During the Elaboration of Declarations 1 .4,2

ANS/IMIL-STO.1816A Ada Reference Manual
.t .9

• Fxample of an except/on In the declarative part of a block statement (case (b)).-

procedure P Is

begin
declare

N , INTEGER F; -- the function F may raise ERROR
begin

exception
*,•i when ERROR => -- handler El '0

end;

exception
when ERROR => -- handier E2

and P;
-I.e

I- if the exception ERROR Is raised In the declaration of N, It Is handled by E2

ic References: activation 9.3, block statement 1.6, body stub 10.2, compioetd taok 9.4, declarative Item 3,9, declarative
part 3.9, elaboration 3.1 3,9, exception 11, frame 11,2, library unit 10,1, main program 10,1, package body 7.1,
package declaration 7,1, package specification 7.1, subprogram 6, subprogram body 8,3, subprogram call 6.4, subunit
110,2, task 9, task body 9.1, task declaration 9.1, tasking-error exception 11,1

4. A

11.5 Exceptions Raised During Task Communication

An exception can be propagated to a task communicating, or attempting to communicate, with
another task. An exception can also be propagated to a calling task If the exception Is raised during
a rendezvous,

2 When j task calls an entry of another task, the exception TASKINGERROR Is raised In the calling
task, at the place of the call, If the called teak Is completed before accepting the entry call or Is
already completed at the time of the call.

3 A rendezvous can be completed abnormally In two cases:

4 .(a) When an excoption Is raised within an accept statement, but not handled within an inner
"frame. In this case, the execution of the accept statement Is abandoned and the same excep-
tion Is raised again immediately after the accept statement within the called task; the excep-
tion is also propagated to the calling task at the point of the entry call,

(b) When the task containing the accept statement Is completed abnormally as the result of an

abot statement. In this vase, the exception TASKING-ERROR Is raised In the calling task at
the point of the entry call,

.. On the other hand, If a task Issuing an entry call becomes abnormal (as the result of an ahmrt
statement) no exception Is raised In the called task, If the rendezvous has not yet started, the ntry
"cell Is cancellod, If the rendezvous Is In progress, It completes normally, and the :-,.d task Is
unaffected,

11.5 Exceptions Raised During Task Communication 11-8

Exceptions

References, abnormal task 9.10, abort statement 9,10, accept stetement 9,5, completed task 9.4, entiy call 9.5, 7

exception 11, frame 11.2, rendezvous 9,5, task 9, task termination 9,4, tasking-error exception 11.1

11.6 Exceptions and Optimization S

The purpose of this section Is to specify the conditions under which an !mplementatlon is allowed
to perform certain actions either earlier or later than specified by other rules of the language.

In general, when the language rules specify an order for certain actions (the canonical order), an '
Implementation may only use an alternative order If It can guarantee that the effect of the program
Is not changed by the reordering. In particular, no exception should arise for the execution of the
reordered program If none aries for the execution of the program In the canonical order, When,
on the other hand, the order of certain actions Is not defined by the language, any order can be
used by the Implementation, (For example, the arguments of a predeflned operator can be evalua-
ted In any order since the rules given In section 4A5 do not require a specific order of evaluation.)

Additional freedom Is left to an Implementation for reordering actions Involving predefined opera- 3

tions that are e;ther predefined operators or basic operations other than assignments, This
freedom Is left, as defined below, even In the case where the execution of these predefined opera-
tions may propagate a (predefined) exception: ,

(a) For the purpose of establishing whether the same effect Is obtained by the execution of cel'-
tamn actions In the canonical and In an alternative order, It can be assumed that none of the
predefined operations Invoked by these notions propagates a (predefined) exception, provided
that the two following requirements are met by the alternative order: first, an oporation must
not be invoked in the alternative order If It Is not Invoked in the canonical order; second, for
each operation, the Innermost enclosing frame or accept statement must be the same In the
alternative order as In the canonical order, and the same exception handlers must apply,

(b) Within an expression, the association of operators with operands Is specified by the syntax, S
However, for a sequence of predefined operators of the same precedence level (and In the
absence of parentheses Imposing a specific association), any association of operators with
operands Is allowed If It satlifles the following requ nment: an Integer result must be equal to
that given by the canonical left-to-right order; a ruwl result must belong to the rosult model
Interval defined for the canonical left-to-right order (see 4,5.7), Such a reordering Is allowed
even If It may remove an exception, or Introduce a further predefined exception,

Similarly, additional freedom Is left to an Implementation for the evaluation of numeric simple
expressions, For the evaluation of a predefined operation, an Implementation Is allowed to use the
operation of a type that has a range wider than that of the base type of the operands, provided that
this delivers the exact result (or a result within the declared accuracy, in the case of a real type),
even if some intermediate results lie outside the range of the base type, The exception
NUMERICCRROR need not be raised In such a case, In particular, If the numeric expression Is an
operand of a predefined relational operator, the exception NUMERIC-ERROR need not be raload by
the evaluation of the relation, provided that the correct BOOLEAN result Is obtained, 0

A predoflned operation need riot be invoked at all, if Its only possible effect Is to propagate a prode-
fined exception. Similarly, a predefined operation need not be Invoked If the removal of subsequent
operations by the above rule renders this Invocation Ineffective,

11-9 Exceptlons and Optirni/ition 1,.6
=;S

ANSI/MIL-STD-1815A Ada Reference Manual

Notes:

s Rule (b) applies to predefined operators but not to the short-circuit control forms.

9 The expression SPEED < 300-000.0 can be replaced by TRUE if the value 300-000.0 lies outside
the base type of SPEED, even though the Implicit conversion of the numeric literal would raise the
exception NUMERIC-ERROR.

Example.-

"declare
N : INTEGER;

begin
N := -- (1)
for J In 1 .. 10 loop

N := N + J**A(K); -- A and K are global variables
end loop;
PUT(N);

exception
when others -> PUT("Some error arose"); PUT4N);

end;

The evaluation of A(K) may be performed before the loop, and possibly Immediately before the
assignment statement (1) even If this evaluation can raise an exception. Consequently, within the
exception handler, the value of N Is either the undefined Initial value or a value later assigned. On
the other hand, the evaluation of A(K) cannot be moved before begin since an exception wouldthen be handled by a different handler, For this reason, the initialization of N in the declaration
Itself would exclude the possibility of having an undefined initial value of N In the handler,

12 References: accept statement 9.5, accuracy of real operations 4.5.7, assignment 5.2, base type 3,3, basic operation
3.3.3, conversion 4,6, error situation 11, exception 11, exception handler 11,2, frame 11.2, numer(loarror exception
111, predefined operator 4.5, predeflnod subprogram 8.6, propagation of an exception 11,4, real type 3.5.6,
undefined value 3,2,1

11.7 Suppressing Checks

The presence of a SUPPRESS pragma gives permission to an Implementation to omit certa;n in-
time checks, The form of this pragma Is as follows:

pragma SUPPRESS(identifier [, [ON =>] name]);

2 The Identifier Is that of the check that can be omitted. The name (if present) must be either a sim-
pie name or an expanded name and It must denote either an object, a type or subtype, a task unit,
or a generic unit; alternatively the name can be a subprogram name, In which case it can stand for
several visible overloaded subprograms,

Ae

1. 7 Suppressing Checks 11-10

Exceptions

A pragma SUPPRESS Is only allowed Immediately within a declarative part or immediately within
a package specification. In the latter case, the only allowed form is with a name that denotes an
entity (or several overloaded subprograms) declared Immediately within the package specification.
The permission to omit the given check extends from the place of the pragma to the end of the
declarative region associated with the Innermost enclosing block statement or program unit. For a
pragma given in a package specification, the permission extends to the end of the scope of the
named entity.

If the pragma includes a name, the permission to omit the given check is further restricted: it is 4

given only for operations on the named object or on all objects of the base type of a named type or
subtype; for calls of a named subprogram; for activations of tasks of the named task type; or for
instantlations of the given generic unit.

The following checks correspond to situations in which the exception CONSTRAINT.ERROR may
be raised; for these checks, the name (if present) must denote either an object or a type.

ACCESS-CHECK When accessing a selected component, an indexed component, a -
slice, or an attribute, of an object designated by an access value,
check that the access value is not nufl.

DISCRIMINANTCHECK Check that a discriminant of a composite value has the value imposed 7 ,,

by a discriminant constraint, Also, when accessing a record compo-
nent, check that It exists for the current discriminanrt values.

INDEX-CHECK Check that the bounds of an array value are equal to the cor- .
responding bounds of an Index constraint. Also, when accessing a
component of an array object, check for each dimension that the given
Index value belongs to the range defined by the bounds of the array
object. Also, when accessing a slice of an array object, check that the
given discrete range Is compatible with the range dofined by the

bounds of the array object.

LENGTH-CHECK Check that there Is a matching component for each component of an .
array, in the case of array assignments, type conversions, and logical
operators for arrays of boolean components,

RANGE-CHECK Check that a value satisfies a range constraint. Also, for the elabora- 10
tion of a subtype Indication, check that the constraint (if present) is
compatible with the type mark. Also, for an aggregate, check that an
Index or discriminant value belongs to the corresponding subtype.
Finally, check for any constraint checks performed by a generic Instan-
tlation.

The following checks correspond to situations in which the exception NUMERIC-ERROR Is raised, . .
The only allowed names In the corresponding pragmas are names of numeric types,

DIVISION-CHECK Check that the second operand Is not zero for the operations/, rem -

and mod,

OVERFLOW-CHECK Check that the result of a numeric operation does not overflow. 13

The following check corresponds to situations In which the exception PROGRAM-ERROR Is raised, ..
The only allowed names In the corresponding pragmas are names denoting task units, generic
units, or subprograms.

ELABORATION-CHECK When either a subprogram Is called, a task activation Is accomplished, 15

or a generic instentlation Is elaborated, check that the body of the cor-
responding unit has already been elaborated,

1 1-1 1 SuppressIng Checks 11.7

ii• •'i• ...•;i~ i• i,•• .• • .. •,i, •,•, fZ• .t.nA• • .. r."• .t. ,, t -f..... -. ... ,,. ,•• - -. . -.

ANSI/MIL-STD-1815A Ada Reference Manual

SThe following check corresponds to situations In which the exception STORAGE-ERROR is raised.
The only allowed names in the corresponding pragmas are names denoting access types, task
units, or subprograms,

17 STORAGE-CHECK Check that execution of an allocator does not require more space than is 01
available for a collection, Check that the space available for a task or
subprogram has not been exceeded,

is If an error situation arises In the absence of the corresponding run-time checks, the execution of
the program is erroneous (the results are not defined by the language).

p Examples:

pragma SUPPRESS(RANGECHECK);
pragma SUPPRESS(INDEX)CHECK, ON => TABLE);

Notes: -.Iim
20 For certain Implementations, It may be Impossible or too costly to suppress certain checks. The

corresponding SUPPRESS pragma can be ignored. Hence, the occurrence of such a pragma within
a given unit does not guarantee that the corresponding exception will not arise; the exceptions
may also be propagated by called units.

21 References: access type 3.8, access value 3.8, activation 9,3, aggregate 4.3, allocator 4,8, array 316, attribute 4,1.4,
block statement 5,6, collection 3.8, compatible 3.32, component of an array 3,6, component of a record 3.7, com-
posite type 3.3, constraint 3.3, constraint-error exception 11.1, declarative part 3,9, designate 3,8, dimension 3.6,
discrete range 3.6, diacrlmlnant 3,7,1, discrlmlnant constraint 3.7.2, elaboration 3.1 3.9, erroneous 1,6, error situation
11, expanded name 4,1.3, generic body 11,1, generic Instantiation 12.3, generic unit 12, Identifier 2.3, index 3,8,h Index constraint 3,6,1, Indexed component 4,1.1, null access value 3,8, numeric operation 345.5 3.5.8 3.5.10, numeric
type 3,5, numeric-error exception 11,1, object 312, operation 3,3.3, package body 7,1, package specification 7,1,

pregma 2,8, program-error exception 11,1, program unit 6, propagation of an exception 11A4, range constraint 3,5,
record type 3.7, simple name 4.1, slice 4.1.2, subprogram 6, subprogram body 6.3, subprogram cell 8.4, subtype 3,3,
subunit 10,2, task 9, task body 9,1, talk typO 9.1, task unit 9, type 3.3, type mark 3.3.2

11 7

=•iI11.7 Suppress/ing Checks 11-12

• f

12. Generic Units

A generic unit is a program unit that is either a generic subprogram or a generic package. A
generic unit Is a template, which Is parameterized or not, and from which corresponding
(nongeneric) subprograms or packages c3n be obtained. The resulting program units are said to be
Instances of the original generic unit.

A generic unit Is declared by a generic declaration. This form of declaration has a generic formal 2 2<.
part declaring any generic formal parameters. An Instance of a generic unit Is obtained as the
result of a generic Instantlation with appropriate generic actual parameters for the generic formal
parameters. An Instance of a generic subprogram is a subprogram, An instance of a generic
package Is a package.

Generic units are templates. As templates they do not have the properties that are specific to their 3

nongeneric counterparts. For example, a generic subprogram can be Instantiated but It cannot be
called. In contrast, the Instance of a generic subprogram Is a nongeneric subprogram: hence, this
Instance can be called but It cannot be used to produce further instances,

References. declaration 3.1, generic actual parameter 12.3, goneric declaration 12.1, generic formal parameter 12,1, 4

generic formal part 12.1, generic Instantlatlon 12,3, generic package 12,1, generic subprogram 12,1, Instance 12.3,
package 7, program unit 0, subprogram 6 Y,

"12.1 Generic Declarations

A generic declaration declares a generic unit, which Is either a generic subprogram or a generic
package, A generic declaration Includes a generic formal part declaring any generic formal
parameters, A generic formal parameter can be an object, alternatively (unlike a parameter of a
subprogram), It can be a type or a subprogram.

generic-declaration : generic-specIficatlon; 2

generic.speciflcation ::=
generlc-formal.part aubprogram-jpecification

I genericjformal-part package-specification

generic-formal-part ::= generic Igeneric-parameter-declaration I

genericpararameter._declaration
Identifier-list : [in [out)) type-mark I:= expression];

4 type Identifier Is generic-type.defInitIon;
private..type-de cis ration

"I with subprogramj.pacificatlon lie name];
I with aubprogram-jperificatlon lie <>;,

generic-type.definition
(<>) I range <> I digits <> I delta <>

I array-type-definitlon I accesLtype-deflnitlon

"12-1 Generic Declarations 12.1

ANSI/MIL-STD-1815A Ads Reference Manual

The terms generic formal object (or simply, formal object), generic formal type (or simply, formal
type), and generic formal subprogram (or simply, formal subprogram) are used to refer to cor-
responding generic formal parameters.

The only form of subtype Indication allowed within a generic formal part is a type mark (that Is, the
subtype indication must not Include an explicit constraint). The designator of a generic sub-
program must be an identifier.

Outside the specification and body of a generic unit, the name of this program unit denotes the
generic unit. In contrast, within the declarative region associated with a generic subprogram, the
name of this program unit denotes the subprogram obtained by the current instantiation of the

generic unit, Similarly, within the declarative region associated with a generic package, the name

of this program unit denotes the package obtained by the current Instandation,

s The elaboration of a generic declaration has no other affeot,

7 Examples of generic formal parts:

generic -- parameterless .

generic
SIZE NATURAL; -- formal object

generic

LENGTHI INTEGER := 200; -- formal object with a default expression
AREA INTEGER LENGTH*LENGTH; -- formal object with a default expression

generic
type ITEM Is private; -- formal type
type INDEX Is (<>)' -- formal type
type ROW Is erray(INDEX range <>) of ITEM; -- formal type
with function "<"(X, Y : ITEM) return BOOLEAN: -- formal subprogram

Examples of generic declarations declaring generic subprograms.:

generic
type ELEM Is private;

procedure EXCHANGE(U, V :in out ELEM);

generic
type ITEM Is private;
with function "**(U, V ITEM) return ITEM Is <>;

function SQUARING(X : ITEM) return ITEM;

2 Example of a generic declaration declaring a generic package:

generic
type ITEM Is private;
type VECTOR Is array (POSITIVE range <>) of ITEM;
with function SUM(X, Y : ITEM) return ITEM:

package ON-VECTORS Is
function SUM (A. B : VECTOR) return VECTOR:
function SIGMA (A VECTOR) return ITEM;
LENGTH-ERROR exception;

end:

12.1 Generic Declarations 12-2

Generic Units

'. Notes:

Within a generic subprogram, the name of this program unit acts as the name of a subprogram, I0
Hence this name can be overloaded, and it can appear in a recursive call of the current instantia-
tion. For the same reason, this name cannot appear after the reserved word new in a (recursive)
"generic instantlation. 0

An expression that occurs in a generic formal part is either the default expression for a generic for-
Srmal object of mode In, or a constituent of an entry name given as default name for a formal sub..

"program, or the default expression for a parameter of a formal subprogram. Default expressions for
generic formal objects and default names for formal subprograms are only evaluated for generic
irstantlations that use such defaults. Default expressions for parameters of formal subprograms "'0
are only evaluated for calls of the formal subprograms that use such defaults. (The usual visibility
rules apply to any name used In a default expression: the denoted entity must therefore be visible
at the place of the expression.)

Neither generic formal parameters nor their attributes are allowed constituents of static expres- 12
sions (see 4.9).

References: access type definition 3.8, array type definition 3,5, attribute 4,1,4, constraint 3,3, declaration 3.1,
designator 8,1, elaboration has no other effect 3.1, entity 31, expression 4,4, function 6,5, generic Instantlatlon 12.3,
identifier 2,3, Identifier list 3,2, Instance 12,3, name 4,1, object 3.2, overloading 6,6 8,7, package specification 7,1,
parameter of a subprogram 8,2, private type definition 74, procedure 6,1, reserved word 2,9, static expression 4,9,
subprogram 6, subprogram specification 8.1, subtype Indication 3,3,2, type 3,3, type mark 3.3.2

12.1.1 Generic Formal Objeots

The first form of generic parameter declaration declarei generic formal objects, The type of a
generic formal object is the base type of the type denoted by the type mark given In the generic
parameter declaration, A generic parameter declaration With several Identifiers is equivalent to a
sequence of single generic parameter declarations, as explalnea, In section 3.2.

A generic formal object has a mode that Is e;ther in or iy out, In the absence of an explicit mode 2

indication In a generic parameter declaration, the mode in Is assumed; otherwise the mode Is the
one Indicated, If a generic parameter declaration ends With an expression, the expression is the
default expression of the generic formal parameter, A default expression Is only allowed If the
mode is in (whether this mode Is Indicated explicitly or implicitly), The type of a default expression
must be that of the corresponding generic formal parameter.

"A generic formal object of mode In is a constant whose value is a copy of the value supplied as the 3

"matching generic actual parameter In a generic Instantlation, as described in section 12.3, The
type of a generic formal object of mode In must not be a limited type; the subtype of such a generic
formal object Is the subtype denoted by the type mark given in the generic parameter declaration,

A~i A generic formal object of mode In out is a variable and denotes the object supplied as the 4--

matching generic actual parameter In a generic Instantlation, as described In section 12.3, The
constraints that apply to the generic formal object are those of the corresponding generic actual
parameter. .

12-3 Generic Formal Oblects 12.1, 1

ANSI/MIL-STD-1815A Ada Reference Manual

Note:

The constraints that apply to a generic formal object of mcde In out are those of the corresponding
generic actual parameter (not those implied by the type mark that appears In the generic
parameter declaration), Whenever possible (to avoid contusion) It is recommended that the name
of a base type be used for the declaration of such a fckrmi:. obiec", If, however, the base type is
anonymous, It is recommendod that the subtype nat"- Hofined ov the type declaration for the base
type be used.

References: anonymous type 3.3.1, assignment 5.2, base type 3.3, constan? declaration 3,2, constraint 3.3,
declaration 3.1, generic actual parameter 12.3, generic formal oblect 12,1, generic wormal parameter 12,1, generic
instantlation 12.3, generic parameter declaration 12,1, Identifier 2,3, limited type 7,4.4, matching generic actunl
parameter 12.3, mode 8,1, name 4.1, object 3,2, simple name 4,1, subtype 3.3, type declaration 3.3, type mark 3.3,2,
variable 3.2.1

12.1.2 Generic Formal Type"
p.,g

A generic parameter declaration that Includes a generic type definition or a private type declaration
declares a generic formal type. A generic formal type denotes the subtype supplied as the cor-
responding actual parameter In a generic instantlation, as described in 12.3(d). However, within a
generic unit, a generic formal type Is considered as being distinct from all other (formal or nonfor-
rmel) types. The form of constraint applicable to a formal type In a subtype Indication depends on 1'

the class of the type as for a nonformal type,

The only form of discrete range that Is allowed within the declaration of a generic formal
(constrained) array type Is a type mark,

The discriminant part of a generic formal private type must not Include a default expression for a C' A"
discriminant, (Consequently, a variable that Is declared by an object declaration must be con-
strained if Its type Is a generic formal type with discrlmlnants.)

4 Within the declaration and body of a generic unit, the operations available for values of a generic
formal type (apart from any additional operation specified by a generic formal subprogram) are
determined by the generic parameter declaration for the formal type: .'

(a) For a private type declaration, the avalloblk operations are those defined In section 7.4.2 (in
particular, assignment, equality, and Inequality are available for a private type unless It Is
limited),

6 (b) For an array type definition, the available operations are those defined in section 316.2 (for
example, they Include the formation of indexed components and slices).

(r) For an access type definition, the available operations aro those defined in section 3,8.2 (for
example, allocators can ba used),

The four torms of generic type definition In which a box appoars (that I0, the compound delimiter
<>) correspond to the following major forms of ticalar type:

(d) Dlscrý,-)ta types: (<>)

The avallable operations are the operations common to enumeration and Integer types; these
are defined In section 3.5.8, , .

12.1,2 Generic Foinmal rypes 12-4

" " " I"

Generic Units

(e) Integer types: range <> .0

The available operations are the, operations of Integer types defined in section 3,5,5.

(f) Floating point types: digits <> . .

The available operations are those defined in section 3.5,8.

(g) Fixed point types: delta <> W

The available operations are those defined In section 3.5,10.

In all of the above cases (a) through (f), each operation implicitly associated with a formal type 13

(that Is, other than an operation specified by a formal subprogram) is implicitly declared at the
place of the declaration of the formal type, The same holds for a formal fixed point type, except for
the multiplying operators that deliver a result of the type unIversalJixed (see 4.5,5), since these
special operators are declared In the package STANDARD, .

For an instantiatlon of the generic unit, each of these operations is the corresponding basic opera- 14

tion or predeflned operator of the matching actual type. For an operator, this rule applies even if
the operptor has been redefined for the actual type or for some parent type of the actual type.

Examples of generic formal types:.

type ITEM Is private;
type BUFFER(LENGTH : NATURAL) Is limited private:

type ENUM Is I<>):
type INT Is range <>,,
type ANGLE Is delta <>:'
type MASS Is digits <>;

type TABLE Is array (ENUM) of ITEM;

Example of a generic formal part declaring a formal Integer type., x-

generic
type RANK Is range <>;
FIRST : RANK := RANK'FIRST:
SECOND : RANK := FIRST + 1; -- the operator "+" of the type RANK

References: access type definition 3,8, allooator 4.8, array type definition 3.6, assignment 5,2, body of a generic unit
12,2, class of type 3,3, constraint 3,3, declaration 3,1, declaration of a generic unit 12,1, discrete range 3.6, discrete
type 3,5, dlscriminant part 3,7,1, enumeration tyoe 3451, equality 4,6.2, fixed point type 3,519, floating point type
3.5,7, generic actual type 12,3, generic formal part 12,1, generic formal subprogram 12,1.3, qenerlc formal type 12,1,
generic parameter declaration 12,1, generic type definition 1 2.1, Indexed component 4,1,1, InequalltV 4.5,2, Instantla-
tlon 12,3, Integer type 3,5,4, limited private type 7,4,4, matching generic actual type 12,3,2 12.3.3 12,3.4 12.3.5,
multiplying operator 4,5 4.5.5, operation 3,3, operator 4,5, parent type 3,4, private type dmfinition 7.4, scalar type 3.5,
slice 4.1.2, standard package 8,8 C, subtype Indication 3,312, type mark 3.3.2, universal-fixed 3,5,9

"12-5 Generic Formal Types 12.1.2

.% "'. .J .. ,

ANS//M/L-STD-1815A Ada Reference Manual

12.1.3 Generic Formal Subprograms

A generic parameter declaration that Includes a subprogram specification declares a generic for-

mal subprogram, .

_-'Two alternative forms of defaults can be specified in the declaration of a generic formal sub-,', program. In these forms, the subprogram specification Is followed by the reserved word Is and
either a box or the name of a subprogram or entry. The matching rules for these defaults are"explained in section 12,3,6,

.:1 A generic formal subprogram denotes the subprogram, enumeration litera', or entry supplied as the
corresponding generic actual parameter In a generic Instantlation, as described In section 1 2,3(f),

', Examples of generic formal subprograms:

"with function INCREASE(X , INTEGER) return INTEGER;
with function SUMIX, Y :ITEM) return ITEM;

with function "+"(X, Y ITEM) return ITEM is <>;
with function IMAGE(X ENUM) return STRING Is ENUM'IMAGE;

with procedure UPDATE is DEFAULr'.UPDATE;

Notes, ,*

The constraints that apply to a parameter of a formal subprogram are those of the corresponding
parameter in the specification of the matching actual subprogram (not those Implied by the cor-
responding type mark In the specification of the formal subprogram), A similar remark applies to
the result of a function, Whenever possible (to avoid confusion), It Is recommended that the name
of a base type be used rather than the name of a subtype In any declaration of a formal sub-
program. If, however, the ba3u type it anonymous, It Is recommended that the subtype name
defined by the type ddclaration be used,

6 The type specified for a formal parameter of a generic formal subprogram can be any visible type,
including a generic formal type of the same generic formal part.

References, anonymous type 3,3, 1, bass type 3,3, box delimiter 12,112, constraint 3,3, designator 6,1, generic actual
parameter 12,3, generic formal function 12.1, generic formal subprogram 12.1, generic InstantlatIon 12.3, generic
parameter declaration 12,1, Identifier 2.3, matching generic actual subprogram 12,36, operator symbol 6,1,
parameter of a subprogram 6.2, renaming declaration 8,5, reserved word 2,9, scope 82, subprogram 6, subprogram
specification 6.1, subtype 33,2, type 3.3, type mark 3.3,2

12.2 Generic Bodies

The body of a generic subprogram or generic package is a template for the bodies of the cor ...
responding subprograms or packages obtained by generic Instantlations. The syntax of a generic
body is Identical to that of a nongeneric body.

For each declaration of a generic subprogram, there must be a corresponding body,

"12.2 Generic Bodies 12-6

Generic Units

The elaboration of a generic body has no other effect than to establish that the body can from then
on be used as the template for obtaining the corresponding Instances.

Example of a goner/c procedure body:4

* procedure EXCHANGE(U, V : In out ELEM) Is -- see example In 12,1
T ELEM; - the generic formal type

begin

V T;
end EXCHANGE;

Example of a generic function body:

function SQUARING(X : ITEM) return ITEM Is - see example In 12.1
begin

return X*X; -the formal operator *

and;

Example of a generic package body:a

package body ON-..VECTORS Is -*see example in 12,1

function SUM(A, 9 - VECTOR) returni VECTOR Is
RESULT :VECTOR4ARANGE); ~thes formal type VECTOR
BIAS : osistant INTEGER :- WFIRST -A'IFIRST;

begin
If A'LENGTH /- B'LENGTH then L.

raiese LENGTH-..ERROR;
and If:

for N In A'RANGE loop
RESULTIN) :- SUM(AIN), B(N + BIAS));: - the formal function SUM

and loop;
retuorn RESULT;

end:

* Ifunction SIGMA(A VECTOR) return ITEM Is
TOTAL : ITEM :~A(A'FIRST); -- the formal type ITEM

begint
for N In A'FIRST + 1 .. A'LAST loop

TOTAL. :- SUM(TOTAL, Aft):;- the formal function SUM
end loop;
return TOTAL;

end;
end;

References: body 3,9, elaboration 3,9, generic body 12, 1, generic Instantiatlon 12,3, generic package 12. 1, generic
subprogram 12.1, Instance 12,3, paokage body 7.1, package 7, subprogram 6, subprogram body 6,3

12-7 Generic Bodies 12.2

ANSIIMIL-STD-1767 Ada Rleference Manual

12.3 Generic Instantiation

An instance of a generic unit Is declared by a generic Instantiation.

0 2 generic-instantlation
package identifier Is

new generlc..peckage.-namo [generic-actual part 1:
I procedure Identifier Is

new gene,1c_.orocedure.name [generic-actual-partl;
function designator Is

new generir Junctlon.name (generic-actual-part];

goneric-actual-part ::=
(generic-association (, generlc.assoclatlonl)

generlc.association ::=
[generic-formal parameter ->1 generic.actual parameter

genericiforma lparameter := parameter.simple.name I operator-symbol

genirl-_ctual-parameter ::-- expression I variable.name
subprogram-name I entry-name I type-mark

3 An explicit generic actual parameter must be supplied for each generic formal parameter, unlessa
the corresponding generic parameter declaration specifies that a defoult can be used, Generic
associations can be either positional or named, in the same manner as parameter associations of
subprogram calls (see 6.4). If two or more formal subprograms have the same designator, than
named associations are not allowed for the corresponding generic parameters.

"4 Each generic actual parameter must match the corresponding generic formal parameter, An
expression can match a formal object of mode In; a variable name can match a formal object ofmods In out: a subprogram name or an entry name can match a formal subprogram!, a type mark ,,,
can match a formal type, The detailed rules defining the allowed matches are given in sentions
12.3.1 to 12.3.6; these are the only allowed matches.

The instance Is a copy of the generic unit, apart from the generic formal part; thus the instance of
generic package Is a package, that of a generic procedure is a procedure, and that of a generic

function Is a function, For each occurrence, within the generic unit, of a name thet denotes a given
entity, the following list defines which entity is denoted by the corresponding occurrence withinthe instance.

5 (a) For a name that denotes the generic unit: The corresponding occurrence denotes theInstance.

(b) For a name that denotes a generic formal object of mode In: The corresponding name
denotes a constant whose value Is a copy of the value of the associated generic actual
parameter,

-A a (c) For a name that denotes a generic formal object of mode In out: The corresponding name
denotes the variable named by the associated generic actual parameter,

(d) For a name that denotes a generic formal type: The corresponding name denotes the subtype
named by the associated generic actual parameter (the actual subtype),

io (e) For a name that denotes a discrlmlnant of a generic formal type: The corresponding name
denotes the corresponding discrlmlnant (there must be one) of the actual type associated with
the generic formal type.

12.3 Generic In•tantlatlon 12-8

q 0 i • , ' ' . , , • , , ' , ." ".,

Generic Units

(f) For a name that denotes a generic formal subprogram: The corresponding name denotes the
subprogram, enumeration literal, or entry named by the associated generic actual parameter
(the actual subprogram).

V For a name that denotes a formal parameter of a generic formal subprogram: The cor- I?

responding name denotes the corresponding formal parameter of the actual subprogram
associated with the formal subprogram.

(h) For a name that denotes a local entity declared within the generic 11nit: The corresponding
name denotes the entity declared by the corresponding local declaration within the instance.

(I) For a name that denotes a global entity declared outside of the generic unit: The cor-
responding name denotes the same global entity.

Similar rules apply to operators and basic operations: In particular, formal operators follow a rule
similar to rule (f), local operations follow a rule similar to rule (h), and operations for global types
follow a rule similar to rule (I), In addition, If within the generic unit a predeflned operator or basic
operation of a formal type Is used, then within the Instance the corresponding occurrence refers to
the corresponding predefined operation of the actual type associated with the formal type.

The above rules apply also to any type mark or (default) expression given within the generic formal
part of the generic unit.

For the elaboration of a generic Instantlation, each expression supplied as an explicit generic actual 17

parameter Is first evaluated, as well as each expression that appears as a constituent of a variable
name or entry name supplied as an explicit generic actual parameter; these evaluations proceed In
some order that Is not defined by the language, Then, for each omitted generic association (If any),
the corresponding default expression or default name Is evaluated; such evaluations are per-
formed In the order of the generic parameter declarations, Finally, the Implicitly generated Instance
Is elaborated, The elaboration of a generic Instantlation may also Involve certain constraint checks
as described In later subsections,

Recursive generic Instantlatlon Is not allowed In the following sense: If a given generic unit .,
Includes an Instantlation of a second generic unit, then the Instance generated by this Instantlation
must not Include an Instance of the first generic unit (whether this Instance Is generated directly, or
indirectly by Intermediate Instantlations).

Examples of generic Instantletlons (see 12.1): 1,

procedure SWAP Is new EXCHANGE(ELEM => INTEGER);
procedure SWAP is new EXCHANGE(CHARACTER); -, SWAP Is overloaded

function SQUARE Is new SQUARING (INTEGER); -- ". of INTEGER used by default
function SQUARE Is new SQUARING (ITEM -> MATRIX, "*'" => MATRIX-PRODUCT);
function SQUARE Is new SQUARING (MATRIX, MATRIX-PRODUCT); -- same as previous

package INTVECTORS Is now ONVECTORS(INTEGER, TABLE, "+"'

Examples of uses of Instantiated units; 9,4

SWAP(A, B):
A :- SQUARE(A);

T : TABLE(1 ,5) :, (10, 20, 30, 40, 50); .
N : INTEGER := INT.VECTORS.SIGMA(T): -- 150 (nee 12,2 for the body of SIGMA)

use INTVECTORS;
M : INTEGER :'= SIGMA(T); .- 150

12-9 Generic Instantlatlon 12,3

.........

ANSI/MIL-STD-18.5A Ada Reference Maniul
',0

Notes:

21 Omission of a generic actual parameter Is only allowed if a corresponding default exists. If default
expressions or default names (other than simple names) are used, they are evaluated in the order
in which the corresponding generic formal parameters are declared.

22 If two overloaded subprograms dec;ared in a generic package specification differ only by the (for-
mal) type of their parameters and results, then there exist legal instantiations for which all calls of
these subprograms from outside the instance are ambiguous. For example:

"generic
tipe A in (<>); "
type B is private;

package G Is
"function NEXT(X A) return A;
function NEXT(X : B) return B;

end;

package P Is new G(A => BOOLEAN, B => BOOLEAN);
-- calls of P,NEXT are ambiguous

23 References: declaration 3,1, designator 6.1, dliscrimlnant 3.7,1, elaboration 3,1 3.9, entity 3.1, entry name 9.5,
evaluation 4,5, expression 4,4, generic formal object 12.1, generic formal parameter 12,1, generic formal subprogram
12,1, gb,:erlc formal type 12,1, generic parameter declaration 12,1, global declaration 8,1, Identifier 2.3, Implicit
declaration 3,1, local declaration 8.1, mode In 12.1,1, mode In out 12,1.1, name 4,1, operation 3.3, operator symbol L..
6.1, overloading 6,6 8,7, package 7, simple name 4.1, subprogram 6, subprogram call 6.4, subprogram name 6.1,
subtype declaration 3,3.2, type mark 3.3,2, variable 312,1, visibility 8.3

12.3.1 Matching Rules for Formal Objects

A generic formal parameter of mode in of a given type Is matched by an expression of the same
type. If a generic unit has a generic formal object of mode In, a check Is made that the value of the
expression belongs to the subtype denoted by the type mark, as for an explicit constant declara-
tion (see 3.2.1). The exception CONSTRAINT-ERROR is raised If this check falls,

2 A generic formal parameter of mode In out of a given type Is matched by the name of a variable of
the same type, The variable must not be a formal parameter of mode out or a subcomponent
thereof. The name must denote a variable for which renaming Is allowed (see 8.5).

Notes:.

The type of a generic actual parameter of mode in must not be a limited type, The constraints that
apply to a generic formal parameter of mode In out are those of the corresponding generic actual
parameter (see 12.1.1),

4 References: constraint 3.3, constraint-error exception 11,1, expression 4,4, formal parameter 6.1, generic actual
parameter 12,3, generic formal object 1 2.1.1, generic formal parameter 12.1, generic Instantlation 12,3, generic unit
12.1, limited type 7.4,4, matching generic actual parameter 12.3, mode In 12.1.1, mode In out 12,1.1, mode out 6 2,
name 4.1, raising of exceptions 11, satisfy 3.3, subcomponent 3.3, type 3,3, type mark 3.3.2, variable 3.2,1

12.3. 1 Matching Rules for Formal Objects 12-10

- 0

usneric unnts

12.3.2 Matching Rules for Formal Private Types

A generic formal private type Is matched by any type or subtype (the actual subtype) that satisfies
the following conditions:

0 If the formal type Is not limited, the actual type must not be a limited type. (If, on the other 2

hand, the formal type is limited, no such conaltlon Is imposed on the corresponding actual
type, which can be limited or not limited.)

* If the formal type haer a discriminant part, the actual type must be a type with the same 3

number of discriminarnts; the type of a r4lscrlminant that appears at a given position In the dis-
criminant part ot the actual type must be the same as the type of the dIscriminant that
appears at the same position In the discriminant part of the formal type; and the actual sub..
type must be unconstrained. (If, on the other hand, the formal type has no discriminants, the
actual type Is allowed to have discrimlnants.)

Furthermore, consider any occurrence of the name of the formal type at a place where this name Is 4 "
used as an unconstrained subtype Indication. The actual subtype must not be an unconstrained
array type or an unconstrained type with discrimInants, If any of these occurrences Is at a place
where either a constraint or default dlscrimlnants would be required for an array type or for a type
with discriminants (see 3.6.1 and 3.7.2). The same restriction applies to occurrences of the name
of a subtype of the formal type, and to occurrences of the name of any type or subtype derived,
directly or indirectly, from the formal type.

If a generic unit has a formal private type with discriminants, the elaboration of a corresponding
generic Instantlation checks that the subtype of each discriminant of the actual type is the same as
the subtype of the corresponding discriminant of the formal type. The exception
"CONSTRAINT-ERROR Is raised If this check fella.

References: array type 3,6, constraint 3.3, constrainLerror exception 11 1, default expression for a discriminant a
.4 3.7.1, derived type 3.4, dlscriminant 3,7.1, dlscriminant part 3,7,1, elaboration 3.9, generic actual type 12.3, generic

body 122, generic formal type 12.1.2, generic Instantlation 12,3, generic specification 12.1, limited type 7.4,4.
matching generic actual parameter 12,3, name 4.1, private type 7.4, raising of exceptions 11, subtype 3.3, subtype
Indication 3.3.2, type 3,3, type with dlioriminants 3.3, unconstrained array type 3.6, unconstrained subtype 3,3

12.3.3 Matching Rules for Formal Scalar Types

A generic formal type defined by (<>) Is matched by any discrete subtype (that is, any enumera-
tion or Integer subtype). A generic formal type defined by range <> Is matched by any Integer
subtype. A generic formal type defined by digits <> Is matched by any floating point subtype. A
generic formal type defined by delta <> Is matched by any fixed point subtype, No other matches
are possible for these generic formal types.

References: box delimiter 12.1.2, discrete type 3.5, enumeration type ;.5.1, fixed point type 3.5.9, floating point type 2

3,5.7, generic actual type 12.'3, generic formal type 12.1,2, generic type definition 12,1, Integer type 3,5.4, matching
generic actual parameter 1213, scalar type 3.5

12-1 1 Matching Rules for Formal Scalar Types 12.3.3

ANSI/MIt-S TD-1815A Ada Reference Manual

12.3.4 Matching Rules for Formal Array Types

A formal array type Is matched by an actual array subtype that satisfies the following conditions:

20 The formal array type and the actual array type must have the same dimensionality, the for-
mal type and the actual Subtype must be either both constrained or both unconstrained.

9 For each Index position, the Index type must be the same for the actual array type as for the
formal array type.

U The component type must be the same for the actual array type as for the formal array type. If
the component type Is other than a scalar type, then the component subtypes must be either
both constrained or both unconstrained.

5 If a generic unit has a formal array type, the elaboration of a corresponding instantiation checks
that the constraints (if any) on the component type are the same for the actual array type as for -theN formal array type, and likewise that for any given index position the Index subtypes or the discrete

* ~ranges have the same bounds. The exception CONSTRAINT-.ERROR Is raised If this check fails.

* ~ Example.-

-- given the generic package

generic
type ITEM Is private;
type INDEX is k>)
type VECTOR Is array (INDEX range <>) of ITEM;
typo TABLE Is array (INDEX) of ITEM;

package P Is

end:

-- and the types

type MIX Is array (COLOR range <>) of BOOLEAN;
type OPTION is array (COLOR) of BOOLEAN,

* *- then MIX can match VECTOR and OPTION can match TABLE

package R Is new P(ITEM => BOOLEAN, INDEX => COLOR,
VECTOR => MIX, TABLE ý> OPTION);

* -Note that MIX cannot match TABLE and OPTION cannot match VECTOR

Note:.

1 For the above rules, If any of the Index or component types of the formal array type Is Itself a formal
type, then within the Instance Its name denotes the corresponding actual subtype (see 12.3(d)).

Refer5'nces: array' type 3.6, array type definition 3,6, component of an array 3.63, constrained array type 3.6,
constraint 33, constraint-error exception 1 1. 1, elaboration 3.9, formal type 12. 1, generic foo-mai type
12.1.2, generic Instantiation 12.3, Index 3,6, Index constraint 3.8.1, matching generic actual perameter
12.3, raise statement 11.3, subtype 3.3, unconstrained array type 3.6

12.3.4 Matching Ru/es for Forma/Atray Types 12-12

Generic Units

12.3.5 Matching Rules for Formal Access Types

A formal access type Is matched by an actual access subtype If the type of the designated objects
is the same for the actual type as for the formal type. If the designated type Is other than a scaler
type, then the designated subtypes must be either both constrained or both unconstrained.

If a generic unit has a formal access type, the elaboration of a corresponding instantiation checks .
that any constraints on the designated objects are the same for the actual access subtype as for
the formal access type. The exception CONSTRAINT-ERROR Is raised if this check fails.

Example: 3

-- the formal types of the generic package

generic
type NODE Is private;
type LINK Is access NODE;

package P Is

end;

-- can be matched by the actual types

type CAR;
type CAR-NAME Is acems CAR;

type CAR Is
record

PRED, SUCC CAR-NAME;
NUMBER : LICENSENUMBER;
OWNER : PERSON;

end record; :'

- In the following generic Instantlation

package R Is new P(NODE => CAR, LINK => CAR.NAME);

Note:

For the above rules, If the designated type is Itself a formal type, then within the Instance Its name 4

denotes the corresponding actual subtype (see 12.3(d)).

References. accesL 'ype 3,8, access type definition 3.8, constraint 3.3, constraln.error exception 11,1, designate .
3.8, elaboration 3.9, generic formal type 12,1,2, generic Inetantlation 12,3, matching generic actual parameter 12,3,
object 3.2, raise statement 11.3, value of access type 3.8

12-13 MatchIng Rules for Formal Access Types 12.3.5"'"•- -.. - .- S - * -.

ANSI/MIL-STD-1815,4 Ads Reference Manual

12.3.6 Matching Rules for Formal Subprograms
4

A formal subprogram Is matched by an actual subprogram, enumeration literal, or entry if both
have the same parameter and result type profile (see 6.6); in addition, parameter modes must be
Identical for formal parameters that are at the same parameter position. 0

If a generic unit has a default subprogram specified by a name, this name must denote a sub-
program, an enumeration literal, or an entry, that matches the formal subprogram (in the above
sense). The evaluation of the default name takes place during the elaboration of each Instantlatlon
that uses the default, as defined in section 12.3... 0

If a generic unit has a default subprogram specified by a box, the corresponding actual parameter
can be omitted If a subprogram, enumeration literal, or entry matching the formal subprogram, and
with the same designator as the formal subprogram, Is directly visible at the place of the generic
Instantlation; this subprogram, enumeration literal, or entry Is then used by default (there must be
exactly one subprogram, enumeration literal, or entry satisfying the previous conditions).

Example:

-- given the generic function specification
type ITEM Is private; i•l.•

with function "," (U, V ITEM) return ITEM Is <>:
function SQUARING(X :ITEM) return ITEM;

-- and the function

function MATRIX..PRODUCT(A, B MATRIX) return MATRIX:

-- the following Instantlation Is possible

function SQUARE Is new SQUARING(MATRIX, MATRIX..PRODUCT);

-. the following instantlatlons are equivalent

function SQUARE Is new SQUARING(ITEM _> INTEGER, "," => "a");
function SQUARE Is new SQUARING(INTEGER, V";) ;1
function SQUARE Is new SQUARING(INTEGER);

Notes,-

5 The matching rules for formal subprograms state requirements that are similar to those applying to
subprogram renaming declarations (see 8.5). In particular, the name of a parameter of the formal
subprogram need not be the same as that of the corresponding parameter of the actual subpro-
gram; similarly, for these parameters, default expressions need not correspond.

6 A formal subprogram Is matched by an attribute of a type if the attribute Is a function with a
matching specification, An enumeration literal of a given type matches a parameterless formal
function whose result type Is the given type.

7 References: attribute 4,1,4, box delimiter 12.1,2, designator 6,1, entry 9,5, function 6,5, generic actual type 12.3,
generic formal subprogram 12.1,3, generic formal type 12,1.2, generic Instantltlon 12,3, matching generic actual
parameter 123, name 4,1, parameter end result type profile 6.3, subprogram e, subprogram specification 6.1, sub-
type 3,3, visibility 8.3

12,316 MatchIng Rules for Formal Subprograms 12-14

* Generic Units

12.4 Example of a Generic Package

The following example provides a possible formulation of stacks by means of a generic package.
The size of each stack and the type of the stack elements are provided as generic parameters.

generic '
SIZE : POSITIVE;
type ITEM Is private;

package STACK Is
procedure PUSH (E In ITEM);
procedure POP (E : out ITEM);
OVERFLOW, UNDERFLOW exception;

end STACK;

package body STACK Is

type TABLE Is rray (POSITIVE range <>) of ITEM;
SPACE TABLE(1 ., SIZE);
INDEX NATURAL :- 0;

procedure PUSH(E :In ITEM) Is
begin

If INDEX >= SIZE then
raise OVERFLOW;

end If;
INDEX := INDEX + 1;
SPACE(INDEX) := E;

end PUSH;

procedure POP(E : out ITEM) Is
begin

if INDEX - 0 then
raise UNDERFLOW;

end If;
E :- SPACE(INDEX);
INDEX := INDEX- 1;

end POP;

end STACK;
Instances of this generic package can be obtained as follows: 3

package STACK.INT Is new STACK(SIZE => 200, ITEM => INTEGER);

package STACKBOOL Is new STACK(100, BOOLEAN);

Thereafter, the procedures of the Instantiated packages can be called as follows:

STACKINT, PUSH(N);
STACKBOOLPUSH(TRUE);

12-15 Example of a Generic Package 12,4

• • ., .. ."..

ANSIIMIL-STD-1815A Ada Reference Manual

Alternatively, a generic formulation of the type STACK ran be given as follows (package body
omitted):

generic
type ITEM Is private;

package ON-.STACKS Is
type STACK(SIZE :POSITIVE) Is limited private;
procedure PUSH (S :In out STACK; E :In ITEM)
procedure POP (S :In out STACK; E :out ITEM)
OVERFLOW, UNDERFLOW -exception;

private
type TABLE is array (POSITIVE range <>) of ITEM;
type STACK(SIZE :POSITIVE) Ito

record
SPACE iTABLE(1* SIZE);
INDEX :NATURAL :- 0;

end record;
end;

In order to use such a package, an Instantiation must be created and thereafter stacks of the cor-
responding type can be declared:

declare
package STACK-REAL Is now ON...STACKS(REAL); use STACK-..REAL:
S : STACK(100);

begin

PUSH(S, 2.54);

end;

12.4 Example of a Generic Package 12-16

13. Representation Clauses and Implementation-Dependent Features

This chapter describes representation clauses, certain implementation-dependent fNatures, and
other features that are used in system programming,

13.1 Representation Clauses

Representation clauses specify how the types of the language are to be mapped onto the undarly-
Ing machine, They can be provided to give more efficient representation or to interface with
features that are outside the domain of the language (for example, peripheral hardware),

representation-clause ::=2
type-representatlon-clause I address..-lause

"type.representation.clause ::- length-clause L
I enumeratlon.representation-clause I record-representation-claus.

"A type representation clause applies either to a type or to a first named subtype (that Is, to a sub- 3
type declared by a type declaration, the base type being therefore anonymous), Such a represents-
tion clause applies to all objects that'have this type or this first named subtype. At most one
enumeration or record representation clause Is allowed for a given type: an enumeration represen-
tation clause Is only allowed for an enumeration type; a record representation clause, only for a

. .record type. (On the other hand, more than one length clause can be provided for a given type;
"moreover, both a length clause and an enumeration or record representation c•ause can be
provided.) A length clause Is the only form of representation clause allowed for a type derived from
a parent type that has (user-deflned) derivable subprograms,

An address clause applies either to an object; to a subprogram, package, or task unit; or to ant
entry, At most one address clause Is allowed for any of these entities,

A representation clause and the declaration of the entity to which the clause applies must both
occur Immediately within the same declarative part, package specification, or task specification: .
the declaration must occur before the clause. In the absence of a representation clause for a given
declaration, a default representation of this declaration Is determined by the Implementation.
Such a default determination occurs no later than the end of the Immediately enclosing declarative
part, package specification, or task specification, For a declaration given in a declarative part, this
default determination occurs before any enclosed body,

In the case of a type, certain occurrences of Its name Imply that the representation of the type
must already have been determined, Consequently these occurrences force the default determina-
tion of any aspect of the repr'saentation not already determined by a prior type representation
clause, This default determination Is also forced by similar occurrences of the name of a subtype of
the type, or of the name of any type or subtype that has subcomponents of the type. A forcing
occurrence Is any occurrence other than In a type or subtype declaration, a subprogram specifica-
tion, an entry declaration, a deferred constant declaration, a pragma, or a representation clause for
the type Itself. In any case, an occurrence within an expression Is always forcing.

13-1 Representation Clauses 13,1

ANSIIMIL-STD-1815A Ada Reference Manual

A representation clause for a given entity must not appear after an occurrence of the name of the
entity if this occurrence forces a default determination of representation for the entity.

0 Simile. restrictions exist for address clauses, For an object, any occurrence of Its name (after the
object declaration) is a forcing occurrence. For a subprogram, package, task unit, or entry, any
occurrence of a representation attribute of such an entity Is a forcing occurrence. ,,.

9 The effect of the olaboration of a reprosentation clause is to define the corresponding aspects of ...

the representation.

The Interpretation of some of the expressions that appentr in representation clauses is
implernentation-dependent, for example, expressions specifying addresses. An implementation
may limit its acceptance of reproosentation clauses to those that can be handled simply by the
underlying hare",ere, If a representation clause Is accepted by an implementation, the compiler
must guaraVse tf' t the net effect of the program Is not changed by the p,-esence of the clause,
except for adwr'i'-,% clauses and for parts of the program that Interrogate reprosentation attributes,
If a program contains a representation clause that Is not accepted, the program Is Illegal. For each
Implementation, the allowed representation clauses, and the con-Venti~ris used for ,
implementation-.dependont expressions, must be documented in Appendix F of the reference
manual.

Whereas a representation clause is used to Impose certain characteristics of the mapping of an
entity onto the underlying machine, pragmat can be used to provide an Implenantatlon with
criteria for Its selection of suoth a mapping. The pragma PACK specifies that storage minimization .
should be the main criterion when selecting the representation of a record or array type. Its form is
as foilowt:

pregma PACK (type-simple-name);

Packing means that gaps between the storage areas allocated to consecutive components should
be minimized. It need not however, affect the mapping of each component onto storage, This
mapping can itself be influenced by a pragma (or controlled by a representation clause) for the
component or component type. The position of a PACK pragma, and the restrictions on the named
type, are governed by the same rules as for a representation clause; in particular, the pragma mustappear before any use of a representatl,,in attribute of the packed entity. iiii'

1 The pragma PACK Is the only language-defined representation pragmn, Additional representation
pragnian may be provided by an Implementation; these must be documented In Appendix F. (In
contrast to representation clauses, a pragma that Is not accopted by the Implementation Is
ig'nored,ý

Note.,

4 No representation clause Is allowed for a generic formal type,

lb References.; address clause 13.5, allow 1 ., body 3,9, component 3,3, declaration 3.1, declarative part 3.9, default
expression 3,2, 1, deforred constant declaration 7.4, derivable subprogram 3.4, derived type 3.4, entity 3,1, entry 9,5,
enumeration representation clause 13.3, expression 4.4, generic formal type 12.1,2, illegal 1.6, length clause 13.2,

must 1 6, name 4,1, object 3,2, occur Immediately with•n 8,1, package 7, package specification 7,1, parent type 3.4,
pragma 2,8, record representatlon clause 13.4, representation attribute 13,7.2 13,7.3, aubcomponent 3.3, sub-
program 6, subtype 3.3, subtype declaration 3.3,2, task specification 9.1, task unit 9, type 3.3, type declaration 3.3.1

1in

13. 1 Representation Clauses 1 3-2

Representation Clauses and Implementation- Dependent Features

13.2 Length Clauses

A length clause specifies an amount of storage associated with a type.

length-clause ::= for attribute use simple.expresslon; .,

The expression must be of some numeric type and is evaluated during the elaboration of the length .
clause (unless It is a static expression). The prefix of the attribute must denote either a type or a
first named subtype, The prefix Is called T In what follows. The only allowed attribute designators
in a Idngth clause are SIZE, STORAGE-SIZE, and SMALL. The effect of the length clause depends
on the attribute designator: "

(a) Size specification: T'SIZE :

The expression must be a static expression of some Integer type. The value of the expression 5 -

specifies an upper bound for the number of bits to be allocated to objects of the type or first "
:, named subtype T. The size specification must allow for enough storage space to accom-

mo.date every allowable value of these objects. A size specification for a composite type may
affect the size of the gaps between the storage areas allocated to consecutive components.
On the other hand, It need not affect the size of the storage area allocated to each component,

The size specification Is only allowed If the constraints on T and on its subcomponents (If any) t

are static. In the case of an unconstrained array type, the Index subtypes must also be static.

(b) Specification of collection size: T'STORAGESIZE .

The prefix T must denote an access type. The expression must be of iome Integer type (but a
need not be static); Its value specifies the number of storage units to be reserved for the col-
lection, that is, the storage space needed to ccntaln all objects designated by values of the
access type and by values of other types derived from the access type, directly or Indirectly.
This form of length clause Is not allowed for a type derived from an access type,

(c) Specification of storage for a task activation: T'STORAGESIZE ,

The prefix T must denote a task type. The expression must be of some integer type (bL.t need 1o
not be static); Its value specifies the number of storage units to be reserved for an activation
(not the code) of a task of the type.

(d) Specification of small for a fixed point type: T'SMALL

The prefix T must denote the first named subtype of a fixed point type. The expression must 12

be a static expression of some real type; Its value must not be greater than the delta of the
first named subtype. The effect of the length clause Is to use this value of small for the
representation of values of the fixed point base type, (The length clause thereby also affects
the amount of storage for objects that have this type,)

Notes. ,1

A size specification Is allowed for an access, task, or fixed point type, whether or not another form 13

of length clause Is also given for the type,

13-3 Length Clauses 13,2

ANS•I/MIL-STD-1816A Ada Reference Manual

What Is considered to be part of the storage reserved for a collection or for an activation of a task
is implementation-dependent, The control afforded by length clauses Is therefore relative to the
implementation conventions, For example, the language does not define whether the storage
reserved for an activation of a task Includes any storage needed for the collection associated with
an access type declared within the thsk body. Neither does It define the method of allocation for
objects denoted by values of an access type. For example, the space allocated could be on a stack;
alternatively, a general dynamic allocation scheme or fixed storage could be used.

The objects allocated In a collection need not have the same size If the debignated type Is an
unconstrained array type or an unconstrained type with discriminants. Note also that the allocator
Itself may require some space for Internal tables and links, Hence a length clause for the collection
of an access type does not always give precise control over the maximum number of allocated
objects,

Examples:

-- assumed declarations:

type MEDIUM Is range 0 65000;
type SHORT Is delta 0.01 range -100.0 100,0:
type DEGREE Is deft. 0.1 range -360.0 ,, 360.0;

BYTE constant 8: B;
PAGE constant :w 2000;

length clauses:

for COLOR'SIZE use 1 BYTE; -- see 3.5,1
for MEDIUM'SIZE use 2,BYTE;
for SHORT'SIZE use 15;

for CARNAME'STORAGE-SIZE use -- approximately 2000 cara
2000e((CAR'SIZE/SYSTEMSTORAGEUJNIT) + 1);

for KEYBOARDDRIVER'STORAGESIZE use 1*PAGE;

for DEGREE'SMALL use 380,0/2**(SYSTEMSTORAGLUNIT - 1):

, *' •, Notes on the examples:

In thi length clause for SHORT, fifteen bits Is the minimum necessary, since the type definition
requires SHORT'SMALL = 2,0.**(-7) and SHORT'MANTISSA = 14. The length clause for DEGREE
forces the model numbers to exactly span the range of the type.

References: access type 3.8, allocator 4.8, allow 1.6, array type 3,6, attribute 4.1.4, collection 3.8, composite type
"3,3, constraint 3.3, delta of a fixed point type 3.5,9, derived type 3.4, designate 3.8, elaboration 3.9, entity 3.1,
evaluation 4.5, expression 4,4, first named subtype 13.1, fixed point type 3,5.9, Index subtype 3.8, Integor type 3.5.4,
mut 1,6, numeric type 3.5, object 3.2, reul type 3.5.8, record type 3,7, small of a fixed point type 3.6.10, static con-
straint 4.9, static expression 4,9, atatic subtype 4,9, storage unit 13,7, subcomponent 3.3, system package 13,7, task
9, task activation 9,3, task specification 9,1, task type 9.2, type 3,3, unconstrained array type 3,6

13.2 Length Clauses 13,4

• , . -, ' ,, . .

Representation Clauses and Implementation-Dependent Features

13.3 Enumeration Representation Clauses

An enumeration representation clause specifies the internal codes for the literals of the enumera-

tion type that Is named In the clause, -

enumeration-representation-clauuo ::= for type-jimplo..name use aggregate; 2

The aggregate used to specify this mapping Is written as a one-dimensional aggregate, for which 3

the Index subtype Is the enumeration type and the component type Is universal-Integer.

All literals of the enumeration type must be provided with distinct integer codes, and all choices
and component values given In the aggregate must be static. The integer codes specified for the

.* enumeration type must satisfy the predefined ordering relation of the type,

Example,-

type MIX-CODE Is (ADD, SUB, MUL, LDA, STA, STZ);

for MIX-CODE use
(ADD => 1, SUB => 2, MUL -> 3, ILDA -> 8, STA => 24, STZ => 33):

Notes:

The attributes SUCC, PRED, and POS are defined even for enumeration types with a '
"noncontiguous representation, their definition corresponds to the (logical) type declaration and Is1°,,

not affected by the enumeration representation clause, In the example, because of the need to
avoid the omitted values, these functions are likely to be less efficiently Implemented than they
could be In the absence of a representation clause, Similar considerations apply when such types
are used for Indexing,

References,- aggregate 4,3, array aggregate 4312, array type 3,8, attrIbute of an enumeration type 3,5,5, choice 7
"37,3, component 3,3, enumeration literal 3,5.1, enumeration type 3,5,1, function 05, Index 3,e, Index subtype 3.8,
literal 4.2, ordering relation of an enumeration type 3,5,1, represen•tatlon clause 13.1, simple name 4,1, statlo expres-
elan 4.9, type 313, type declavatlon 3.3,1, unlversa~l-nteger type 3.5.4

13.4 Record Representation Clauses

A record representation clause specifies the storage representation of records, that is, the order,
position, and size of record components (Including discriminants, If any),

record.representation.clause :=.
for type.simple.name use

*j• record talignmenLclause]
IcompononL.oluse .

end rooord;

alignmenL.clause at mod stat/c-simple-expresslon:

"componentLclause :.=
component.name at stetc-Jimple-expresalon range static-rango;

13-5 Record Representation Clauses 13.4

ANS//MIL-STD-1815A Ads Reference Manual

The simple expression given after the reserved words at mod in an alignment clause, or after the
reserved word at In a component clause, must be a static expression of some Integer type. If the
bounds of the range of a component clause are defined by simple expressions, then each bound of
the range must be defined by a static expression of some Integer type, but the two bounds need
not have the same Integer type,

An alignment clause forces each record of the given type to be allocated at a starting address that I
Is a multiple of the value of the given expression (that Is, the address modulo the expression must
be zero), An Implementation may place restrictions on the allowable alignments,

A component clause specifies the storage place of a component, relative to the start of the record.
The integer defined by the static expression of a component clause is a relative address expressed
in storage units, The range defines the bit positions of the storage place, relative to the storage
unit, The first storage unit of a record Is numbered zero, The first bit of a storage unit Is numbered
zero, The ordering of bits In a storage unit Is machine-dependent and may extend to adjacent .'
storage units, (For a specific machine, the size In bits of a storage unit Is given by the jj"
configuration-dependent named number SYSTEM STORAGE-UNIT,) Whether a component Is

,: allowed to overlap a storage boundary, and If so, how, Is Implementation-defined.

"s = At most one component clause Is allowed for each component of the record type, Including for
each discrlminant (component clauses may be given for some, all, or none of the components), If
"no component clause Is given for a component, then the choice of the storage place for the com-
ponent Is left to the compiler, If component clauses are given for all components, the record
representation clause completely specifies the representation of the record type and must be

Storage places within a record variant must not overlap, but overlap of the storage for distinct

variants Is allowed, Each component clause must allow for enough storage space to accom- J
modate every allowable value of the component. A component clause Is only allowed for a compo-
nent If any constraint on this component or on any of Its subcomponents Is static,

, a An Implementation may generate names that denote Implementation-dependent components (for
example, one containing the offset of another component), Such implementation-dependent
names can be used In record representation clauses (these names need not be simple names; for

i example, they could be Implementation-dependent attributes),

Example,-

"WORD : constant :_ 4; -- storage unit Is byte, 4 bytes per word

f- type STATE is (A, M, W, P);
type MODE Is (FIX, DEC, EXP, SIGNIF);

type BYTE-MASK Is array (0 .. 7) of BOOLEAN:
type STATE-MASK Is array (STATE) of BOOLEAN:
type MODE-MASK Is arrey (MODE) of BOOLEAN;

type PROGRAM.STATUSWORD Is
reoord

SYSTEM-MASK : BYTE-MASK;
PROTECTION-KEY INTEGER range 0 , 3;
MACHINESTATE : STATE-MASK;
INTERRUPT-CAUSE INTERRUPTION-CODE:
ILC INTEGER range 0 , 3;
CC INTEGER range 0 , 3;
PROGRAM-MASK MODE-MASK;
INSTADDRESS ADDRESS;

end record;

13.4 Record Representation Clauses 13-6 .

#40

Representation Clauses and Implementation-Dependent Features

for PROGRAM..STATUSWORD use
record at mod 8;

SYSTEM-MASK at O*WORD range 0 ., 7;
PROTECTION-KEY at O*WORD range 10 ,, 11; -- bits 8, 9 unused
MACHINE-STATE at O*WORD range 12 15;
INTERRUPT-CAUSE at O*WORD range 16 .. 31;
ILC at 1*WORD range 0 ,, 1; -- second word
CC at 1*WORD range 2 ., 3;
PROGRAM-MASK at 1*WORD range 4 ,, 7;
INSTADDRESS at 1*WORD range 8 ., 31;

end record;

for PROGRAMSTATUSWORD'SIZE use 8*SYSTEM.STORAGEUNIT; "

Note on the example,

The record representation clause defines the record layout, The length clause guarantees that ;,
exactly eight storage units are used.

References; allow 1,6, attribute 4,1.4, constant 3.2,1, constraint 3,3, discrlminant 3.7,1, Integer type 3,5.4, must
1,6, named number 3.2, range 316, record component 37, record type 3,7, simple expression 4,4, simple name 4,1,
static constraint 4.9, static expression 4,9, storage unit 13.7, subcomponent 3,3, system package 13,7, variant 3,7.3

13.5 Address Clauses

An address clause specifies a required address In storage for ar entity, .

address-clause :!- for simple-name use at slmple-expresaion; 2

The expression given after the reserved word at must be of the type ADDRESS defined In the 3

package SYSTEM (see 13,7); this package must be named by a with clause that applies to the
compilation unit In which the address clause occurs, The conventions that define the Interpretation
of a value of the type ADDRESS as an address, as an Interrupt level, or whatever It may be, are
Implementation-dependent, The allowed nature of the simple name and the meaning of the cor-
responding address are as follows:

(a) Name of an object: the address Is that required for the object (variable or constant), 4

(b) Name of a subprogram, package, or task unit: the address Is that required for the machine • -
code associated with the body of the program unit,

(c) Name of a single entry: the address specifies a hardware Interrupt to which the single entry Is a
to be linked,

If the simple name Is that of a single task, the address clause Is understood to refer to the task unit
and not to the task object, In all cases, the address clause is only legal If exactly one declaration
with this Identifier occurs earlier, Immediately within the same declarative part, package specifica-
tion, or task specification, A name declared by a renaming declaration Is not allowed as the simple
name,

Address clauses should not be used to achieve overlays of objects or overlays of program units.
Nor should a given interrupt be linked to more than one entry, Any program using address claunes
to achieve such effects Is erroneous,

13-7 Address Clauses 13.5

ANSI/MIL-STD-1815A Ada Reference Manual

9 Example:

. for CONTROL use st 16#0020#; -- assuming that SYSTEM.ADDRESS Is an Integer type

* Notes: .

"io The above rules imply that if two subprograms overload each other and are visible at a given point,
*• an address clause for any of them Is not legal at this point, Similarly If a task specification declares

entries that overload each other, they cannot be Interrupt entries, The syntax does not allow an
address clause for a library unit. An implementation may provide pragmas for the specification of
program overlays, "

ii References. address predefined type 13.7, apply 10,11, compilation unit 10.1, constant 3.2.1, entity 3,1, entry 9,5,
erroneous 1.6, expression 4.4, library unit 10.1, name 4.1, object 3,2, paokage 7, pragma 2.8, program unit 8,
reserved word 2.9, simple expression 4.4, simple name 4.1, subprogram 6, subprogram body 6.3, system package
13.7, task body 9,1, task object 9.2, task unit 9, type 3,3, variable 3.2.1, with clause 10.1,1

13.5.1 Interrupts

An address clause given for an entry associotes the entry with some device that rr .y cause an
•* interrupt; such an entry Is referred to in this section as an Interrupt entry. If control Information Is

supplied upon an Interrupt, it Is passed to an associated Interrupt entry as one or more parameters
of mode in; only parameters of this mode are allowed.

"2 An interrupt acts as an entry call Issued by a hardware task whose priority Is higher than the
priority of the main program, and also higher than the priority of any user-defined task (that Is, any
task whose type is declared by a task unit In the program). The entry call may be an ordinary entry
call, a timed entry call, or a conditional entry call, depending on the kind of Interrupt and on the
Implementation.

3 If a select statement ,ontains both a terminate alternative and an accept alternative for an Inter-
"rupt entry, then an implementation may Impose further requirements for the selection of the ter-
minate alternative In addition to those given In section 9.4,

Example:

task INTERRUPT-.HANDLER Is
entry DONE;
for DONE use at 16#40#; -- assuming that SYSTEM.ADDRESS Is an Integer type

end INTERRUPT-HANDLER;

Notes:

5 Interrupt entry calls need only have the semantics described above; they may be Implemented by 0
having the hardware directly execute the appropriate accept statements.

6 Queued interrupts correspond to ordinary entry calls, Interrupts that are lost If not immediately
processed correspond to conditional entry calls. It is a consequence of the priority rules that an
accept statement executed In response to an Interrupt takes precedence over ordinary, user-

* defined tasks, and can be executed without first invoking, a scheduling action. . .

13,5.1 Interrupts 13-8
1:.. ..'

* Representation Clauses and implementation-Dependent Features

* One of the possible effects of an address clause for an Interrupt entry is to specify the priority of
the Interrupt (directly or Indirectly). Direct calls to an interrupt entry are allowed.

*References: accept alternatlve 9.7.1, accept statement 9.5, address preciefined type 13.7, allow 1.6, conditional a -

entry call 9.7.2, entry 9.5, entry call 9.15. mode 6.1, parameter of a subprogram 6.,2, priority of a task 9,8, select alter.-
native 0.7.1, select statement 9.7, system package 13.7, task 9, terminate alternative 937.11, timed entry cail 9733

13.6 (3iange of Representation

At most one representation clause Is allowed for a gliv~n type and a given aspect of Its represents-
tion, Hence, If an alternative representation Is needed, It Is necessary to declare a second type,
derived from the first, and to specify a different representatlon. for the second type,

Example: 2

-- PACKED-DESCRIPTOIR and DESCRIPTOR are two different types
with Identical characteristics, sport from their representation

type DESCRIPTOR Is
record

-- components of a descriptor
end record;

type PACK ED-..DESCRIPTOR Is now DESCPIPTOR;

2 ~for PACKED-.DESCRIPTOR use
reodcomponent clauses for some or for all components

end record;
Change of representation can now be accomplished by assignment with explicit type conversions: 3

D DESCRIPTOR:...........
P PACKED-..DESCRIPTOR;

P PACK ED...DESCRIPTOR(D); -- pack D
D DESCRIPTOR(P); -- unpack P

References: assignment 5,.2 derived type 3.4, type 3.3, type conversion 4,e, type declaration 3.1, representation 4

* clause 113,11

13.7 The Package System

For each Implementation there Is a predefined library package called SYSTEM which inciutles the
definitions of certain configu ration -dependent characteristics. The specification of the package
SYSTEM Is Implemeanta tion-d 9pendent and miist be given In Appendix F. The visible part cf this

* package must contain. at least the, following declarations.

13-9 The Pac;kage Syste'-, ! .7.

ANSI/M/,7L-STD-W5185A Ada Reference Manual

2 package SYSTEM Is
type ADDRESS Is Impiementation-.de fined;
type NAME Is /mpiementation...def/ned-enumeratlon-type;

SYSTEM-.NAME constant NAME := Impiementat/on..de fined:

STORAGE-UNIT :constant :=Implementation...defined;
ME MORY-..SIZE constant Imp/ementetlon..4efined;

-- Sý im-Dependent Named Numbers:

MIN-INT constant :=Implementatlon..de fined;
MAX..INT :constant ;=Impiementetion...de fined;
MAX-.DIG ITS :constant :=Implement atlon-de fined;
MAX-.MANTISSA :constant :=Impiementetlon-de fined;
FIN E-.DELTA :constant :=implementetlon...detined;

TICK :constant :- mpiementatlon...de fined;

-- Other System- Dependent Declarations

subtype PRIORITY Is INTEGER range Implementatlon-defined;

end SYSTEM;

The type ADDRESS Is the type of the addresses provided In address clauses; It Is also the type of
th e result delivered by the attribute ADDRESS. Values of the enumeration type NAME are the
names of alternative machine configurations handled by the Implementation; one of these Is the
constant SYSTEM-..NAME. The named number STORAGE-UNIT Is the number of bits per storage
unit; the named number MEMORY-..SIZE Is the number of available storage units In the
configuration; these named numbers are of the type unlveraal.Jnteger.

* ~ An alternative form of the Package SYSTEM, with given values for any of SYSTEM-..NAME,
STORAGE-UN IT, and MEMORY-.SIZE, can be obtained by means of the corresponding pragrnas.
These pragmas are only allowed at the start of a compilation, before the first compilation unit (if

* any) of the compilation.

5 pregms SYSTEM...NAME (enumeration-iteral);

s The effect of the above pragma Is to use the enumeration literal with the specified Identifier for the
definition of the constant SYSTEM-..NAME. This pragma Is only allowed if the specified Identifier
corresponds to one of the literals of the type NAME.

7 prugma STORAGE-UNIT(numeric-literai);

s The effect of the above pragma is to use the value of the specified numeric literal for the definition
of the named number STORAGE-UNIT.

g pregma MEMORY-SIZE(numeric-Iiteral);

to The effect of the above pragma Is to use the value of the specified numeric 'iteral for the definition
of the named number MEMORY-SIZE.

13.7 The Package Systemn 13-10

Representation Clauses and Implementation-Dependent Features 2

The compilation of any of these pragmas causes an Implicit recompllation of the package SYSTEM. i .
Consequently any compilation unit that names SYSTEM In its context clause becomes obsolete
after this implicit recompilatlon. An Implementation may Impose further limitations on the use of "
these pragmas. For example, an Implementation may allow them only at the start of the first com- 4.

pilation, when creating a new program library.

Note:
? .

It Is a consequence of the visibility rules that a declaration given In the package SYSTEM Is not 12
visible in a compilation unit unless this package Is mentioned by a with clause that applies (directly
or indirectly) to the compilation unit,

References: address clause 13,5, apply 10,1.1, attribute 4.1,4, compilation unit 10.1, declaration 3.1, enumeration 13

literal 3.5.1, enumeration type 3.5,1, Identifier 2.3, library unit 10.1, must 1.6, named number 3.2, number declaration
3.22, numeric literal 2.4, package 7, package specification 7.1, pragma 2,8, program library 10,1, type 3.3, visibility ,
8.3, visible part 7.2, with clause 10.11

13.7.1 System-Dependent Named Numbers

Within the package SYSTEM, the following named numbers are declared, The numbersFINE-DELTA and TICK are of the type universal-real; the others are of the type unlversaI.nteger, '.••'

ST s,'
MININT The smallest (most negative) value of all predefined integer types. 2 "'A

MAX._INT The largest (most poaitive) value of all predefined Integer types, a , .*

MAX-DIGITS The largest value allowed for the number of significant decimal digits In a 4
floating point constraint.

MAX.-MANTISSA The largest possible number of binary digits in the mantissa of model numbers 5
of a fixed point subtype.

FINE-DELTA The smallest delta allowed in a fixed point constraint that has the range con- .
straint -1.0 ., 1.0, I

TICK The basic clock period, In seconds.

References: allow 1,6, delta of a fixed point constraint 3.5.9, fixed point constraint 3.6.9, floating point constraint I
3,5.7, Integer type 3,5,4, model number 3.5.6, named number 3,2, package 7, range constraint 3,5, system package
13.7, type 3.3, universelInteger type 3.5.4, unlversal-real type 3,56,.

13-11 System-Dependent Na,.. ad Numbers 13.7. 1

".

ANSI/M/L-STD-1815A Ada Reference Manual

13.7.2 Representation Attributes

The values of certain Implementation-dependent characteristics can be obtained by interrogating

appropriate representation attributes. These attributes are described below.

2 For any object, program unit, label, or entry X:

3 X'ADDRESS Yields the address of the first of the storage units allocated to X. For a sub-
program, package, task unit or label, this value refers to the machine code
associated with the corresponding body or statement, For an entry for which
an address clause has been given, the value refers to the corresponding 4"*

hardware Interrupt. The value of this attribute is of the type ADDRESS defined
In the pac!sge SYSTEM.

4 For any type or subtype X, or for any object X:

5 X'SIZE Applied to an object, yields the number of bits allocated to hold the object.
Applied to a type or subtype, yields the minimum number of bits that is
needed by the Implementation to hold any possible object of this type or sub-
type. The value of this attribute Is of the type universal.nteger,

4 For the above two representation attributes, If the prefix Is the name of a function, the attribute Is
understood to be an attribute of the function (not of the result of calling the function), Similarly, If
tne type of the prefix Is an access type, the attribute Is understood to be an attribute o. the prefix
(not of the designated object: attributes of the latter can be written with a prefix ending with the

:, reserved word all).

7 For any component C of a record object R:

S R.C'POSITION Yields the offset, from the start of the first storage unit occupied by the record,
of the first of the storage units occupied by C. This offset Is measured In
storage units, The value of this attribute is of the type unlversalJnteger.

S R.C'FIRSTBIT Yields the offset, from the start of the first of the storage units occupied by C,
of the first bit occupied by C, This offset Is measured In bits. The value of this
attribute is of the type universal-Integer.

R.C'LASTBIT Yields the offset, from the start of the first of the storage units occupied by C,
of the last bit occupied by C. This offset Is measured In bits. The value of this
attribute Is of the type untverse/Jnteger.

* K For any access type or subtype T:

T'STORAGESIZE Yields the total number of storage units reserved for the collection associated
with the base type of T. The value of this attribute is of the type univer-

esaeLnteger.

1,1 For any task type or task object T:

T'STORAGESIZE Yields the number of storage units reserved for each activation of a task of the
type T or for the activation of the task object T, The value of this attribute is of
the type un/vers/..Integer,

h4

13.7.2 Representation A ttrlbutes 11312
'I . ,

Hepresentation uiauses ana impiemrientauon-u.penaent ,.eatures

Notes:

For a task object X, the attribute X'SIZE gives the number of bits used to hold the object X,
whereas X'STORAGESIZE gives the number of storage units allocated for the activation of the
task designated by X. For a formal parameter X, If parameter passing is achieved by copy, then the . .
attribute X'ADDRESS yields the address of the local copy; If parameter passing is by reference,
then the address is that of the actual parameter.

References: access subtype 3,8, access type 3,8, activation 9,3, actual parameter 62, address clause 13.5, address . '
predefined type 13.7, attribute 4,1.4, base type 3.3, collection 3.8, component 33, entry 9,5, formal parameter 6,1
6.2, label 5.1, object 3.2, package 7, package body 7.1, parameter passing 62, program unit 6, record object 3.7,

statement 5, storage unit 13.7, subprogram 6, subprogram body 6,3, subtype 3A3, system predefined package 13.7,
task 9, task body 9,1, task object 9.2, task type 9,2, task unit 9, type 3.3, universal-integer type 3,5.4

13.7.3 Representation Attributes of Real Types

For every real type or subtype T, the following machine-dependent attributes are defined, which
are riot related to the model numbers, Programs using these attributes may thereby exploit
properties that go beyond the minimal properties associated with the numeric type (see section
4,5,7 for the rules defining the accuracy of operations with real operands), Precautions must
therefore be taken when using these machine-dependent attributes if portability Is to be ensured. ,

For both floating point and fixed point types:

T'MACHINEROUNDS Yields the value TRUE If every predefined arithmetic operation on
values of the base type of T either returns an exact result or performs
rounding; yields the value FALSE otherwise, The value of this
attribute Is of the predefined type BOOLEAN.

T MACHINEOVERFLOWS Yields the value TRUE if every predefined operation on values of the 4

base type of T either provides a correct result, or raises the exception
NUMERIC-ERROR In overflow situations (see 4,5,7); yields the
value FALSE otherwise. The value of this attribute Is of the .
predefined type BOOLEAN.

For floating point types, the following attributes provide characteristics of the underlying machine
representation, In terms of the canonical form defined In section 3,5,7:

T*MACHINERADIX Yields the value of the radix used by the machine representation of
the base type of T, The value of this attribute Is of the type univer-
aUl.nteger.

T'MACHINEMANTISSA Yields the number of digits In the mantissa for the machine
representation of the base type of T (the digits are extended digits in
the range 0 to T'MACHINERADIX -1). The value of this attribute is of
the type universeljintegrr.

T'MACHINE...EMAX Yields the largest value of exponent for the machine representation
of the base type of T, The value of this attribute is of the type univer-
sal_/nteger.

4 T'MACHINE-EMIN Yields the smallest (most negative) value of exponent for the
machine representation of the base type of T, The value of this
attribute Is of the type universelnteger.

13-13 Representation Attributes of Real Types 13,7,3
"°- S

ANSI/MIL-STD-18?F5 Ads Reference Manual

Note,

10 For many machines the largest machine representable number of type F is almost

(F'MACHIN LRADIX)**(F'MACHINLEEMAX),

and the smallest positive representable number is

F'MACHINELRADIX c* (F'MACHINEEMIN - 1)

12 References: arithmetic operator 4,5, attribute 4.1,4, base type 3.3, boolean predetined type 3,5.3, faise boolean
value 3.5.3, fixed point type 3.5.9, floating point type 3.5.7, model number 3.5,6, numeric type 3.5, numeric-error
exception 11.1, predeflned operation 3.3.3, radix 3.157, reil type 3,5,1, subtype 3,3, true boolean value 3.5.3, type
3.3, universal-integer type 3.5.4

13.8 Machine Coda Insertions

A machine code Insertion can be achieved by a call to a procedure whose sequence of statements

contains code statements,

2 code-statement ::, type.mark'record.aggregate;

3 A code statement Is only allowed In the sequence of statements of a procedure body. If a
procedure body contains code statements, then wlthln this procedure body the only allowed form
of statement is a code statement (labeled or not), tne only allowed declarative Items are use
clauses, and no exception handler Is allowed (cortiments and pragmas are allowed as usual),

Each machine Instruction appears as a record aggregate of a record type that defines the cor- ,

responding Instruction. The base type of the type mark of a code statement must be declared
within the predefined library package called MACHINECODE: this package must be named by a
with clause that applies to the compilation unit In which the code statement occurs, An Implemen-
tation Is not requ;rid to provide such a package.

5 An Implementation Is allowed to Impose further restrictions on the record aggregates allowed In
code statements, For example, It may require that expressions contained in such aggregates be
static expressions.

s An Implementation may provide machine-dependent pragmas specifying register conventions and
calling cunventions. Such pragmas must be documented in Appendix F,

Example:

M : MASK;
procedure SETMAGK; pragme INLINE(SETMASK);

procedure SET-MASK Is
use MACHINE-CODE;

begin
SLFORMAT'(CODE => SSM, B => M'BASEREG, D => M'DISP);
-- M'BASEREG and M'DISP are Implementation-specific predefined attributes

end:

13,8 Machine Coda Insertions 113-14

I

nVIu t I LauI. i. .IGUNUI• OIU , t~l p hJIUFnr uliatlUn-LJpJV U .Uflt rejleurUm

References: allow 1.6, apply 10.,11, comment 2.7, compilation unit 10,1, declarative Item 3,9, exception handler e
11.2, InlIne pragma 6.3,2, labeled statement 5,1, library unit 10.1, package 7, pragma 2,8. procedure 6 6,1, procedure
body 6.3, record aggregate 4.3.1, record type 3.7, sequence of statements 5.1, statement 5, static expression 4,9, use
clause 8.4, with clause 10.1,1 0

13.9 Interface to Other Languages

A subprogram written in another language can be called from an Ada program provided that all
communication Is achieved via parameters and function results, A pragma of the form

"pragma INTERFACE (/anguage-name, subprogram..name); 2

must be given for each such subprogram; a subprogram name Is allowed to stand for several 3
overloaded subprograms, This pragma Is allowed at the place of a declarative Item, and must apply
In this case to a subprogram declared by an earlier declarative Item of the same declarative part or
package specification, The pragma Is also allowed for a library unilt In this case the pragma must
"appear after the subprogram declaration, and before any subsequent compilation unit, The
pragma specifies the other language (and thereby the calling conventions) and Informs the com- d

piler that an object module will be supplied for the Qorresponding subprogrc m. A body Is not
allowed for such a subprogram (not even In the form of a body stub) since the Instructions of the
subprogram are written In another language.

This capability need not be provided by all Implementations, An implementation may place 4
restrictions on the allowable forms and places of parameters and calls,

Example: t

package FORT-LIB is
function SORT (X FLOAT) return FLOAT;
function EXP (X FLOAT) return FLOAT;

private
" pragma INTERFACE(FORTRAN, SORT);

pragma INTERFACE(FORTRAN, EXP);
end FORTLIB:

"Notes:

The corwentions used by other language processors that call Ada programs are not part of the Ada s
language definition, Such conventions must be defined by these other language processors.

The pragma INTERFACE Is not defined for generic subprograms.

References: allow 1,6, body stub 10.2, compilation unit 10.1, deularatlon 3,1, declarative Item 3,9, declarative part a
3.9, function result 8.5, library unit 10. 1, must 1,8, name 4,1, overloadod subprogram 8.6, package specification 7.1,
,arameter of a subprogram 6,2, pregma 2,8, subprogram 6, subprogram body 6.3, subprogram call 8.4, subprogram
declaration 6,1

13-15 Interface to Other Languages 13.9
.6o

ANSI/MIL-STD-1815A Ads Reference Manual

13.10 Unchecked Programming

The predefined generic library subprograms UNCHECKEDDEALLOCATION and
UNCHECKED-CONVERSION are used for unchecked storage deallocation and for unchecked type
conversions.

gener•c
type OBJECT lI limited private;
type NAME Is access OBJECT;

procedure UNCHECKEDDEALLOCATION(X in out NAME);

generic
type SOURCE Is limited private;
type TARGET Is limited private;

function UNCHECKEDCONVERSION(S SOURCE) return TARGET;

4 References: generic subprogram 12.1, library unit 10.1, type 3.3

13.10.1 Unchecked Storage Deallocation

Unchecked storage doallocatlon of an object designated by a value of an access type Is achieved
by a call of a procedure that Is obtained by Instantlation of the generic procedure
UNCHECKEDODEALLOCATION, For example:

procedure FREE Is new UNCHECKEDDEALLOCATION(ob/ect-type-name, access-type.name);

2 Such a FREE procedure has the following effect:

S (a) after executing FREE (X), the value of X Is null;

, (b) FREE (X), when X Is already equal to null, has no effect;

5 (c) FREE(X), when X Is not equal to null, Is an Indication that the object designated by X Is no
longer required, arid that the storage It occupies Is to be reclaimed,

5 If X and Y designate the same object, then accessing this object through Y Is erroneous If this
access Is performed (or attempted) after the call FREE (); the effect of each such access Is not
defined by the language.

Notes:

It is a consequence of the visibility rules that the generic procedure UNCHECKED.DEALLOCAT ION
is not visible In a compilation unit unless this generic procedure Is mentioned by a with clause that -.
applies to the compilation unit,

a If X designates a task object, the call FREE (X) has no effect on the task designated by the value of
this task object. The same holds for any subcomponent of the object designated by X, If this sub-
component Is a task object.

References,; acc ,ss type 3,8, apply 10,1,1, compilation ulit 10,1, designate 3,8 9,1, erroneous 1,8, generic
Instantiation 12.3, generic procedure 12.1, generic unit 12, library unit 101, null accesf value 3.8, object 3,2,
procedure 6, procedure call (.4, suboomponent 3.3, task 9, task object 9.2, visibility 8.3, with clause 10.1.1

13, 10. 1 tUnchecked Storage Deallocation 13-16

Representation Clauses and Impleaentatlon-Depandent Features

13.102 Unchecked Type Conversions

An unchecked type conversion can be mchleved by a call of a function that is obtained by Instantla-
tion of the generic function UNCHECKED-CONVERSION.

The effect of an unchecked conversion Is to return the (uninterpreted) parameter value as a value
of the target type, that Is, the bit pattern defining the source value Is returned unchanged as the bit
pattern defining a value of the target type. An implementation may place restrictions on unchecked
conversions, for example, restrictions depending on the respective sizes of objects of the source
and target type. Such restrictions must be documented in appendix F.

Whenever unch'icked conversions are used, It Is the programmer's responsibility to ensure that 3

* .,'these conversions maintain the properties that are guaranteed by the language for objects of the
target type, Programs that violate these properties by means of unchecked conversions are
erroneous,

Note:

It Is a consequence of the visibility rules that the generic function UNCHECKED-CONVERSION Is
Snot visible In a compilation unit unless this generic function Is mentioned by a with clause that

applies to the compilation unit.

References: apply 10.1,1, oumplistlon uilt 10, 1, erroneous 1,8, genaric function 12.1, InstantIatlon 12.3, parameter "
of a subprogram 0.2, type 3.3, with clause 10,1,1

* Vi

P4

13,17 Unhce.yeCnvrl 31.

14. Input-Output

Input-output Is provided in the language by means of predefined packages. The generic packages
SEQUENTIAL.IO and DIRECT-IO define Input-output operations applicable to files containing
elements of a given type. Additional operations for text Input-output are supplied In the peckage
TEXTID. The package IO-EXCEPTIONS defines the exceptions needed by the above three
packages. Finally, a package LOW, LEVELIO Is provided for direct control of peripheral devices,

References: dlreoLlo package 14.2 14.2,4, Ioexaceptiona package 14.5, low.level-io package 14,6, sequentiallo 2

package 14,2 14,2.2, textlo package 14.3

14.1 External Files and File Objects

Values Input from the external environment of the program, or output to the environment, are con-
sidered to occupy external files, An external file can be anthing external to the program that can
produce a value to be read or receive a value to be wrltter An extnrnal filo is Identified by a string
(the name). A second string (the form) gives further syste', dependent characteristics that may be
associated with the file, such as the physical organization n, miccess rights, The conventions
governing the Interpretation of such strings must be documutLud in Appendix F,

Input and output operations are expressed as operations on objects of some file type, rather than 1
directly in terms of the external files. In the remainder of this chapter, the term file Is always used
to refer to a file object; the term external file Is used otherwise, The values transferred for a given
file must all bo of one type.

Input-output for sequential files of values of a single element type Is defined by means of the .
generic package SEQUENTIALIO. The skeleton of this package Is given below,

with 10-EXCEPTIONS: 4

generic
"type ELEMENT_TYPE Is private:,

package SEQUENTIALIO Is
type FILE-TYPE Is limited private;

type FILE-MODE Is (IN-FILE, OUTFILE);

procedure OPEN (FILE In out FILE-TYPE; ...

p'rooedure READ (FILE In FILE-TYPE; ITEM out ELEMENTTYPE);
procedure WRITE (FILE in FILE-TYPE; ITEM In ELEMENT,.TYPE):

end SEQUENTIALIO;

In order to define sequential Input-output for a given element typo, an Instantlation of this generic
unit, with the given type aa actual parameter, must be declared. The resulting package contains
the declaration of a file type (called FILE-TYPE) for files of such elements, as well as the opera-
tions applicable to these fIles, such as the OPEN, READ, and WRITE procedures.

14-1 External Fl/es and File Objects 14,1

ANSI/MIL-STD-1815A Ada Reference Manual

"S Input-output for direct access flies Is likewise defined by a generic package called DIRECT_0...
"Input-output In human-readable form Is defined by the (nongeneric) package TEXT_1O.

4 Before Input or output operations can be performed on a file, the file must first be associated with
an external file, While such an association Is In effect, the file Is said to be open, and otherwise the

.. file is said to be closed.

" The language does not define what happens to external files after the completion of the main
program (in particular, if corresponding files have not been closed), The effect of input-output for
access types Is Implementation-dependent.

* An open file has a current mode, which Is a value of one of the enumeration types

type FILE.MODE Is (IN-FILE, INOUTFILE, OUTFILE); -- for DIRECT-10O
type FILE-MODE Is (IN-FILE, OUTFILE); -- for SEQUENTIALIO and TEXT-IO

, These values correspond respectively to the cases where only reading, both reading and writing, or
only writing are to be performed, The mode of a file can be changed,

10 Several file management operations are common to the three Input-output packages, These
operations are described In section 14,2,1 for sequential and direct files, Any additional effects .
concerning text Input-output are described In section 14,3.1,

11 The exceptions that can be raised by a call of an Input-output subprogram are all defined In the
package lOEXCEPTIONSl the situations In which they can be raised are described, either
following the description of the subprogram (and In section 14.4), or In Appendix F In the case of
error situations that are Implementatlon-dependent,

Notes:.

12 • Each Instantlation of the generic paokages SEQUENTIALIO and DIRECT-1O declares a different
type FILE-TYPE; in the case of TEXTIO, the type FILE-TYPE Is unique,

13 A bidirectional device can often be modeled as two sequential files associated with the devlce,
one of mode IN-FILE, and one of mode OUT-FILE, An Implementation may restrict the number of
files that may be associated with a given external file, The effect of sharing an external file In this
way by several file objects is Implementation-dependent.

14•'. References: create procedure 14.2,1, current Index 14,2, ourrent slie 14.2, delete procedure 1412,1, direct acces@
14,2, direct fill procedure 14,2, direoLtlo package 14,1 14,2, enumeration type 3,5,1, exception 11, file mode 14.23,
generic IntantlatIon 12,3, Index 14,2, Input file 14.2,2, lo-exceptlons pac;,age 14,5, open file 14.1, open procedure
14.2.1, output fIll 14.2.2, read procedure 14.2.4, sequential Iace1s 14.2, sequential file 14,2, xequontlal Input-output
14,212, sequentlal-lo package 14.2 14,.2,2, trlng 3,4,3, texLlo package 14,3, write procedure 14,2,4 ...

14.2 Sequential and Direct Files

Two kinds of access to external files are defined: sequential access and direct access, The cor-
"responding file types and the associated operations are provided by the generic packages S
SEQUENTIAI-1O and DIRECTIO, A file object to be used for sequential access Is called a
sequentia! file, and one to be used for direct access Is called a direct file.

2 For sequential access, the file Is viewed as a sequence of values that are transferred In ýhe order of
their appearance (as produced by the program or by the environment), When the file Is opened,
transfer starts from the beginning of the file,

14.2 Sequential and Direct Files 14-2

Input-Output

For direct access, the file Is viewed as a set of elements occupying consecutive positions In linear 3

order; a value can be transferred to or from an element of the file at any selected position, The
position of an element Is specitled by Its Index, which Is a number, greater than zero, of the
Implementation-defined Integer type COUNT. The first element, If any, has Index one; the Index of
the last element, If any, Is called the current size; the current size Is zero if there are no elements,
The current size Is a property of the external file,

An open direct file has a current Index, which Is the Index that will be used by the next read or write
operation. When a direct file Is opened, the current Index Is set to one, The current Index of a direct
file is a property of a file object, not of an external file,

All three file modes are allowed for direct flle!s, The only allowed modes for sequential files are the
modes IN-FILE and OUT-FILE,

References: count type 14,3, file mode 14.1, Inflle 14,1, out-file 14.1

14.2.1 File Management

The procedures and functions described in this section provide for the control of external files: their
declarations are repu,ated In each of the three packages for sequential, direct, and text Input-
output, For text Input-output, the procedures CREATE, OPEN, and RESET have additional effects
described in section 14,3.1,

procedure CREATE(FILE : in out FILE-TYPE;
MODE :in FILE-MODE :- defe.u/ltJode;
NAME In STRING :, ,..
FORM : in STRING :, "1.

Establishes a new external file, with the given name and form, and associates this
external file with the given file, The given file Is left open. The current mode of the
given file Is set to the gIvwn access mode, The default access mode Is the mode
OUT-FILE for sequential and text Input-output; It Is the mode INOUT.FILE for
direct Input.output. For direct access, the size of the created file Is
Implementation-dependent, A null string for NAME specifies an external file that Is
not accessible after the completion of the main program (a temporary -file), A null
string for FORM specifies the use of the default options of the Implementation for
the external file,

The exception STATUS-ERROR Is raised If the given file Is already open, The
exception NAMEERROR Is raised If the string given as NAME does not allow the
Identification of an external file, The exception USE-E.RROR Is raised If, for the
specified mode, the environment does not support creation of an external file with
the given name (In the absence of NAMEERROR) and form,

procedure OPEN(FILE :In out FILE-TYPE: 0
MODE eIn FILE-MODE;
NAME In STRING;
FORM In STRING _

Associates the given file with an existing external file having the given name and
form, and sets the current mode of the given file to the given mode, The given file
Is left open,

14-3 File Management 14,2,2

ANS//MIL-STD- 815,A Ada Reference Manual

The exception STATUS-ERROR Is raised If the given file Is already open, The exception
NAMLERROR Is raised If the string given as NAME does not allow the Identification of an external
file; in particular, this exception Is raised If no external file with the given name exists. The excep-
tion USE-ERROR Is raised If, for the specified mode, the environment does not support opening foran externial file with the given name (In the absence of NAME-ERROR) and form.

a procedure CLOSE(FILE In out FILETYPE);

Severs the association between the given file and Its associated external file. Thegiven file Is left closed.

SThe exception STATUS-ERROR Is raised If the given file Is not open.

,1 proaedure DELETE(FILE :In out FILE-TYPE):

12 Deletes the external file associated with the given file, The given file Is closed, and
the external file ceases to exist,
The exception STATUS-ERROR Is raised If the given file Is not open. The exception

USE.ERROR Is raised If (as fully defined In Appendix F) deletion of the external file
Is not supported by the environment,

procedure RESET(FILE in out FILE.TYPE; MODE In FILEMODE);
procedure RESET(FILE :In out FILETYPE);

Resets the given file so that reading from or writing to Its elements can be
restarted from the beginning of the file: In particular, for direct access this means
that the current Index Is set to one. If a MODE parameter Is supplied, the current
mode of the given file Is set to the given mode,

16 The exception STATUS-ERROR Is raised If the file Is not open, The exception
USE-ERROR Is raised If the environment does not support resetting for the external
file and, also, If the environment does not support resetting to the specified mode
for the external file,

17 function MODE(FILE In FILE-TYPE) return FILL-MODE;

is Returns the current mode of the given file.

The exception STATUSFRROR Is raised If the file Is not open.

20 function NAME(FILE In FILE-TYPE) return STRING;

21 Returns a string which uniquely Identifies the external file currently associated with
the given file (and may thus be used In an OPEN operation), If an environment
allows alternative specifications of the name (for example, abbreviations), the str-
Ing returned by the function should correspond to a full specification of the name,

2 T'he exception STATUS-ERROR Is raised If the given file Is not open,

14.2. 1 F/to Management 14-4

Input-Output

function FORM(FILE in FILE-TYPE) return STRING; 23

Returns the form string for the external file currently associated with the given file. 24

If an environment allows alternative specifications of the form (for example,
abbreviations using default options),.the string returned by the function should cor- ,
respond to a full specification (that Is, it should indicate explicitly all options
selected, Including default options).

The exception STATUSERROR is raised if the given file is not open. 25

function ISOPEN(FILE In FILE-TYPE) return BOOLEAN; 26

Returns TRUE if the file Is open (that is, If it is associated with an external file), ,
otherwise returns FALSE.

References: current mods 14.1, current size 14.1, closed file 14,1, direct access 14.2, external file 14.1, file 14,1, 28

flie.mode type 14.1, file-type type 14.1, form string 14.1, Inout-file 14,2.4, mode 14,1, name string 14.1, name-er-
ror exception 14,4, open file 14,1, ouLfile 14.1, status-error exception 14,4, use-error exception 14,4 A-.-

14.2.2 Sequential Input-Output

The operations available for sequential Input and output are described in this section. The excep-
tion STATUS-ERROR is raised if a.iy of these operations Is attempted for a file that is not open.

procedure READ(FILE :in FILLTYPE; ITEM : out ELEMENTTYPE); 2

Operates on a file of mode IN-FILE. Reads an element from the given file, and 3

returns the value of this element in the ITEM parameter.

The exception MODE-ERROR Is raised If the mode Is not IN-FILE. The exception 4

END-ERROR Is raised If no more elements can be read from the given file. The
exception DATA.ERROR Is raised If the element read cannot be Interpreted as a
value of the type ELEMENT-TYPE; however, an Implementation Is allowed to omit
this check If performing the check is too complex.

procedure WRITE(FILE In FILE-TYPE: ITEM in ELEMENTTYPE):

Operates on a file of mode OUT-FILE, Write* the value of ITEM to the given file. .

The exception MODE-ERROR Is raised If the mode Is not OUT-FILE. The exception .
USE..ERROR Is raised if the capacity of the external file Is exceeded.

function ENDOFFILE(FILE In FILE-TYPE) return BOOLEAN; ,

Operates on a file of mode IN-FILE. Returns TRUE If no more elements can be read "
from the given file; otherwise returns FALSE.

The exception MODE-ERROR Is raised If the mode Is not IN-FILE, 0o

References: data-error exception 14,4, element 14,1, element-typot 14,1, end-error exception 14.4, external file i ' ."
14,1, file 14.1, file mode 14.1, flleype 14.1, In.fila 14.1, mode-error exception 14,4, out-file 14.1, s.atusearror
exception 14.4, use-error exception 14,4

"14-5 Sequential Input-Output 14,2.2

•

AIVS1/M/L-STD-1816A Ada Reference Manual

14.2.3 Specification of the Package Sequentia~lO-1

with 10-EXCEPTIONS;
generic

type ELEMENT-TYPE Is private;
package SEQUENTIAL-10 is

% ~ type FILE-TYPE Is limited private;

type FILE-.MODE Is (IN-.FILC, OUT...FILE);

-- Fila management

procedure CREATE (FILE In out FILL-TYPE;
MODE In FiILEMODE OUT-FILE;
NAME In STRING :
FORM In STRING =f1)

procedure OPEN (FILE In out FILL1.YPE;
MODE In FILE-..MODE;
NAME In STRING;
FORM In STRING 4)

procedure CLOSE (FILE In out FILE-TYPE);
procedure DELETE (FILE In out FILE-TYPE);
procedure RESET (FILE In out FILL-TYPE; MOOLý In FILL-MODE);
procedure RESET (FILE ;In out FIILETYPE);

function MODE (FILE ;In FILE-TYPE) return FILE-MODE;
function NAME (FILE In FILE-TYPE) return STRING,
function FORM (FILE In FILE-TYPE) return STRING;

function IS-.OPEN (FILE In FILE-..TYPE) return BOOLEAN;

-- Input and output operations ~

procedure READ (FILE :In FILE...TYPE; ITEM out ELEMENT...TYPE);
*procedure WRITE (FILE In FILE-.TYPE: ITEM In ELEMENT-.TYPE);

foinction END..QF.FILE(FILE In FILE-TYPE) return BOOLEAN;

Exceptions ..

STATUS-ERROR exception renames IO...EXCEPTIONS.$TATUS...ERAOR;
MODE-ERROR exception renames IO..EXCEPTIONS, MOD E_.ERROR;,
NAME-..ERROR exception renames IO..EXCEPTIONS.NAML-ERROR;
USE-ERROR exception renames IO..EXCEPTIONS,USE-ERROR;
DEVICE-ERROR exception renames IO.EXCEPTIONS. DEVICLE-ERO R;
END-.ERROR exception renames IO...EXCEPTIONS.END...ERROR,
DATA-..ER ROR exception renames IO..EXCEPTIONS. DATA..EIIROR;

private
-- Implementation-dependent

end SEQUENTIAL-1O;

14.2.3 Spec/f/ca tlon of the Package Sequentla'JO1 14-6

Input-Output
.0

References: close procedure 14,2,1, create procedure 14,.21, date-error e9(ception 14.4, de!ete procedure 14.2.1, 2

device-error exception 14.4, end-error exception 14.4, end.of-file function 14.2.2, file-mode 14.1, file-type 14.1,
form function 14.2.1, In-file 14.1, io.exceptions 14.4, Is-open function 14,2.1, mode function 14.2,1, mode-error
exception 14.4, name function 14,2,1, name-error exception 14.4, open procedure 14,2.1, ouLfile 14,1, read
procedure 14.2,2, reset procedure 14,2,1, sequential-lo package 14,2 14,2.2, status-error exception 14.4, use-error
exception 14.4, write procedure 14.2,2,

14.2.4 Direct Input-Output

The operations available for direct Input and output are described In this section. The exceptionSTATUS-ERROR is raised if any of these operations is attempted for a file that is not open,

procedure READ(FILE :In FILE-TYPE; ITEM out ELEMENT-TYPE; "
FROM In POSITIVECOUNT);

procedure READ(FILE : In FILETYPE; ITEM out ELEMENTTYPE);

Operates on a file of mode IN-FILE or INOUTFILE, In the case of the first form, 3

sets the current index of the given file to the index value given by the parameter
FROM. Then (for both forms) returns, In the parameter ITEM, the value of the
element whose position In the given file Is specified by the current Index of the file;
finally, Increases the current Index by one,

The exception MOD-LERROR Is raised If the mode of the given file Is OUTFILE. 4

The exception END-ERROR Is raised If the Index to be used exceeds the size of the
external file. The exception DATAERP3.R Is raised If the element read cannot be
Interpreted as a value of the type ELEMENT-TYPE; however, an Implementation Is " *".,

allowed to omit this check If performing the check is too complex.

procedure WRITE(FILE : in FILETYPE; ITEM : In ELEMENT-TYPE; 5
TO :in POSITIVE..COUNT):

-, procedure WRITEIFILE : In FILLTYPE: ITEM In ELEMENT-TYPE),

Operates on a file of mode INOUTFILE or OUT-FILE, In the case of the first form, e
sets the Index of the given file to the Index value given by the parameter TO. Then
(for both forms) gives the value of the parameter ITEM to the element whose
position In the given file Is specified by the current Index of the file; finally,
increases the current index by one,

The exception MODE-ERROR is raised If the mode of the given file Is IN-FILE. The
exception U3LERROR Is raised If the capacity of the external file Is exceeded,

procedure SEr.PINDEX(FILE In FILE-TYPE; TO In POSITIVECOUNT):

Operates on a fi'e of any mode, Sets the current index of the givern file to the given 9
Index value (which may exceed the current size of the file), ..

function INDEX(FILE In FILLTYPE) return POSITIVE-COUNT; 1o

Operates on a file of any mode. Returns the current index of the given file,

14-7 Direct Input-Output 14,2.4

swami"

ANSI/MIL-STD-78715A Ada Reference Manual

12 function SIZE(FILE In FILLTYPE) return COUNT;

13 Operates on a file of any mode. Returns the current size of the external file that Isassociated with the given file.

4 function ENDOFFILE(FILE :In FILE-TYPE) return BOOLEAN;

Is Operates on a file of mode IN-FILE or INOUTFILE, Returns TRUE if the current
index exceeds the size of the external file; otherwise returns FALSE.

I. The exception MODEERROR Is raised If the mode of the given file Is OUT-FILE,

17 References: count type 14.2, current Index 14,2, current size 14,2, date.errnr exception 14.4, element 14,1,
eloment-type 14,1, end-error exception 14,4, external file 14.1, file 14,1, file mode 14,11, file-type 14.1, In-file 14.1,Index 1,2,= Inu ,f4., moeerr xeton 14A, open file 114, positivecount 14,3, saus.aor excepton
14,, use-error exception 14.4

14.2.6 Specification of the Package DireotlO

L
with IOEXCEPTIONS;
generic

type ELEMENT-TYPE Is private;
package DIRECT-1O In

type FILETYPE Is limited private;

type FILE-MODE Is (IN-FILE, INOUTFILE, OUTLFILE):
type COUNT Is range 0 ,. Implementation.defined;
subtype POSITIVE-COUNT Is COUNT range 1 . COUNT'LAST;

-- File management

procedure CREATE j FILE : in out FILE-TYPE;
MODE In FILE-MODE :--INOUTFILE;
NAME In STRING := "..
FORM :in STRING : },

procedure OPEN I FILE : In out FILE-TYPE;
MODE : In FILE-MODE;
NAME: In STRING,
FORM : In STRING :=),

procedure CLOSE (FILE In out FILE.TYPE);
procedure DELETE (FILE In out FILETYPE);
procedure RESET (FILE In out FILE-TYPE; MODE In FILEMODE)-
procedure RESET (FILE In out FILE.TYPE);

function MODE (FILE In FILE2YPE) return FILE-MODE;
function NAME (FILE in FILE-TYPE) return STRING;
function FORM (FILE In FILE-TYPE) return STRING;

function IS-OPEN (FILE In FILE-TYPE) retirn BOOLEAN; -

14.2.5 Specif/cat4on of the Package D/rect....IO 14-8

Input-OL'tput

-- Input and output operations
procedure READ (FILE In FILE-TYPE: ITEM out ELEMENT-TYPE; FROM POSITIVE-.COUNT),
procedure READ (FILE :In FILE-T.YPE: ITEM out ELEMENT-TYPE);

procedure WRITE (FILE In FILE-TYPE; ITEM In ELEMENT-TYPE; TO POSITIVE-.COUNT);
.7 ~ procedure WRITE (FILE In FILE-TYPE; ITEM In ELEMENT-TYPEi:

procedure SET-INDEX(FILE :In FILE-TYPE: TO :In POSITIVE-COUNT):

function INDEX(FILE in FILELTYPE) rettirn POSITIVE-COUNT;
function SIZE (FILE In FILE-TYPE) return COUNT;

function END...OF...FILE (FILE In FILE-TYPE) return BOOLEAN;9

STATUS-.ER ROR exception renames lO..EXCEPTIONS.STATUS-.ERROA;
MODLE-EROR exception renames lO..EXCEPTIONS.MODL-ERROR,,
NAME-ERROR exception renames IO..EXCEPTIONS.NAMLE-ERROR;
USE-..ER ROR exception renames IO..EXCEPTIONS.U SLERROR;,
DEVICE-ERROR exception renames IO..EXCEPTIONS.D EVICL-ERROR:
END-..ERROR exception renames 10-.EXCEPTIONSEND...ERROR;

DATA-.ERROR exception renames IO..EXCEPTIONS.DATA-.ER ROR;
private

-- Implemnentation-dependlent

end DIRECT-1O;

References close procedure 14.2.1, count type 14.2, create procedure 14.2,1, dsataorror exception 14.4, 2

defaulL~mode 14.,15, delete procedure 14,2, 1, device-..error exception 4A4, element-type 14.2.4, nd...rror exaep.
tlon 14.4, end-.of..flle function 14.2.4, file-a..de 14.2.5, flle-.type 14.2.4, form function 14,21,1 In-lle 14.2.4, Index
function 14.24, Inoutfile 14.2.4 114,2.1, io-.exaeptlons package 14A4, is-.opcgn function 14,2.1, mode function
14.2. 1, mode-..error exception ¶14.4, name functlon 14,2.1, name-.error exception 14.4, open procedure 14,2.1, out--
file 14.2.1, read procedure 142.4, seLlndex procedure 14,2.4, size functiun 14,2.4, alatut...rror exception 14.4,

use-.error exception 14A4, write procedure 14.2A4 14.2,1

14.3 Text Input-Output

This section describes the package TEXT..JO, which provides facilities for Input and output In I
human-readable form, Each file Is read or written sequentially, as a sequence of characters

PSI ~ grouped Into lines, and as a sequence of lines grouped Into pages, The specification of the pack .-ge
Is given below In section 14.3.10.

The facilities for file management given above, In sections 1 4.2.1 and 14,2.2, are available for text 2

Input-output. In place of READ and WRITE, however, there are procedures GET and PUT that
Input values of suitable types from text filesii, and output values to them, These values are provided
to the PUT procedures, and returned by the GET procedures, In a parameter ITEM . Several
overloaded procedures of these names exist, for different types of ITEM. These GET procedures
analyze the Input sequences of characters as lexical elements (see Chapter 2) and return the cor-
responding values; the PUT procedures output the given values as appropriate lexical elements.

~ *, Procedures GET and PUT are also available that Input and output Individual characters treated as
character valuies rather than a. lexical elements. '

14-9 Text Input-Output 14.3

.1..':...Ak

ANS//MIL-STD-1815A Ada Reference Manual

In addition to the procedures GET and PUT for numeric and enumeration types of ITEM that
operate on text files, analogous procedures are provided that read from and write to a parameter of
type STRING. These procedures perform the same analysis and composition of character
sequences as their counterparts which have a file parameter,

4 For all GET and PUT procedures that operate on text files, and for many other subprograms, there
are forms with and without a file parameter. Each such GET procedure operates on an Input file,
and each such PUT procedure operates on an output file, If no file Is specified, a default input file or '

a default output file is used,

At the beginning of program execution the default Input and output files are the so-called standard
input file and standard output file. These files are open, have respectively the current modes
IN-FILE and OUTFILF, and are associated with two Implementation-defined external files.
Procedures are provided to change the current default Input file and the current default output file.

, a From a logical point of view, a text file Is a sequence of pages, a page Is a sequence of lines, and a
line Is a sequence of characters; the end of a line Is marked by a lne terminator; the end of a page -

Is marked by the combination of a line terminator Immediately followed by a page terminator; and
the and of a file Is marked by the combination of a line terminator Immediately followed by a page
terminator and then a file terminator. Terminators are generated during output; either by calls of
procedures provided expressly for that purpose; or implicitly as part of other operations, for exam-
ple, when a bounded line length, a bounded page length, or both, have been specified for a file,

7l The actual nature of terminators Is not defined by the language and hence depends on the
Implementation. Although terminators are recognized or generated by certain of the procedures
that follow, they are not necessarily Implemented as characters or as sequences of characters,
Whether they are characters (and If so which ones) In any particular Implementation need not con-
cern a user who neither explicitly outputs nor explicitly Inputs control characters, The effect of
input or output of control characters (other than horizontal tabulation) Is not defined by the
language,

a The characters of a line are numbered, starting from one; the number of a character Is called Its
column number, For a line terminator, a column number Is also defined: It Is one more than the
number of characters In the line, The lines of a page, and the pages of a file, are similarly
numbered, The current column number Is the column number of the next character or line ter-
minator to be transferred. The current line number Is the number of the current line. The current
page number Is the number of the current page, These numbers are values of the subtype
POSITIVE_COUNT of the type COUNT (by convention, the value zero of the type COUNT Is used to
Indicate special conditions),

type COUNT Is range 0 ., Implementarion.defined;
subtype POSITIVE-COUNT Is COUNT range 1 . COUNT'LAST;

o For an output file, a maximum line length can be specified and a maximum page length can be
speciflad. If a value to be output cannot fit on the current line, for a specified maximum line length,
then a new line Is automatically started before the value Is output; If, further, this new line cannot
fit on the current page, for a specified maximum page length, then a new page is automatically
started before the value Is output. Functions are provided to determine the maximum line length
and the maximum page length, When a file Is opened with mode OUT-FILE, both values are zero:
by convention, this means that the line lengths and page lengths are unbounded, (Consequently,
output consists of a single line If the subprograms for explicit control of line and page structure are
not used.) The constant UNBOUNDED Is provided for this purpose,

10 References: count type 114.310, dofault current Input file 14,3.2, default current output file 14.3.1, external file 14, 1,
file 14.1, get procedure 14.3,5, in-file 14,1, out-fle 14,1, put procedure 143.5, read. 14.2,2, sequential access 14,1,

* standard Input file 14,3.2, standard output file 143,2

14,3 Text Input-Output 14-10

Input-Output

14.3.1 File Management

The only allowed file modes for text files are the modes INFILE and OUT-FILE. The subprograms
given In section 14.2.1 for the control of external files, and the function ENDOFFILE given In
section 14.2,2 for sequential Input-output, are also available for text flies. There Is also a version of S
ENDOFFILE that refers to the current default Input file. For text flies, the procedures have the fol.-
lowing additional effects:

" For the procedures CREATE and OPEN: After opening a file with mode OUT-FILE, the page "
length and line length are unbounded (both have the conventional value zero). After opening a
file with mode IN-FILE or OUT-FILE, the current column, current line, and current page "0
numbers are set to one.

"* For the procedure CLOSE: If the file has the current mode OUT-FILE, has the effect of calling .
NEW.PAGE, unless the current page Is already terminated; then outputs a file terminator.

"* For the procedure RESET: If the file has the current mode OUT-FILE, has the effect of calling ,
NEW-PAGE, unles the current page Is already terminated; then outputs a file terminator. If
the new file mode Is OUT-FILE, the page and line lengths are unbounded, For all modes, the
current column, line, and page numbers are set to one,

The exception MOOFLRROR Is raised by the procedure RESET upon an attempt to change the ,
mode of a file that Is either the current default Input file, or tha current default output file,

Refrences: create procedure 14.2.1, current column number 14.3, current default input file 14,3, current line '
number 14 3, current page number 14,3, end..offile 14.3, external file 14.1, file 14,1, file mode 14,1, file terminator
14.3, In-file 14.1, line length 14,3, mode-error exception 14.4, open procedure 14.2.1, ouLfile 14.1, page length
14,3, reoet procedure 14.2,1

14.3.2 Default Input and Output Files

The following subprograms provide for the control of the particular default files that are used when
a file parameter Is omitted from a GET, PUT or other operation of text input-output described
below.

proeedurs SET-INPUTIFILE In FILL-TYPE);2

Operates on a file of mode IN-FILE, Sets thj current default input file to FILE.

The exception STATUS-ERROR IG ralaed If the given file Is not open. The exception 4
MODE-ERROR Is raised If the mode of the given file Is not IN-FILE,

proedure SETOUTPUT(FILE In FILE-TYPE);

Operates on a file of mode OUTFILE. Sets the current default output file to FILE.

The exception STATUS-ERROR Is raised If the given file Is not open. The exception
MODLERROR Is raised If the mode of the given file Is not OUT-FILE,

14-1 1 Default Input end Output Files 14.3.2

ANSI/IML-STD-1815A Ada Reference Manual

,s.

func qf•TANDARD-INPUT return FILLTYPE;

Returns the standard Input file (see 14-3).

function STANDARD-OUTPUT return FILE. TYPE;

Returns the standard output file (see 14.3).

function CURRENT-INPUT return FILE-TYPE; "

' 3 Returns the current default Input file,

4 .function CURRENT-OUTPUT return FILE-TYPE;

Returns the current default output file,

Note:

.s The standard Input and the standard output files cannot be opened, closed, reset, or deleted,
because the parameter FILE of the corresponding procedures has the mode In out,

"i? Referencees: current default file 14,3, default file 14.3, file.type 14.1, got procedure 14.3.5, mode-error exoeptlon
* ,.'• 14,4, put procedure 14.3.5, statue...rror exceptlon 14.4

14.3.3 Speolfication of Une and Pege Lengths @,

The subprograms described in thll section are concerned with the line and page structure of a file
of mode OUT-FILE, They operate either on the file given as the first parameter, or, in the absence
of such a file parameter, on the current default output file. They provide for output of text with a
specified maximum line length or page length. In these cases, line and page terminators are out-
put implicitly and automatically when needed. When line and page lengths are unbounded (that Is,
when they have the conventional value zero), as In the case of a newly opened file, new lines and
new pages are only started when explicitly called for,

In all cases, the exception STATUS-ERROR Is raised if the file to be used Is not open; the exception
MODE.ERROR Is ralaed If the mode of the file Is not OUT-FILE.

_, procedure SETLINELENGTH(FILE In FILE-TYPE: TO In COUNT);
procedure SET.,LINELENGTH(TO in COUNT);

Sets the maximum line length of the specified nutput file to the number of 0

characters specified by TO. The value zero for TO specifies an unboundod line
length,

The exception USE-ERROR Is raised if the specified line length Is Inappropriate for
the associated extbrnal file.

14,3,3 Specif/cat/on of L/ne and Page Lengths 14-12

.........-..1',2: "."i

Input-Output

procedure SETPAGLLENGTH (FILE In FILE-TYPE; TO in COUNT): B

procedure SETPAGELENGTH (TO In COUNT);

Sets the maximum page length of the specified output file to the number of lines 7

specified by TO. The value zero for TO specifies an unbounded page length.

The exception USLERROR Is raised If the specified page length Is Inappropriate for
the associated external file.

function LINELENGTH(FILE :.In FILE-TYPE) return COUNT:
function LINE.-LENGTH return COUNT;

Returns the maximum line length currently set for the specified output file, or zero 0
If the line length Is unbounded.

functon PAGLLENGTH(FILE : in FILLTYPE) return COUNT;
function PAGE-LENGTH return COUNT:

Returns the maximum page length currently set for the specified output file, or zero 12
If the page length Is unbounded,

References: count type 14,3, current default output file 14.3, external file 14.1, file 14.1, file.type 14,1, line 14,3, , .
line length 14,3, line terminator 14.3, maximum line length 143, maximum page length 14,3, mode-error exception
144, open file 14,1, ouLfile 14.1, page 14,3, page length 14.3, page terminator 14.3, statua.error exception 144,
unbounded page length 143, use-error exception 14.4

14.3.4 Operations on Columns, Unes, and Pages

The subprograms described In this section provide for explicit control of line and page structure;

they operate either on the file given as the first parameter, or, In the absence of such a file
parameter, on the appropriate (input or output) current default file. The exception STATUSERROR -
Is raised by any of these subprograms If the file to be used Is not open,

procedure NEWLINE(FILE : In FILE-TYPE; SPACING In POSITIVECOUNT := 1);

procedure NEWLINE(SPACING : In POSITIVECOUNT :- 1);

Operates on a file of mod" O'TFILE.

For a SPACING of one: Outputs a line terminator and setv. the current column 3

number to one, Then Increments the current line number by one, except In the case
that the current line number Is already greater than or equal to the maximum page
length, for a bounded page length; In that case a page terminator Is output, the
current pag# number Is Incremented by one, and the current line number is set to
one.

For a SPACING greater than one, the above actions are performed SPACING times, 4

The exception MODLERROR Is raised If the mode is not OUT-FILE.

A4..

14-13 Operations on Columns, Lines, and Pages 14.3.4

• ,, , , l. ' ~ 5, • q

ANSI/MIL-STD-78?5A Ada Reference Manual

5 procedure SKIP-LINE(FILE In FILE-TYPE; SPACING : In POSITIVE-COUNT '= 1);
procedure SKIPLINE(SPACING in. POSITIVLCOUNT := 1);

Operates on a file of mode IN-FILE

a For a SPACING of one: Reads and discards all characters until a line terminator
has been read, and then sets the current column number to one. If the line ter-
minator Is not Immediately followed by a page terminator, the current line number
is Incremented by one. Otherwise, If the line terminator Is Immediately followed by
a page terminator, then the page terminator Is skipped, the current page number Is *- -
Incremented by one, and the current line number Is set to one. '0

* For a SPACING greater thin one, the above actiono are performed SPACING times.

The exoeption MODLERROR Is raised If the mode Is not IN-FILE, The exception
END-ERROR Is raised If an attempt Is made to read a file terminator.

function ENDOFLINE(FILE :In FILLTYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

12 Operates on a file of mode IN-FILE. Returns TRUE If a line terminator or a file
terminator Is next; otherwise returns FALSE.

0 The exception MODE-ERROR Is raised If the mode Is not IN-FILE,

procedure NEWPAGE(FILE : in FILE-TYPE);
procedure NEWPAGE:

'a Operates on a file of mode OUT-FILE. Outputs a line terminator If the current line Is
not terminated, or If the current page Is empty (that is, If the current column and
line numbers are both equal to one), Then outputs a page terminator, which ter-
minates the current page, Adds one to the current page number and sets the our-rent column and line numbers to one.

Is The exception MODELERROR Is raised If the mode Is not OUT-FILE, .,

procedure SKIPPAGE(FILE; in FILLTYPE);
procedure SKIPPAGE;

Operates on a file of mode INFILE, Reads and discards all characters and line
terminators until a page terminator has been read, Then adds one to the current
page number, and sets the current column and line numbers to one,

The exception MODE-ERROR Is raised If the mode Is not IN-FILE, The exceptionEND-ERROR Is raised If an attempt Is made to read a file terminator,

14.3,4 Operations on Columns, Lines, and Pages 14-14

. •...

Input-Output

function ENDOFPAGE(FILE In FILETYPE) return BOOLEAN; 20
function END..OFPAGE return BOOLEAN;

Operates on a file of mode IN-FILE. Returns TRUE If the combination of a line 21

terminator and a page terminator Is next, or If a file terminator Is next; otherwise
returns FALSE.

The exception MODE-ERROR Is raised If the mode Is not INN_FILE, 22

function ENDOF.FILE(FILE :In FILE-TYPE) return BOOLEAN; 23

function ENDOFFILE return BOOLEAN;

Operates on a file of mode IN-FILE. Returns TRUE If a file terminator Is next, or If '.
the combination of a line, a page, and a file terminator is next: otherwise returns
FALSE.

The exception MODE-ERROR Is raised If the mode Is not IN-FILE,

The following subprograms provide for the control of the current position of reading or writing In a 2 "
file, In all cases, the default file Is the current output file,

procedure SETCOL(FILE : In FILE-TYPE: TO : In POSITIVECOUNT); 2?

procedure SETCOL(TO : In POSITIVLCOUNT),

If the file mode Is OUT,-FILE: 23

If the value specified by TO Is greater then the current column number, 29

outputs spaces, adding one to the current column number after each
space, until the current column number equals the specified value, If the
value specified by TO Is equal to the current column number, there in no
effect, If the value specified by TO Is loes than the current column number,
has the effect of calling NEW-LINE (with a spacing of one), then outputs
(TO - 1) spaces, and sets the current column number to the specified value,

The exception LAYOUT-ERROR Is raised If the value specified by TO o0
exceeds LINLIENGTH when the line length Is bounded (that Is, when It
"does not have the conventional value zero),

If the file mode Is IN-FILE: ..

"Reads (and discards) Individual characters, line terminators, and page ter- 32

minators, until the next character to be read has a column number that
"equals the value specified by TO; there Is no affect If the current column
number already equals thil value. Each transfer of a character or ter-
minstor maintains the current column, line, and page numbers In the same
way as a GET procedure (see 143.5). (Short lines will be skipped until a
line Is reached that has a character at the specified column position,)

The exception END-ERROR Is raised If an attempt Is made to read a file 33

terminator.

"14-15 Operations on Columns, Lines, and Pages 14.3.4

A ANS//M/L-STD -81 6A Ada Reference Manual

34 procedure SETLINE(FILE In FILE-TYPE; TO In POSITIVECOUNT);
"procedure SETLINE(TO In POSITIVECOUNT);

•- If the file mode Is OUT.FI LE:

3- If the value specifled by TO Is greater than the current line number, has the
effect of repeatedly calling NEW-LINE (with a spacing of one), until the
current line number equals the specified value. If the value specified by TO
Is equal to the current line number, there Is no effect, If the value specified
by TO is leas than the current line number, has the effect of calling
NEW-PAGE followed by a call of NEW-LINE with a spacing equal to (TO -1).

7 ,The exception LAYOUT-ERROR Is raised If the value specified by TO
exceeds PAGE-LENGTH when the page length Is bounded (that Is, when it
does not have the conventional value zero).

3a If the mode Is IN-FILE:

', Has the effect of repeatedly calling SKIP_.PLINE (with a spacing of one), until
the current line number equals the value specified by TO: there Is no effect
If the current line number already equals this value. (Short pages will be
skipped until a page Is reached that has a line at the specified line position,) 1,0

40 The exception END-ERROR is raised If an attempt is made to read a file
terminator,

41 function COL(FILE : In FILE-TYPE) return POSITIVLCOUNT;
function COL retum POSITIVE-COUNT;

,. .Returns the current column number,

43 The exception LAYOUT-ERROR Is raised If this number exceeds COUNT'LAST,

* , 44 function LINE(FILE : In FILE-TYPE) return POSITIVE-COUNT;
function LINE return POSITIVECOUNT:

49 Returns the current line number,

40 The exception LAYOUT-ERROR Is raised If this number exceeds COUNT'LAST.

S 7 function PAGE(FILE In FILE-TYPE) return POSITIVLCOUNT:

function PAGE return POSITIVE-COUNT;

41 Returns the current page number.

4. 'The exception LAYOUT-ERROR I relised If this number exceeds COUNT'LAST

50 The column number, line number, or page number are allowed to exceed COUNT'LAST (as a
consequence of the Input or output of sufficiently many characters, lines, or pages), These events
do not cause any exception to be raised, However, a call of COL, LINE, or PAGE raises the
"exception LAYOUT-ERROR If the corresponding number exceeds COUNT'LAST,

14,3.4 OperatIons on Columns, Lines, and Pages 14-18

h11put-Output

Note:

A page terminator is always skipped whenever the preceding line terminator is skipped, An 51

Implementation may represent the combination of these terminators by a single character,
provided that It Is properly recognized at Input, 0

References: current column number 14.3, current default file 14,3, current line number 14,3, current page number 5,

14,3, end-error exception 14.4, file 14,1, file terminator 14.3, get procedure 14.3.5, in-file 14.1, layouLerror excep-
tlon 14.4, line 14,3, line number 14,3, line terminator 14,3, maximum page :angth 14,3, mode-error exception 14,4,

open file 14,1, page 14.3, page length 14,3, page terrmnator 14,3, positive count 14.3, statuserror exception 14,4

14.3.5 Get and Put Procedures

The procedures GET and PUT for Items of the types CHARACTER, STRING, numeric types, and I
enumeration types are described In subsequent sections, Features of these procedures that are
common to most of these types are described In this section, The GET and PUT procedures for
Items of type CHARACTER and STRING deal with individual character valueo; the GET and PUT
procedures for numeric and enumeration types treat the Items as lexical elements,

All procedures GET and PUT have forms with a file parameter, written first. Where this parameter 2

Is omitted, the appropriate (input or output) current default file Is understood to be specified. Each
procedure GET operates on a file of mode IN.FILE. Each procedure PUT operates on a file of
mode OUTFILE:

All procedures GET and PUT maintoin the current column, line, and page numbers of the specified 3
file: the effect of each of these procedures upon these numbers Is the resultant of the effects of
Individual transfers of characters and of Individual output or skipping of termilnators, Each transfer
of a character adds one to the current or)lumn number, Each output of a line terminator sots the
current column number to one and adds one to the current line number, Each output of a page
terminator sets the current column and line numbers to one and adds one to the current page
number, For Input, each skipping of a line terminator sets the current column number to ono and
adds one to the current line number; each skipping of a page terminator sets the current column
and line ninibers to one and adds one to the current page number, Similar corsilderatlons apply to
the procedures GELTLINE, PUT-LINE, and SET-COL.

Several GET and PUT procedures, for numeric and enumeration types, have format parumeters 4

which specify field lengths; these parameters are of the nonnegative subtype FIELD of the type
INTEGER,

Input-output of enumeration values uses the syntax of the corresponding lexical elements, Any .
GET procedure for an unumerstlon type begins by skipping any leading blanks, oi- line or page ter-
minstors; a blank being defined as a space or a horizontal tabulation charmoter, Next, characteri.
are Input only so long as tho sequiince Input Is an Initial sequence of an Identifier or of a character
literal (Ir, particular, Input ceases when a line terminator Is encountered), The character or line tar-
minstor that causes Input to cease remains available for subsequent Input, ,

For a numeric type, the GET procedures have a format parameter called WIDTH. If the value given e
for this parameter Is zero, the GET procedure oroceeds In the apme malner eu for enumeration
types, but us'ng the syntax of numeric literals Instead of that of enumerotion Ilterals, If a nonzero
value Is given, then exactly WIDTH characters are Input, ot, the characterm up to a line terminator,
whichever comes first; any skipped leading blanks are Included In the co,,nt, The syntax used for
numeric ulteruls Is an extended syntax that ,Pllows a leading Ogn (but no '.,tarvening blanks, or ilne
or page terminators),

14-17 Get end Put Procedures 14,3.5

.,', , -. ,_. '- . -,'-

ANSIIMIL-STD-1815A Ada Reference Manual

7 Any PUT procedure, for an Item of a numeric or an enumeration type, outputs the value of the Item
* as a numeric literal, Identifier, or character literal, as appropriate, This Is preceded by leading

spaces If required by the format parameters WIDTH or FORE (as described In later sections), and
* then a minus sign for a negative value; for an enumeration type, the spaces follow Instead of

loading. The format given forea PUT procedure I. overridden If It Is Insufficiently wide,

* Two further cases arise for PUT procedure. for numeric and enumeration types, If the line length of
* the specified o'utput file Is bounded (that Is, If It does not have the conventional value zero), If the
* number of characters to be output does not exceed the maximum line length, but Is such that they

cannot fit on the current line, starting from the c-irront column, then (in effect) NEW-.LINE Is called
(with a spacing of one) before output of the Item. Otherwise, if the number of characters exceeds
the maximum line length, then the exception LAYOUT.. ERROR Is raised and no chimracters are

* output.

0 The exception STATUS-.ERROR Is rained by any of the prooedures GET, GET-..LINE, PUT, and
PUT-..LINE if the file to be used Is not open, The exception MODE-.ERROR Is raised by the
procedures GET and GFT..LINE If the mode of tho.111le to be Used Is not IN-.FILE;' and by the
procedures PUT and PUT-.LINE, If the mode Is not 6UT-.FILE.

S The exception END-.ERROR is raised by a GET procedure If an attempt Is made to skip a file
terminator. The exception DATA....EROR Is raised by a GET procedure If the sequence finally inpUt
Is not a lexical elemont corresponding to the type, In particular If no characters were Input: for this
test, leading blanks are Ignored,- for an Item of a numeric type, when a sign Is Input, this rule
applies to the succeeding numeric literal, The exception LAYOUT-.ERROR is raised by n PUT
procedure that outputs to a parameter of type STRING, *If the length of the actual string Is
Insufficient foi, ýhe output of the Item,

11 Examp/es:

12 In the examples, here and In sectionti 1 4,33' 2nd 14.3.8, the string quotes and the lower case let-
ter b are not trarisforrsdi they are shown only ito teveai the layout and spaces,

N tINTEGER:

G ET(N);

-- Characters at Input Sequence Input Value of N

-" bb.1 2536b -12535 -'12535
-- bbl12_535111b 12-..53BE1 126350
-' bbl2-.535E; 12-..53SE (none) DATA...El0lqOR raised

13 Example of overrIdden width parameter',

*PUT(ITEM -. s, -23, WIDTH .> 2)l; -- "-3

14 References,, blank 14,1.9, rolumn number 141, current deoautt file 14,3, datti-arror exception 144, and-..error

exciiptlon 14.4, file 14. 1, tore 14,318, get procedure 143.8 14.3.7 14.3.8 114,19, In-file 14, 1, layout-error oxceptlon
14.4, llne number 14.1 line ternhlrlvtor 14, 1, maximum lio lanfith 14,3, mode 14,.1, mode-error exceptl'n 14.4,
now-file procedure 14,1,4, ou~t-ile 14. 1, page number 14. 1, page terminator 14. 1, put procedure 14.3.8 `14.3.7
14.3.8 14,319, skipping 14.3.7 14.3.8 14.319, atatus..error exception 14.4, width 14.',.5 141.7 14.3.9

14.3.5 Get arid Put Procedures1-1

Inpjit-Output

14.3.6 lnput-Output of Characters and Strings

For an Item of type CHARACTER the following procedures are provided:

procedure GET(FILE : In FILE-TYPE; ITEM out CHARACTER); 2

procedure GET(ITEM : out CHARACTER);

After skipping any line terminators and any page terminators, reads the next -
character from the specified Input file and returns the value of this character In the
out parameter ITEM.

The exception END-ERROR Is raised If an attempt is made to skip a file terminator.-"

"procedure PUT(FILE :In FILE-TYPE; ITEM :In CHARACTER); 5

procedure PUT(ITEM :In CHARACTER);

If the line length of the specified output file is bounded (that is, does not have the -
conventional value zero), and the current column number exceeds It, has the effect
of calling NEW-LINE with a spacing of one. Then, or otherwise, outputs the given

character to the file.

For an Item of type STRING the following procedures are provided:

procedure GET(FILE : In FILE-TYPE; ITEM out STRING); 8

procedure GET(ITEM : out STRING);

Determines the length of the given string and attempts thpt number of GET,-
operations for successive characters of the string (in particular, no operation is per-

,. formed If the string is null).

procedure PUT(FILE :In FILE-TYPE; ITEM :In STRING); ID

prboedure PUT(ITEM :In STRINGI; L

Determines the length of the given string and attempts that number of PUT
operations for successive characters of the string (In particular, no operation Is per-
formed If the string Is null).

procedure GETLINE(FILE : In FILE-TYPE; ITEM : out STRING; LAST : out NATURAL); 12

procedure GETLINE(ITEM : out STRING; LAST : out NATURAL);

Replaces successive characters of the specified string by successive characters 13

read from the specified Input file. Reading stops if the end of the line is met, In
"which case the procedure SKIP-LINE Is then called (in effect) with a spacing of
one; reading also stops If the end of the string Is met. Characters not replaced are 9
left undefined.

.. :. If characters are read, returns in LAST the Index value such that ITEM (LAST) Is the

last character replaced (the Index of the first character replaced Is ITEMWFIRT). If
S., lno characters are read, returns In LAST an Index value that is one less than

ITEM'FIRST.

"The exception END-ERROR Is raised If an attempt Is made to skip a file terminator.

"14-19 Input-Output of Characters and Strings 14.3.6

ANSI/MIL-STD-1815A Ads Reference Manual

procedure PUTLINE(FILE In FILE-TYPE; ITEM In STRING);
procedure PUTLINE(ITEM :In STRING);

17 Calls the procedure PUT for the given string, and then the procedure NEW-LINE
with a spacing of one.

", Notes:

"is In a literal string parameter of PUT, the enclosing string bracket characters are not output. Each
doubled string bracket character In the enclosed string Is output as a jingle string bracket
character, as a consequence of the rule for string literals (see 2.6).

9 ,o A string read by GET or written by PUT can extend over several lines.

20 References: current column number 14,3, end-error exception 14,4, file 14,1, file terminator 14.3, get vrocedure
14.3,5, line 14.3, line length 14.3, new-line procedure 14,324, page terminator 14.3, put procedure 14,.34, skipping

-* 14.3.5

14.3.7 Input-Output for Integor Types

The following procedures are defined In the generic package INTEGERIO. This must be
instantiated for the appropriate Integer type (Indicated by NUM In the specification),

2 Values are output as decimal or based Ilterals, without underline characters or exponent, and
preceded by a minus sign If negative. The format (which Includes any leading spaces and minus
sign) can be specified by an optional field width parameter, Values of wtdths of fields In output for-
mats are of the nonnegative Integer subtype FIELD. Values of bases are of the Integer subtype .. •
NUMBERBASE.

subtype NUMBERBASE Is INTEGER range 2 ., 16:

The default field width and base to be used by output procedures are defined by the following
variables that are declared In the generic package INTEGER_-10:

.,EFAULTWIDTH FIELD := NUM'WIDTH,;
DEFAULT..BASE NUMBER-BASE := 10;

4 The following procedures are provided:

Sprocedure GET(FILE In FILE-TYPE: ITEM : out NUM; WIDTH I in FIELD := 0); -
procedure GET(ITEM , out NUM; WIDTH In FIELD := U);

If the value of the parameter WIDTH Is zero, skips any leading blanks, line
terminators, or page terminators, then reeds P plus or a minus sign If present, then
reads according to the syntax of an Integer literal (which may be a based literal), If
a nonzero value of WIDTH Is supplied, then exactly WIDTH characters are Input, or .
the characters (possibly none) up 1c a ilne terminator, whichever comes first; any
skipped leading blanks are Included In the count.

SReturns, In the pmrameter ITEM, the value of type NUM that corresponds to the
sequence Input.

The exception DATA.ERROR Is raised If the sequence Input does not have the
required syntax or If the value obtained Is not of the subtype NUM,

14,3.7 Input-Output for Integer Types 14-20

Input-Output

procedure PUT(FILE In rILL-TYPE; 4

ITEM In NUM;
WIDTH In FIELD :=DEFAULT-WIDTH;
BASE I n NUMBER-..BASE *DEFAULT...BASE);

procedure PUT(ITEM :In NUM;
WIDTH In FIELD *= DEFAULT..WiDTH;
BASE In NUMBER-..BASE :=DEFAULT.BASE);

Outputs the value of the parameter ITEM as an Integer literal, with no underlines, io
no exponent, and no leading zeros (but a single zero for the value zero), and a

preceding minus sign for a negative value.

If the resulting sequence of -characters to be output has fewer than WIDTH
characters, then leading spaces are first output to make up the difference.

Uses the syntax for decimal literal If the parameter BASE has the value ten (either 1
explicitly or through DEFAULT-.BASE I; otherwise, uses the syntax for based literal,
with any letters In upper case,

procedure GET(FROM :In STRING, ITEM :out NUM; LAST out POSITIVE); 1

Reads an Integer value from the beginning of the given string, following the same 14

rules as the GET procedure that reads an Integer value from a file, but treating the
end of the string as a file terminator. Returns, In the parameter ITEM, the value of

* type NUM that corresponds to the sequence Input. Returns In LAST the Index
value such that FROM (LAST) is the lest character read.

The exception DATA-.ERROR Is raised If the sequence Input does not have the '

required syntax or If the value obtained Is not of the subtype NUM.

procedure PUT(TO :out STRING; 16
ITEM In NUM;
BASE :In NUMBER-.BASE ~=DEFAULT-.BASE);

Outputs the value of the parameter ITEM to the given string, following the same 1
rule as for output to a file, using the length of the given string as the value for
WIDTH..

Examples:0

package INT-10l Is now INTEGER-iO(SMALLINT): use INT-10;
-- default format used at instantiation, DEFAULT-..WIDTH -4, DEFAULT.-BASE 10

PUT(1 201: Nbl ~b26
N. ~~~PUT(- 126, 7); b-16

PUT(126, WIDTH => 13, BASE -> 2); -- bbb2#1 111110*"

References., based literal 2.4.2, blank 1143,115, data-.error exception 14.4, decimal literal 2.4,1, field subtype 14.3.5, 1

file-type 14.1, get procedure 14.31,5, Intuger-lo package 14.3.10, Integer literal 2A4, layout-error exception 14A4, line
terminator 14.3, put procedure 14.3.5, skipping 14,3.5, width 14.3,5

L 14-2 1 Input-Output for Integer Types 14.3.7

ANSI/MIL-STD-1815A Ada Reference Manual

14.3.8 Input-Output for Real Types

The following procedures are defined In the goneric packages FLOAT-1O and FIXEDIO, which
must be Instantiated for the appropriate floating point or fixed point type respectively (indicated by
NUM In the specifications),

Values are output as decimal Ilterals without underline characters. The format of each value output
consists of a FORE field, a decimal point, an AFT field, and (if a nonzero EXP parameter Is supplied)
the letter E and an EXP field. The two possible formats thus correspond to:

FORE AFT

and to:

FORE , AFT E EXP

without any spaces between these fields, The FORE field may include leading spaces, and a minus
sign for negative values. The AFT field Includes only decimal digits (possibly with trelling zeros),
The EXP field Includes the sign (plus or minus) and the exponent (possibly with leading zeros).

5 For floating point types, the default lengths of these fields are defined by the following variables
that are declarud In the generic package FLOAT-0:...

DEFAULT-FORE FIELD :- 2:
DEFAULT..AFT : FIELD :- NUM'DIGITS-1;
DEFAULTEXP : FIELD :- 3:

a For fixed point types, the default lengths of these fields are defined by the following variables that
are declared In the generic package FIXED-O1:

DEFAULT-FORE : FIELD :, NUM'FORE;,
DEFAULT-AFT : FIELD :=, NUM'AFT,
DEFAULTEXP : FIELD :- 0;

The following procedures are provided:

B procedure GET(FILE In FILE-TYPE; ITEM : out NUM; WIDTH : In FIELD := 0);
procedure GET(ITEM : out NUM: WIDTH : In FIELD :- 0);

If the value of the parameter WIDTH Is zero, skips any leading blanks, line
terminators, or page terminators, then reads a plus or a minus sign If present, then
reads according to the syntax of a rial literal (which may be a based literal). If a
nonzero value of WIDTH Is supplied, then exactly WIDTH characters are Input, or
the characters (possibly none) up to a line terminator, whichever comes first; any
skipped leading blanks are Included In the count.

Returns, In the parameter ITEM, the value of type NUM that corresponds to the
sequence Input.

The exception DATA-ERROR Is raised If the sequence Input does not have the
required syntax or If the value obtained Is not of the subtype NUM,

14.3.8 Input-Output for Reel Types 14-22

Input-Outpot

produ .In FILE-TYPE;

'N ,IELD := DEFAULT-FORE;
t in t# LD DEFAULT-AFT;

EXP I in HWLO := DEFAULTEXP);

prooedure P.1T(TFWM in NUM;
FORE in FIELD DEFAULT-FORE;
AFT :in FIl.D :0 DEFAULT-AFT;
EXP In FIEL,': DEFAULTEXP);

Outputs the value of tl-e parameter ITEM as a decimal literal with the format 13

defined by FORE, AFT and EXP. If the value is negative, a minus sign Is Included In
the Integer part. If EXP has the value zero, then the Integer part to be output has as
many digits as are needed to represent the Integer part of the value of ITEM,
overriding FORE If necessary, or consists of the digit zero If the value of ITEM has
no Integer part.

If EXP has a value greatei' then zero, then the Integer part to be output has a single ,'

digit, which Is nonzero except for the value 0.0 of ITEM.

In both cases, however, If the Integer part to be output has fewer than FORE -
characters, Including any minus sign, then leading spaces are first output to make
up the difference. The number of digits of the fractional part Is given by AFT, or is
one If AFT equals zero. The valuo Is rounded; a value of exectly one half In the last
place may be rounded either up or down,

If EXP has the value zero, there Is no exponent part. If EXP has a value greater than i,
zero, then the exponent part to be output has as many digits as are needed to
represent the exponent part of the value of ITEM (for which a single digit Integer
part Is used), and Includes an Initial sign (plus or minus), If the exponent part to be
output has fewer than EXP oharacters, Including the sign, then leading zeros

, precede the digits, to make up the difference. For the value 0,0 of ITEM, the
exponent has the value zero.

procedure GET(FROM : In STRING: ITEM out NUM, LAST out POSITIVE);

Reads a real value* from the beginning of the given string, following the same rule ,,
"as the GET procedure that reads a real value from a file, but treating the end of the
string as a file terminator. Returns, In the parameter ITEM, the value of type NUM
that corresponds to the sequence input. Returns In LAST the index value such that --

FROM(LAST) Is the last character read,

The exoeption DATAEnROR Is raised If the sequence Input does not have the •o
required syntax, or if the value obtained Is not of the subtype NUM,

procedure PUT(TO ' out STRING; 20
ITEM :In NUM;
"AFT : In FIELD := DEFAULT-AFT;
EXP :In INTEGER := DEFAULTEXP);

Outputs the value of the parameter ITEM to the given string, following the same 2 _
4 rule as for output to a file, using a value for FORE such that the sequence of

characters output exactly fills the string, Including any leading spaces.

14-23 Input-Output for Real rypes 14.3.8

S... - •:' :• -•" '- ': ' • -' -" -- 'i - -" :'-, ' " i - " - --- '-.. . • ' "- : i i -. .. '

ANS1/MIL-STD-1815A Ada Reference Manual

22 Evamples:

package REAL-10 is now FLOAT-..O(REAL); use REALIO0;
-- default formAt used at Instantiation, DEFAULT-.EXP -3

X :REAL :=-123.41567; -- digits 8 (see 3.5.7)

PUT(X) -- default format "-1 .2346670E+02"
PUT(X FORE => 5, AFT => 3, EXP => 2); -- "bbb-1.235E+2"
PUT(X 5, 3, 0); "- b-123.467"

Note:

23 For an Item with a positive value, If output to a string exactly fills the string without leading spaces,
then output of the corresponding negative value will raise LAYOUT-.ERROR .

14a References.: aft attribute 3.5,10, based literal 2.4.2, blank 14.3,15, data-.error exception 14,315, decimal literal 2.4.1,
field subtype 114,3,5, file-.type 14, 1, fixe&..o package 14,3110, floating-.lo package 14.3. 10, fore attribute 3.5.10, get
procedure 14,3,5, layout-*"or 14.3.5, line terminator 14.3.5, put procedure 14.3.5, real literal 2.4, skipping 14.3.5,
wldth 14.3.5

14.3.9 Input-Output for Enumeration Types

I The following procedures are defined In the generic pac~khge ENUMERATION-1O, which must be
Instantiated for the appropriate enumeration type (indicated by ENUM In the specification).

2 Values are output using either upper or lower case letters for Identifiers, This Is specified by the
parameter SET, which Is of the enumeration type TYPE-.SET,

type TYPE-SET Is (LOWER-.CASE, UPPER-CASE);

3 The format (which Inciudes any trailing spaces) can be specified by an optional field width
A parameter. The default field width and letter case are defined by the following variables that are

declared In the generic package ENUMERATION-10l:

DEFAULT-.WIDTH :FIELD :. 0;
DEFAULT-SETTING :TYPE-SET :. UPPER-CASE:

4 The following procedures are provided:

procedure GET(FILE In FILE-TYPE: ITEM out ENUM);
procedure GET(ITEM :out ENUM); .,-

s After skipping any leading blanks, line terminators, or page terminators, reads an
Identifier according to the syntax of this lexical element (lower and upper case
being considered eciulvalent), or a character literal mccording to the syntax of this
lexical element (including the apostrophes). Returns, In the parameter ITEM, the
value of type ENUM that corresponds to the sequence Input.

The exception DATA-..ERROR Is~ raised If the sequence Input does not have the
required syntax, or If the Identifier or character literal does not correspond to a
value of the subtype ENUM.

14,1 9 Input-Output for Enumeration Types 14-24

Input-Output

provcdure PUT(FILE :In FILE-TYPE; a
ITEM In ENUM;
WIDTH In FIELD :- DEFAULT-WIDTH:
SET : In TYPLSET :- DEFAULTSETFING);

procedure PUT(ITEM in ENUM;
WIDTH In FIELD :- DEFAULT-WIDTH;
SET In TYPLSET := DEFAULT-SETTING);

Outputs the value of the parameter ITEM as an enumeration literal (either an 9

Identifier or a character literal). The optional parameter SET indicates whether
lower case or upper case Is used for Identifiers; it has no effect for character
literals, If the sequence of characters produced has fewer than WIDTH characters,
then trailing spaces are finally output to make up the difference.

proedure GET(FROM : in STRING; ITEM : out ENUM: LAST : out POSITIVE); o0

Reads an enumeration value from the beginning of the given string, following the ..
same rule as the GET procedure that reads an enumeration value from a file, but
treating the end of the string as a file terminator, Returns, In the parameter ITEM,
the value of type ENUM that corresponds to the sequence Input. Returns in LAST
the Index value such that FROM (LAST) Is the last character read.

The exception DATA..ERROR is raised If the sequence Input does not have the 1

required syntax, or If the Identifier or character literal does not correspond to a the:value of the subtype ENUM.

proedure PUT(TO : out STRING; 13

ITEM :in ENUM:.
SET In TYPLSET :- DEFAULTSETTING);

Outputs the value of the parameter ITEM to thm given string, following the same W
rule as for output to a file, using the length of the given string as the value for
WIDTH,

Although the specification of the package ENUMERATIONIO wjuld allow Instantlation for an
integer type, this Is not the Intended purpose of this generic package, and the effect of such instan-
tiations Is not defined by the language.

Notes.'

There Is a difference between PUT defined for characters, and for enumeration values. Thus .,

TEXT_IOPUT(A'); -- outputs the character A

package CHAR-1O Is new TEXTIO.ENUMERATIONIO(CHARACTER);
CHARIOPUT('A'); -- outputs the character 'A', between single quotes

The type BOOLEAN Is an enumeration type, hence ENUMERATION-1O can be Instantiated for this
type.

References: blank 14.3.5, datse-rror 14.3.5, enumeretlon-lo package 14.3.10, field subtype 14.3.5, file-type 14.1, is
get procedure 14.3,5, line terminator 14.3,5, put procedure 14.3,5, akipplng 14.3,5, width 14.3,5

14-2 5 Input-Oatput for Enumeration rypes; /4.3.9

S i A 4-i i

S2 ANSI/MIL-STD-48151 Ada Reference Manual

14.3.10 Specification of the Package Text10

with IOEXCEPTIONS;
package TEXT1O I s

type FILE-TYPE Is limited private;

type FILE..MODE Is (IN-FILE, OUTFILE);

type COUNT Is range 0 .. Implementation-defined:
subtype POSITIVE-COUNT Is COUNT range 1 ,. COUNT'LAST:
UNBOUNDED : constant COUNT :- 0: -- line and page length

stibtype FIELD Is INTEGER range 0 Implpmentation-deflned;

"subtype NUMBER-BASE Is INTEGER range 2 ,, 16M

type TYPE-SET Is (LOWER-CASE. UPPER-CASE);

- File Management

procedure CREATE (FILE In out FILE-TYPE;
MODE In FILE-MODE :-, OUT-FILE;
"NAME :In STRING :- No;
FORM : In STRING :- "";

pl~msure OPEN FILE In out FILE-TYPE:
MODE In FILE-MODE;
NAME In STRING:
FORM In STRING :- ");

procedure CLOSE (FILE In out FILE.TYPE);
procedure DELETE (FILE : In out FILELTYPE);
procedure RESET (FILE In out FILE-TYPE: MODE In FILELMODE):
procedure RESET (FILE : In out FILLTYPE):

function MODE (FILE In FILE-TYPE) return FILE-MODE
function NAME (FILE In FILLTYPE) return STRING;
function FORM (FILE In FILLTYPE) return STRING:

function IS-OPEN(FILE In FILE-TYPE) return BOOLEAN;

-- Control of default Input and output files

procedure SET-INPUT (FILE in FILE-TYPE);
procedure SET-OUTPUT (FILE In FILLTYPE);

function STANDARD-INPUT return FILLLTYPE;
function STANDARD-OUTPUT return FILLLTYPE:

function CURRENT-INPUT return FILE.TYPE;
lunutlon CURRENT..OUTPUT return FILE-TYPE,

14,3.10 Specification of the Package TextLO 14-26

Input-Output

-- Specification of line and page lengths

procedure SET-.LINE-LENGTH (FILE :In FILE-TYPE; TO In COUNT);
procedure SET-LINE-.LENGTH (TO :In COUNT);

procedure SET...PAGE-LENGTH (FILE : In FILL.TYPE; TO In COUNT):
procedure SET-.PAGE-LENGTH (TO In COUNT);

function LINE-LENGTH (FILE : In FILE-TYPE) return COUNT;
function LINE-LENGTH return COUNT;

function PAGE-LENGTH (FILE : In FILE-TYPE) return COUNT;
function PAGE-LENGTH return COUNT;

- Column, Line, and Paeg Control

procedure NEW-.LINE (FILE : In FILE-TYPE: SPACING :In POSITIVE-COUNT :-1);
procedure NEW-.LINE (SPACING , In POSITIVE-COUNT *- 1);

procedure SKIP-.LINE (FILE : In FILE...TYPE: SPACING.: In POSITIVE-COUNT :-1);
procedure SKIP-.LINE (SPACING : In POSITIVE-COUNT :- 1);

function END-.OF-.LINE (PILE : In FILE-TYPE) return BOOLEAN;
function END...OF..LINE return BOOLEAN:

procedure NEW-.PAGE (FILE In FILL-TYPE);
procedure NEW-.PAGE;

procedure SKIP-..PAGE (FILE In FILLITYPE);
procedure SKIP-.PAGE.,

function END...OF...PAGE (FILE :In FILE-TYPE) return BOOLE*AN;
function END..OF-.PAGE return BOOLEAN:

function END...OF-FILE (FILE : In FILLTV'PE) return BOOLEAN:
function ENO..OF..FILE return BOOLEAN;

procedure SET-.COL (FILE :In FILE-TYPE., TO :1 In POSITIVE-COUNT);
P proceure SET-.COL (TO :In POSITIVL-COUNT):

procedure SET-LINE (FILE :In FILE-TYPE; TO : In POSITIVE-COUNT);
procedure SET-.LINE (TO :In POSITIVE-COUNT);

funution COL (FILE : In FILE-TYPE) return POSITIVE-.COUNT; a
function COL return POSITIVE-COUNT;

function LINE (FILE : In FILE-TYPE) return POSITIVE-COU NT:
function LINE return POSITIVE-COU NT:

function PAGE (FILE .In FILE-TYPE) return POSITIVE-COUNT;
function PAGE return POSITIVL-COU NT:

414-27 Specification of the Package Text-JO 14.3, 10

ANSIIMIL-STD-1815A Ads Reference Manual

-- Character Input-Output

procedure GET(FILE in FILE-TYPE; ITEM out CHARACTER);
procedure GET(ITEM out CHARACTER);
procedure PUT(FILE In FILE-TYPE; ITEM In CHARACTER);2
procedure PUT(ITEM tIn CHARACTER);

String Input-Output

procedure GET(FILE In FILE-TYPE; ITEM out STRING);
procedure GET(ITEM out STRING); .
procedure PUT(FILE In FILE-.TYPE; ITEM In STRING);
procedure PUT(ITEM In STRING);

procedure GET...LINE(FILE :In FILE-TYPE, ITEM :out STRING; LAST out NATURAL);
procedure GET-.LINE(ITEM :out STRING; LAST :out NATURAL);
procedure PUT...LINE(FILE ;in FIILETYPE: ITEM t In STRING):-
procedure PUT-.LINE(ITEM :In STRING);I

-- Generic package for Input-Output of Integer Types

generic
type NUM Is range <>:

packae INEGER10jI
DEFAULT-.WIDTH :FIELD :m NUM'WIDTH,
DEFAULT-.BASS NUMBER-B.ASE -- 10;

procedure GET(FILE In FILE-TYPE: ITEM :out NUM,, WIDTH In FIELD :.0):
procedure GET(ITEM :out NUM: WIDTH : In FIELD *- 01):

procedure PUT(FILE tIn FILL-TVPE:
ITEM tIn NUM:,
WIDTH ;In FIELD :-DEFAULT...WIDTH:,
BASE tIn NUMBER-.BASE *- DEFAULT-BASE);

procedure PUTI ITEM tIn NUM;:
WIDTH tIn FIELD :- DEFAULT-.WIDTH:
BASE tIn NUMBER-.BASE *m DEFAULT...BASE):

procedure GETJ FROM tIn STRING; ITEM :out NUM: LAST :out POSITIVE);
procedure PUT(TO out STRING:

ITEM tIn NUM;
BASE tIn NUMBER-BASE : DEFAULT-BASE);

end INTEGER-1O;

14.3. 10 Specfifcatlon of the Package Text-1O 14-28

Input-Output

-- Generic packages for Input-Output of Real Types

gyenei NUM Is digits <>;
package FLOAT-10 Is

DEFFAULT-.FORE FIELD 2;
DEFAULT-.AFT FIELD NUM'DIGITS-1;
DEFAUL.T..EXP FIELD 3;
"poeueGTIE I FL-YE TM otNU:WDH I IL)

procedure GET(FL InIL.YE;ITEM out NUM: WIDTH In FIELD 0):

procedure PUT(FILE :In FILE-TYPE;
ITEM :In NUM;
FORE In FIELD :-DEFAULT...FORE:
AFT In FIELD :-DEFAULT-.AFT:
EXP :In FIELD :m DEFAULT...EXP);

procedure PUT(ITEM :In NUM:
.4FORE :In FIELD :-DEFAULT-.FORE:

AFT In FIELD :-DEFAULT..AFT;
EXP In FIELD :-DEFAULT..EXP):,

procedure aEr(FROM :In STRING:, ITEM : out NUM: LAST :out POSITIVE):
procedure PUT(TO :out STRING:

ITEM i In NUM;
AFT :In FIELD *- DEFAULT-.AFT,

*E)(P :In FIELD :am DEFAULT..EXP);
end FLOAT-1.0;

gyenei NUM Is delta < >;

package FIXED-10 Is

DEFAULT-.FORE FIELD *- NUM'FORE;,
DEFAULT-.AFT FIELD *- NUM'AFT:
DEFAULT_.EXP FIELD *- 0;

procedure GET(FILE In FILE-.TYPE; ITEM out NUM; WIDTH In FIEI.D :- 0;
procedure GET(ITEM :out NUM; WIDTH : In FIELD :- 0);

procedure PUT(FILE In FIILETYPE;
ITEM In NUM;
FURE In FIELD :.a DEFAULT...FORE:
AFT In FIELD :m DEFAULT-.AFT;
EXP :In FIELD :w. DEFAULT..EXP);

procedure PUT(ITEM In NUM;
FORE :In FIELD :m~ DEFAULT-..FORE:
AFT In FIELD :m DEFAULT-.AFT:
EXP In FIELD :m DEFAULT..EXP):,

procedure GET(FROM In STRING; 7TEM :out NUM, LAST out POSITIVE),,
procedure PUT(TO out STRING,

ITEM :In NUM,
AFT :In FIELD :-DEFAULT-.AFT;
EXP In FIELD :~DEFAULT.EXP);

end FIXED..jO;

114-29 Spectfication of the Packoge Text-JO 14.3.10

ANS//MIL-STD- 181 6A Ada Reference Manu!-

-- Generic package for Input-Output of Enumeration Types

generic
type ENUM Is (<>);

package ENUMERATION-1O Is

DEFAULT-WIDTH FIELD :- 0;
"DEFAULT-SETTING TYPLSET := UPPER-CASE;

"procedure GET(rILE in FILE-TYPE; ITEM out ENUM);

procedure GET(ITEM out ENUM);

procedure PUT(FILE in FILE-TYPE; ,'
ITEM In ENUM;
WIDTH In FIELD :- DEFAULT.WIDTH;
SET In TYPE-SET :- DEFAULTSGETTING),

procedure PUT(ITEM in ENUM;
WIDTH In FIELD :- DEFAULT-WIDTH;
SET In TYPE-SET - DEFAULT-SETTING);

procedure GET(FROM in STRING; ITEM out ENUM; LAST out POSITIVE);,
procedure PUT(TO out STRING;

ITEM in ENUM;
SET in TYPESET :- DEFAULT.SETTING);

end ENUMERATION_!O:

-- Exceptions

STATUS-ERROR exoeption renames 1O_=XCEPTIONSSTATUSERROR;
MODLERROR exception renames IOEXCEPTIONS.MODILERROR;
NAME-ERROR exception renamies IOKEXCEPTIONSNAMLERROR;
USE-ERROR exception renames IOEXCEPTIONSUSLERROR;
DEVICE-ERROR exception renames IOEXCEPTIONSDEVICL.ERROR:
END-ERROR exception renames IO-EXCEPTIONS.ENDERROR",
DATA-ERROR exoeption renames IOEXCEPTIONS.DATAERROR:
LAYOUT-ERROR exception renames IOEXCEPTIONSLAYOUT.ER ROR:

private
SImplementation-dependent

end TEXTJO;

14.4 Exceptions In Input-Output

The following exceptions can be raised by Input-output operations. They are declared in the
package IO..EXCEPTIONS, defined In seotion 14,5: this package Is named In the context clause for
each of the three Input-output packages, Only outline descriptions are given of the conditions
under which NAME-ERROR, USE-ERROR, and DEVICE..ERHOR are raised; for full details see
Appendix FR If more than one error condition exists, the corresponding exception that aspears
earliest In the following list Is the one that Is raised,

2 The exception STATUS-ERROR Is raised by an attempt to operate upon a file that Is not open, and
"by an attempt to open a file that Is already open.

"14.4 Exceptions In Input-Output 14-30

............',' . .".

Input-Output

The exception MODE...ERROR Is raised by an attempt to tead fr,,m, or test for the endl of, a file
whose current mode Is OUT...FILE, and also by an attempt to write to a file whose cui,rent mods Is
IN-..FILE. In the caae Of TEXT..10, the eyi',ption MODE-ERROR Is also raised by tipecifying a file
whose current mode Is OUT-.FILE In a call o~ -E.INPUT, SKIP.-LINE, END...OL-LINE, sKIP-.PAGE,
or END-.OF...PAGE; and by specifying a file whose current mode Is IN-FILE In a call of
SET..OIJTPUT, SET-.LINE-LENGTH, SEL-PAGF...LENGTH, LINE-LENGTH, PAGELEN4GTH.J
N EW-LINE, or NEW-.PAGE.

* The exception NAME-ERROR Is raised by a call of CREATE or OPEN If the string given for the
parameter NAME does not allow the Identification of an external file, For example, this exception Is
raised If the string Is Improper, or, alternatively, If either none or more 6an ooia external file u.ormea-
ponds to the string.

The exception USE-ERROR Is raised If an operation ia attqmpted that Is not poasiole for rossons
that depend on characteristics of the external file, For example, t"Os exception Is raised by the
procedure CREATE, among other circumstances, If the given mode It OUT..FlLE but the -form
specifies an Input only device, If the parameter FORM specifiet Invalid access rights, or If ell
external file with the given nmem already exists and overwriting Is not allowed,0

The exception DEVICE-..ERROR Is raised If an Input-output operation cannot be aornpleteca becauses
of a malfunction of thu underlying systain,
The exception END-..ERROR Is raised by an attempt to skip (read past) the end of a file,

The exception DATA-..ERROR may be raised by the procedure READ If the element read cannot be
Interpreted as a value of the required type, This exception Is also raisad by a procodure GET
(defined In the package TEXTJ..O) If the Input charecter sequence fails to satisfy the required
syntax, or If the value Input does not belong to the range of the required type or subtype.

*rhe exception LAYOUT-.ERROR Is raioed (In text Input-output) by COL. LINE, or PAGE If the value
returned exceeds COUNT'LAST, The exception LAYOUT-.ERROR Is also raised on output by an
attempt to set column or line number. In excess of specified maximuni line or page lengths, ,

respectively (excluding the unbounded cases), It Is also raised by an attempt to PUT too many
characters to a string.
References., col function 114,1,4, create procedure 1 44, 1, end-of.Ilne function 14.314, and-.of-page function 14,1.4, r

exterriI file 114.1, file 14,11 form string 14.1, got procedure 114,3.,5, In-file 14,11 lo..e~ceptions package 14,15, line
function 14.31,41, line-.length function 114,314, name string 114.1, maw-imne procedure 114.314, now-page procedure
14.3.4, open procedure 14,211, ouLflle 14,11, page function 14.314, page-iengtii function 14,3.4, put prncudure
14.3.5, read procedure 114.2.2 1142.3, bot..input procedure 14,1,2, noeLiine-iength 114.13,3 set-page..engtt, 14.313,
set-output 114.3.2, skip.-jlne procedure 114.314, sklp-psge procedure 14.3.4, textlia pankage 14.3

14-31 E.xcept/orns In Input-Output 14.4

ANS1/MIL-STD- 1816A Ada Reference Manual

14.5 Specification of the Package IO..Exceptions

This package defines the exceptions needed by the packages SEQUENTIALIO, DIRECTIO, and
TEXT1O,-

package IO-EXCEPTIONS is

STATUSFRROR : exception;
MODE-ERROR : exooption:
NAMLERROR exoeption-:
USE-ERROR exception: 0
DEVICE..ERROR etosption:
END-ERROR : exception;
DArA.ERROR : exception;
LAYOUT-ERROR excption;"

end iO_,.2XCEPTIONS:

140 Low Level IhPUt-Output

A low level Input-output operation Is an operation acting on a physical device, Such an operation
Is handled by using one of the (overloaded) predefined procedures SEND.CONTROL end
RECEIVECONTROI

A procedure SEND-CONTROL may be ..sed to send control Information to a physical device, A
procedure RECEIVECONTAIOL may be used to monitor the execution of an Input-output operation
by requestIng Inforiadtlon from the phyalcii device,

Such procedures are dealar A In the standard package LOWLEVELIO and have two parnmeters
identifying the device and the data. However, the kinds and formats of the control Information will
depend on the physical characteristics of the machine and the device Hence, the types of the
parameters are Implementatlorn-deflned, Overloaded definitions of these procedures should he
provided for the supported devices,

4 The vislble part of the Dackage defining these procedures Is outlined as follows:

package LOW-LEVELIO Is
declaratlons of the possible types for DEVICE and DATA;

-. declaratkins of overloaded procedures for these types:
proceduve SEND-CONTROL (DEVICE device-type: DATA :11 out datetype);
procedure RECEIVE..CONTROL (DEVICE device-type: DATA ;In out dats.type);

und;

I The bodies of the procedures SENDCONTROL and RECEIVE-CONTROL for various devices can be
supplied In the body of the package LOWLEVEL.O, These procedure bodies may be written with
code statements.

14,6 Low Level Input-Output 14-32

Input-O-tput

14.7 Example of Input-Output

The following example shows the use of some of the text input-output facilities in a dialogue with ' "
a user at a terminal, The user is prompted to type a color, and the program responds by giving the
number of Items of that color available In stock, according to an Inventory. The default incut and
output files are used. For simplicity, all the requisite Instantlations are given within one sub-
program; In practice, a package, separate ' n, the procedure, would be used.

with TEXTIO; use TEXT.IO; 2

procedure DIALOGUE is
type COLOR Is (WHITE, RED, ORANGE, YELLOW, GREEN, BLUE, BROWN);
package COLORJO Is new ENUMERATIONJO(ENUM => COLOR);
package NUMBERIO Is new INTEGERIO(INTEGER);
use COLOR.JO, NUMBERIO;

INVENTORY : array (COLOR) of INTEGER := (20, 17, 43, 10, 2B, 173, 87);
CHOICE : COLOR;

procedure EN7ERCOLOR (SELECTION out COLOR) Is
begin

loop

begin
PUT ("Color selected: "); -- prompts user
GET (SELECTION); -- accepts color typed, or raises exception
return;

exception
when DATA..ERROR => " .

PUT("lnvalld color, try again, user has typed new line
NEWLINE(2);
-- completes execution of the block statement

end loop; -- repeats the block statement until color accepted

end;
begin -- statements of DIALOGUE;

NUMBERIO.DEFAULTWIDTH := 5;

loop

ENTERCOLOR(CHOICE); -- user types color and new line

SETCOL(5); PUT(CHOICE); PUT(" Items avallablo:");
S'T.T_COL(40); PUT(INVENTORY(CHOICE)); -- default width Is 5
NEW-LINE;

end loop;
end DIALOGUE;

Example of an Interaction (characters typed by the user are Italicized):

Color selected: Black
Invalid color, try again.

Color selected: Blue
BLUE Items available: 173 : -..

Color selected: Yellow
YELLOW Items available: 10 "

oil

14-33 Example of Input-Output 14.7

. '. . • -- ... -. - . , .

A. Predefined Language Attributes

This annex summarizes the definitions given elsewhere of the predefined language attributes.

P*ADDRESS For a prefix P that denotes an object, a program unit, a label, or an entry: 2 -

Yields the address of the first of the storage units aiioctited to P. For a sub- :
program, package, task unit,or iabel, this vaiue refers to the machine code
associated with the corresponding body or statement, For an entry for

* .~;which an address clause has been given, the value refers to the cor-
responding hardware !nterrupt. The value of this attribute is of the type
ADDRESS defined In the package SYSTEM . (See 13.7.2.)

P'AFT For a prefix P that denotes a fixed point subtype:

Yields the number of decimal digits needed after ~he point to accomnmodate
the precision of the subtype P, unless the delta of the subtype P Is greater
than 0.1, In which case the attribute yields the value one. (P'AFT Is the
smallest positive Integer N for which (1O**N)*P'DELTA Is greater than or
equal to one.) The value of this attribute Is of the type unlversa/Jnteger,
(See 3.5.10.)

* P'BAS E For a prefix P that denotes a type or subtype:4

This attribute denotes the base type of P. It Is only allowed as the prefix of
the name of another attribute: for example, P'BASEWFIRST . (See 3.3.3.)

P'CALLABLE For a prefix P that Is appropriate for a task type:

Yields the value FALSE when the execut of the task P Is either completed
or terminated, or when the task 1, rmal; yields the value TRUE
otherwise. The value of this attribute predefined type BOOLEAN.
(See 9.9.)

.,,.., ,,..•

PCONSTRAINED For a prefix P that denotes an object of a type with dsscriminants:

Yields the value TRUE If a dlscrimlnant constraint applies to the object P. or
If the object la a constAnt (including a formal parameter or generic formal
parameter of mode fn); yields the value FALSE otherwise. If P Is a generic

Sformal parameter of mode In out, or If P Is a formal parameter of mode In out
or out and the type mark given In the corresponding parameter specification
denotes an unconstrained type with discriminants, then the value of this
attribute Is obtained from that of the corresponding actual parameter. The
value of this attribute Is of the predefined type BOOLEAN. (See 3.7.4,)

A-1

ANSI/MIL-STD-1815A Ada Reference Manual

P'CONSTRAINED For a prefix P that denotes a private type or subtype:

Yields the value FALSE if P denotes an unconstrained nonformal private type
with discriminants; also yields the value FALSE If P denotes a generic formal
private type and the associated actual subtype is either an unconstrainedtype with dlscrlmlnants or an unconstrained array type; yields the value

TRUE otherwise. The value of this attribute Is of the predefined type
BOOLEAN. (See 7.4.2.)

P'COUNT For a prefix P that denotes an entry of a task unit:

Yields the number of entry calls presently queued on the entry (if the
attribute Is evaluated within an accept statement for the entry P, the count
does not Include the calling task). The value of this attribute is of the type
universal.Integer, (See 9,9,)

P'DELTA For a prefix P that denotes a fixed point subtype:

Yields the value of the delta specified In the fixed accuracy definition for the
subtype P. The value of this attribute Is of the type unlverse/lreal. (See
3.5.10.)

10 P'DIGITS For a prefix P that denotes a floating point subtype: ,. .

Yields the number of decimal digits In the decimal mantissa of model
numbers of the subtype P. (This attribute yields the number U of section
3.5.7.) The value of this attribute Is of the type universaljinteger. (See3.5.8.)"'""

, PEMAX For a prefix P that denotes a floating point subtype:

Yields the largest exponent value In the binary canonical form of model
numbers of the subtype P, (This attribute yields the product 4*B of section
3.5,7.) The value of this attribute Is of the type unlversaljnteger, (See3,5.8,) "

12 P'EPSILON For a prefix P that denotes a floating point subtype:

Yields the absolute value of the difference between the model number 1.0
and the next model number above, for the subtype P. The value of this
attribute Is of the type universelreal, (See 3.5,8,)

13 P'FIRST For a prefix P that denotes a scalar type, or a subtype of a scalar type:

Yields the lower bound of P, The value of this attribute has the same type as
P. (See 3,5.)

14 P'FIRST For a prefix P that Is appropriate for an array type, or that denotes a con-
strained array subtype:

Yields the lower bound of the first index range. The value of this attribute
has the same type as this lower bound, (See 3.62 and 3,8.2.)

A-2
I.. .. 01F

Predefined Language Attributes

P'FIRST(N) For a prefix P that is appropriate for an array type, or that denotes a con-
strained array subtype:

Yields the lower bound of the N-th Index range. The value of this attribute
has the same type as this lower bound. The argument N must be a static
expression of type universal-Integer. The value of N must be positive
(nonzero) and no greater than the dimensionality of the array. (See 3.6.2 and
3.8.2.)

P'FIRSTBIT For a prefix P that denotes a component of a record object; 16

Yields the offset, from the start of the first of the storage units occupied by
the component, of the first bit occupied by the component. This offset Is
measured In bits. The value of this attribute Is of the type universaldnteger.
(See 13.7.2.)

P'FORE For a prefix P that dienotes a fixed point subtype:
Yields the minimum number of characters needed for the Integer part of the
decimal representation of any value of the subtype P, assuming that the
representation does not Include an exponent, but includes a one-character
prefix that Is either a minus sign or a space. (This minimum number does not ": 2
Include superfluous zeros or underlines, and Is at least two.) The value of '

this attribute Is of the type unlvertlatnteger. (See 3.5,10)

P'IMAGE For a prefix P that denotes a discrete type or subtype:

This attribute Is a function with a single parameter. The actual parameter X
must be a value of the base type of P. The result type Is the predefined type
STRING, The result is the Image of the value of X, that Is, a sequence of

characters representing the value In display form. The Image of an Integer
velue Is the corresponding decimal literal; without underlines, leading
zeros, exponent, or trailing spaces; but with a one characte, prefix that Is

either a minus sign or a space.

The Image r0 an enumeration value is either the corresponding Identifier In
upper case or the corresponding character literal (including the two
apostrophes); neither leading nor trailing spaces are Included, The Image of
a character other than a graphic character Is implomentation-defined. (Seo
3,5,5,)

P'LARGE For a prefix P that denotes a real subtype: .,

The attribute yields the largest positive model number of the subtype P. The
value of this attribute Is of the type universal-real, (See 3.5,8 and 3.5.10.)

P'LAST For a prefix P that denotes a scalar type, or a subtype of a scalar type: 20

Yields the upper oound of P, The value of this attribute has thtu same type as
P. (See 3.5.)

P'LAST For a prefix P that is appropriate for an array type, or that denctes a con- 2f

strained array subtype:

Yields the upper bound of the first Index range. The value of this attribute
has the same type as this upper bound, (See 3.6.2 and 3,8.2.)

A-3

ANSI/MIL-STD-1815A Ada Reference Manual

22 P'LAST(N) For a prefix P that Is appropriate for an array type, or that denotes a
constrained array subtype:

Yields the upper bound of the N-th Index range. The value of this
attribute has the same type as this upper bound, The argument N
must be a static expression of type unlversal.Jnteger. The value of N
must be positive (nonzero) and no greater than the dimensionality of
the array. (See 3.8.2 and 3.8.2,)

23 P'LASTBIT For a prefix P that denotes a component of a record object:

Yields the offset, from the start of the first of the storage units
occupied by the component, of the last bit occupied by the compo-
nent. This offset Is measured in bits. The value of this attribute Is of
the type universal-Integer. (See 13.7.2.)

SP'LENGTH For a prefix P that is appropriate for an array type, or that denotes a
constrained array subtype:

Yields the number of values of the first Index range (zero for a null
range). The value of this attribute Is of the type unlversalJnteger.
(See 36.2.)

P'LENGTH(N) For a prefix P that Is appropriate for an array type, or that denotes a
constrained array subtype:

Yields the number of values of the N-th Index range (zero for a null
range). The value of this attribute Is of the type universal.nteger.
The argument N must be a static expression of type un/ver-
aaI.Jnteger. The value of N must be positive (nonzero) and no
greater than the dimensionality of the array, (See 3,6.2 and 3,812.)

21 P'MACHINEEMAX For a prefix P that denotes a floating point type or subtype:

Yields the largest value of exponent for the machine representation
of the base type of P, The value of this attribute Is of the type unlver-
sa/..nteger, (See 13,7.3.)

27 P'MACHINEEMIN For a prefix P that denotes a floating point type or subtype:

Yields the smallest (most negative) value of exponent for the
machine representation of the base type of P, The value of this
attribute is of the type un/versa.Jnteger, (See 13.7.3.)

* 28 P'MACHINEMANTISSA For a prefix P that denotes a floating point type or subtype:

Yields the number of dlglts In the mantissa for the machine .
representation of the base type of P (the digits are extended digits in
the range 0 to P'MACHINERADIX - 1), The value of this attribute Is
of the type unlversel_/nteger. (See 13.7.3.)

A-4

.

I,"., . ,

Predefined Language Attributes

P'MACHINLOVERFLOWS For a prefix P that denotes a real type or subtype: 29

Yields the value TRUE If every predefined operation on values of the
base type of P either provides a correct result,or raises the exception
NUMERIC-ERROR In overflow situations; yields the value FALSE
otherwise. The value of this attribute Is of the predefined type
BOOLEAN. (See 13.7.3.)

P'MACHINLRADIX For a prefix P that denotes a floating point type or subtype: 30

Yields the value of the radix used by the machine representation of
the base type of P. The value of this attribute is of the type univer-
"Ue.Jnteger, (See 13.7.3.)

P'MACHINEROUNDS For a prefix P that denotes a real type or subtype: 31

Yields the value TRUE If every predefined arithmetic operation on
"values of the base type of P either returns an exact result or performs
rounding; yields the value FALSE otherwise. The value of this
attribute Is of the predefined type BOOLEANI (See 13.7.3.)

P'MANTISSA For a prefix P that denotes a real subtype: 32

Yields the number of binary digits In the binary mantissa of model
numbers of the subtype P. (This attribute yields the number B of
section 3.5,7 for a floating point type, or of section 3.5,9 for a fixed

: point type,) The value of this attribute Is of the type univer-
aa/.Jnteger, (See 3.5.8 and 3.5,10.)

P'POS For a prefix P that denotes a discrete type or subtype: 33

This attribute Is a function with a single parameter. The actual
parameter X must be a value of the base type of P. The result type Is
the type unlvereU.Jnteger. The result Is the position number of the
value of the actual parameter, (See 3,5.5.)

P'POSITION For a prefix P that denotes a component of a record object: 34

Yields the offset, from the start of the first storage unit occupied by
the record, of the first of the storage units occupied by the compo-
nent. This offset Is measured In storage units, The value of this
attribute Is of the type unlversalJnteger, (See 1 3,72.) -

PPRED For a prefix P that denotes a discrete type or subtype: 35

"This attribute Is a function with a single parameter. The actual
"parameter X must be a value of the base type of P. The result type Is
the base type of P, The result Is the value whose position number Is
one less than that of X. The exception CONSTRAINT-ERROR Is
raised If X equals P'BASE'FIRST, (See 3.5.6,)

SP'RANGE For a prefix P that Is appropriate for an array type, or that denotes a 3a
constrained array subtype:

Yields the first Index range of P, that Is, the range P'FIRST , P'LAST.
(See 3.6.2.)

A-5

•..........................

ANSI/MIL-STD-815A Ada Reference Manuel

P'RANGEIN) For a prefix P that Is appropriate for an array type, or that denotes a
constrained array subtype:

Yields the N-th index range of P, that Is, the range P'FIRST(N)
PLAST(N). (See 3.6.2.) 9

' P'SAFELEMAX For a prefix P that denotes a floating point type or subtype: 7

Yields the largest exponent value in the binary canonical form of safe
numbers of the base type of P. (This attribute yields the number E of
section 3.5.7,) The value of this attribute is of the type unlver-
saI.Jntsgor. (See 3.5.8.)

0 P'SAFELARGE For a prefix P that denotes a real type or subtype:

Yields the largest positive safe number of the base type of P, The value
of this attribute Is of the type un/veraa/.sea/. (See 3.5,8 and 3.5.10.)

40 P'SAFE_..SMALL For a prefix P that denotes a real type or subtype:

Yields the smallest positive (nonzero) safe number of the base type of P,
The value of this attribute is of the type universal/jeel. (See 3.5.8 and
3.5.10.)

P'SIZE For a prefix P that denotes an object:

Yields the number of bits allocated to hold the object, The value of this
attribute Is of the type un/veraa!Jnteger, (See 13.7.2.)

42 PSIZE For a prefix P that denotes any type or subtype:

Yields the minimum number of bits that Is needed by the implementation
to hold any possible object of the type or subtype P. The value of this
attribute Is of the type universe/Integer. (See 13.7.2.)

43 PSMALL For a prefix P that denotes a real subtype:

Yields the smallest positive (nonzero) model number of the subtype P,
The value of this attribute Is of the type un/versaI.real. (See 3.5.8 and
3.5.10.)

4 P'STORAGLSIZE For a prefix P that denotes an access type or subtype: - "

Yields the total number of storage units reserved for the collection
associated with the base type of P, The value of this attribute Is of the
type universaa.Jnteger. (See 13.7.2.)

45 PSTORAGE.SIZE For a prefix P that denotes a task type or a task object: .

Yields the number of storage units reserved for each activation of a task
of the type P or for the activation of the task object P. The value of this
attribute Is of the typo universeI.Jnteger. (See 13.7.2.)

A-6

Predefined Language Attribute*

P'SUCC For a prefix P that denotes a discrete type or subtype: 46

This attribute Is a function with a single parameter. The actual parameter
X must be a value of the base type of P. The result type Is the base type
of P. The result Is the value whose position number Is one greater than
that of X. The exception CONSTRAINT-ERROR Is raised if X equals
P'BASE'LAST. (See 3.5.5.)

P'TERMINATED For a prefix P that Is appropriate for a task type: 47

Yields the value TRUE If the task P Is terminated; yields thi value FALSE
otherwise. The value of this attribute Is of the predefined type BOOLEAN.(Sss89-9,) '

P'VAL For a prefix P that denotes a discrete type or subtype: u

This attribute is a special function with a single parameter X which can
be of any Integer type, The result type Is the base type of P. The result Is
the value whose position number is the unlverualJnteger value cor-
responding to X. The exception CONSTRAINT.ERROR Is raised If the
unlversI.Jnteger value corresponding to X is not In the range
P'POS (P'SASE'FIRST) .. P'POS (P'SASEWLAST). (See 3,5,5,)

P'VALUE For a prefix P that denotes a discrete type or subtype: 4,

This attribute Is a function with a ,ngle parameter, The actual parameter
X must be a value of the predefined type STRING, The result type Is the
base type of P. Any leading and any trailing spaces of the sequence of
characters that corresponds to X are Ignored.

For an enumeration type, If the sequence of characters has the syntax of
an enumeration literal and If this literal exists for the base type of P, the
result Is the corresponding enumeration value, For an Integer type, If the
sequence of characters has the syntax of an integer literal, with an
optional single leading character that Is a plus or minus sign, and If there
Is a corresponding value In the base type of P, the result Is this value. In
any other case, the exception CONSTRAINT-ERROR Is raised, (See 3,5.5.)

P'WIDTH For a prefix P that denotes a discrete subtype: so

Yields the maximum Image length over ell values of the subtype P (the
Image Is the sequence of characters returned by the attribute IMAGE).
The value of this attribute Is of the type universa.Jnteger, (See 3,5.5,)

!Al!

A-7 2

, °

B. Predefined Language Pragmas

This annex defines the pragmas LIST, PAGE, and OPTIMIZE, and summarizes the definitions given
elsewhere of the remaining language-deflned pragmas.

Pragma Meaning

CONTROLLED Takes the simple name ot an access type ae the single argument, This pragma "'
Is only allowed Immediately within the declarative part or package specification
that contains the declaration of the access type: the declaration must occur
before the pragma. This pragma Is not allowed for a derived type, This pragma

i,' specifies that automatic storage reclamation must not be performed for objects
designated by value& of the access type, except upon leaving the Innermost
block statement, subprogram body, or task body that encloses the access type
declaration, or after leaving the main program (see 4.8).

ELABORATE Takes one or more simple names denoting library units as arguments, This 3
pregma Is only allowed Immediately after the context clause of a compilation
unit (before the subsequent library unit or secondary unit). Each argument
must be the simple name of a library 4nlt mentioned by the context clause, This
"pream~i b•,Idlf os that the .orre•eorlng libraiy unit body must be elaborated
befure the given compilatlon unit, If the given compilation unit Is a •uhunit, the
library unit body must be elaborated before the body of the ancestor library unit
of the subunit (see 105),

INLINE Takes one or more names as arguments; each name Is either the name of a
subprogram or the name of a generic subprogram, 1'hi pragma I1 only allowed
at the place of a declarative Item In a declarative part or package specification,
or after a library unit In a compilation, but before any subsequent compilation
unit, This pragma specifies that the subprogram bodies should be expanded
"Inline at each call whenever possible; in the case of a generic subprogram, the
pragma applies to calls of Its Instantlations (see 6.3,2)1.

INTERFACE Takes a language name and a subprogram name as arguments, This pragma Is
allowed at the place of a declarative Item, and must apply In this case to a sub-
program declared by an earlier declarative Item of the same declarative part or

,,4 package specification, This pragma Is also allowed for a library unit: In this
case the pragma must appear after the oubprogram declaration, and before any
subsequent compilation unit, This pragma specifies the other languagn (and
thereby the calling conventions) and Informs the complier that an object
module will be supplied for the corresponding subprogram (see 13.9).

LIST Takes one of the Identifiers ON or OFF as the tingle argument, This pragma Is
allowed anywhere a pragma Is allowed, It specifies that listing of the compila-
tion Is to be continued or suspended until a LIST pragma with the opposite ..
argument Is given within the same compilation, The pragma Itself Is always
listed If the compiler Is producing a listing.

MEMORY-SIZE Takes a numeric literal as the single argument, This pragma Is only allowed at
the start of a compilation, before the first compilation unit (It any) of the corn-
piletlon, The effect of this pragma Is to use the value of the specified numeric
literal for the definition of the named number MEMOMYSIZE (see 1 3.7).

B-i

34. .

ANSI/MIL-STD-1816A Ada Reference Manual

OPTIMIZE Takes one of the Identifiers TIME or SPACE as the single argument. This
pragma Is only allowed within a declarative part and It applies to the block or
body enclosing the declarative part. It specifies whether time or space is the
primary optimization criterion.

PACK Takes the simple name of a record or array type as the mingle argument, The
allowed positions for this pregma, and the restrictions on the named type, are 9
governed by the came rules as for a representation clause. The pragma
specifies that storage minimization should be the main criterion when selecting
the representation of the given type (sea 13.1).

1o PAGE This pragma has no argument, and Is allowed anywhere a pragma Is allowed. It
specifies that the program text which follows the pragmb should start on a new "
page (if the compiler Is currently producing a listing),

PRIORITY Takes a static expression of the predefined Integer subtype PRIORITY as the
single argument, This pragma Is only allowed within the specification of a task
unit or Immediately within the outermost declarative part of a main program. It -.

specifies the priority of the task (or tasks of the task type) or the priority of the
main program (see 9.8).

2 SHARED Takes the simple name of a variable as the single argument. This pragma Is
allowed only for a variable declared by an obiect declaration and whose type Is
a scalar or access type; the varlab!s declaration and the pragma must both
occur (In this order) Immediately within the same declaratIvo pert or package
specification. This pregma opcclfles that every read or update of the variable Is
a synchronization point for that variable, An Implementation must restrict the
"objects for which this pragma Is allowed to objects for which each of direct
reading and direct updating Is implemented as an Indivisible operation (seei g,~~911),. .. "

STORAGLUNIT Takes a numeric literal as the single argument. This pragma Is only allowed at '.

the start of a compilation, before the first compilation unit (if any) of the com-
pllation, The effect of this pragma Is to use the value of the specified numeric
litersl for the definition of the named number STORAGE-UNIT (see 13,7).

14 SUPPRESS Takes as arguments the Identifier of a check and optionally also the name of
either an object, a type or subtype, a subprogram, a task unit, or a generic unit,
This pragma Is only allowed either Immediately within a declarative part or
immediately within a package specification, In the latter case, the only allowed
form Is with a name that denotes an entity (or several overloaded subprograms)
declared Immediately within the package specification, The permission to omit
the given check extends from the place of the pragma to the end of the
declarative region associted with the Innermost enclosing block statement or
program unit, For a pragma given in a package specification, the permission
extends to the end of the scope of the named entity,

If the praoma Includes a name, the permission to omit the given check Is further
restricted: It Is given only for operations on the named object or on all objects
of the base type of a named type or subtype; for calls of a named subprogram;
for activations of tasks of the named task type; or for Instantlations of the given
generic unit (see 11.711.

" SYSTEM-NAME Takes an enumeration literal as the single argument, This pragma Is only
allowed at the start of a compilation, before the first uompilation unit (if any) of
the compilation, The effect of this pragma is to use the enumeration literal with
the specified Identifier for the definition of the constant SYSTEM-NAME, This
pragms Is only allowed if the specified Identifier corresponds to one of the
Ilterals of the type NAME declared In the package SYSTEM (see 13.7).

B-2i L

C. Predefined Language Environment

This annex outlines the specification of the package STANDARD containing all predefined
Identifiers In the language. The corresponding package body Is Implementation-defined and Is not
shown,

The operators that are predefined for the types declared In the package STANDARD are given In 2

comments since they are Implicitly declared. Italics are used for pseudo-names of anonymous
types (such as unlvers/jea/) and for undefined Information (such as implementat/on.deffned and
anyJtxedpoint_type).

package STANDARD Is 3

type BOOLEAN Is (FALSE, TRUE); 4

-- The predafined relational operators for this type are as follows:

-- function ",,, (LEFT, RIGHT : BOOLEAN) return BOOLEAN,,
function "/-" (LEFT, RIGHT : BOOLEAN) return BOOLEAN:
function "I' (LEFT, RIGHT : BOOLEAN) return BOOLEAN;-- function "<-=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN; 'i""

function (LEFT, RIGHT : BOOLEAN) return BOOLEAN:
function '>." (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

The predefined logical operators and the predefined logical negation operator are as follows:

-- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN:
-- function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function "not" (RIGHT BOOLEAN) return BOOLEAN;

-- The universal type unIveruaI.Jnteger Is predefined. "

type INTEGER Is Implementation.de fined;

-- The predefined operators for this type are as follows:

-- function "=" (LEFT, RIGHT INTEGER) return BOOLEAN;
function "/=" (LEFT, RIGHT INTEGER) return BOOLEAN;

-- function "t (LEFT, RIGHT :INTEGER) return BOOLEAN,
function "<=" (LEFT, RIGHT INTEGER) return BOOLEAN;

.. function 3I" (LEFT, RIGHT INTEGER) return BOOLEAN,
"-. function ">-" (LEFT, RIGHT : INTEGER) return BOOLEAN;

C.. ,

ANSI/MIL-S TD-?8l`F.A Ads Reference Manual

-- function +" (RieGHT INTEGER) return INTEGER;
* -- function -" (RIGHT INTEGER) return INTEGER:

-- function "abs" (RIGHT INTEGER) return INTEGER:

-- function '+ (LEFT, RIGHT INTEGER) return INTEGER;
function -" (LEFT, MIGHT INTEGER) return INTEGER;q

* -function '" (LEFT, RIGHT INTEGER) return INTEGER;
-- function '" (LEFT, RIGHT INTEGER) return INTEGER;
-- function "rem" (LEFT, RIGHT INTEGER) return INTEGER;
-- function "mod" (LEFT, RIGHT INTEGER) return INTEGER;

-- function " (LEFT INTEGER; RIGHT INTEGER) return INTEGER;

An Implementation may provide additional predefined Integer types. It Is recommended that the
* -name, of such additional types end with INTEGER masIn SHORT-INTEGER or LONG-INTEGER,

-- The specification of each operator for the type univeraalntoger, or for any additional
-- predefined Integer type, Is obtained by replacing INTEGER by the name of the type In the

specification of the corresponding operator of the type INTEGER, except for the right operand
-- of the exponentiating operator,

a -- The universal type Unlversael..jwa Is predefined.

2 type FLOAT Is Imp/ementatton..deffned;

-- The predefined operators for this type are as follows:

-- function "" (LE FT, RIGHT FLOAT) return BOOLEAN;
-- function " U (LFT, RIGHT FLOAT) return BOOLEAN:
-- function "<" (LE FT, RIGHT :FLOAT) return BOOLEAN:

function " '(LEFT, RIGHT FLOAT) return BOOLEAN:
-- function "> LE FT, RIGHT FLOAT) return BOOLEAN,
-- functio "l (LEFT, RIGHT FLOAT) return BOOLE-AN:

-- function " (RIGHT iFLOAT) return FLOAT;
-- function "" (RIGHT FLOAT) return FLOAT;
-- function "abs' (RIGHT FLOAT) return FLOAT;

funotion '+ (LE FT, RIGHT :FLOAT) return FLOAT;:
-- function -" (LEFT, RIGHT :FLOAT) return FLOAT;
-. function "' (LE FT, RIGHT :FLOAT) return FLOAT;
-- function 'V" (LE FT, RIGHT FLOAT) return FLOAT;

-- function ""(LE FT :FLOAT; RIGHT INTEGER) return FLOAT;

10 - An Implementation may provide additional predefined floating point types. It is recoin-
-- mended that the names of such additional types end with FLOAT as In SHORT.-FLOA'r or
-- LONG-FLOAT, The specification of each operator for the type universal-jeal, or for any
-- additional predefined floating point type, Is obtained by replacing FLOAT by the name of the
-~type In the specification of the corresponding operator of the type FLOAT.

C-2

Predefinod Language Environment

-- In addition, the following operators are predefined for universal type':

-- function "" (LEFT : un/varea.Jnteger; RIGHT unte'rsa/reat) return univer eal/....
-- function "" (LEFT : univeraalije'la RIGHT unIversaInteger) return universel_- seat;
-- function "/" (LEFT : un/veraaljel'. RIGHT : un/veraa.Jnteger) return universa/.Joml:

-. The type universal/fixed Is pradefined, The only operators declared for this type are

-- function "0" (LEFT anyJ/xed..poont_Ltype; RIGHT anyJfxedpoinr_typo) return unIverse/Jlixed;
-- function "/" (LEFT : anyJixed.ootnt-type: RIGHT :anyJiked.polnt-type) return unIversa/JIxdd;

-- The following characters form the standard ASCII character set. Character Ilterals cor-
-- responding to control characters are not Identifiers: they are indloated In Italics In this definition,

type CHARACTER I' a,.tn c3

(nut, soh, so, 01K, got, enq, ock, be/,bs, ht, If, Veto if, or, so, 8l /."".

dle, dc 1 d 6,3, d4, nak, syn, etb,
can, am, sub, a.., f#, gt rN, us,

I~~~~~~ it ,1,t .,11 , , lt

' V, 19+, to*,' *C ''. ",'H', '1', '#'o '3', L4', too, '%',
I08 , 41 I I0, 0'8W, 'At, 1130, o'" V<, 'Ell ,>,, ,?,,

H , 'I', lit, $Ki('Lot 'E', AF', '01,Pit~~~, to R, 00 ot e to

for CHARCTE 70, 0-128 ASI caate wtot oe

(0 a, 2, aJ, 5 , 1, 12 , 1., 10,,
#he, oil, till T , '\', #m e Ime, lot,
"I ., Ia' 'I Or , .o4, V t' out, Vr , ow l,0h' To , 0J10 1k1, T, -m' 1n", 'o,

for CHARACTER u so -- 128 ASCII character set without holes..."
(0 , 1, 2 , 3 , 4 , 5, ,,, 12 5, 12 0, 12 7);. . .

-- The predeflned operators for the type CHARACTER are the same as for any enumeration type. ..

c-3

.A.

ANSI/MIL-STD- 1815A4 Ada Reference Manual

package ASCII Is

-- Control characters:

2NUL constant CHARACTER :- uh SOH :consuant CHARACTER s= oh;
STm constant CHARACTER :mA stx; ETX constant CHARACTER :=etx;
EDT :constant CHARACTER :m~ .ot; ENQ constant CHARACTER enq;
ACK constant CHARACTER : c; EL:constant CHARACTER bel;
BS constant CHARACTER := ba;- HT constant CHARACTER :_tht;
LF constant CHARACTER :- If, VT constant CHARACTER vt=

FF constnt CHARCTER ;- if; CRmosatCHRCE r
cC onstant CHARACTER s; SI constant CHARACTER or

SoE constant CHARACTER d=e so, constant CHARACTER 0c;DL osatCAATR: p; D1cntn HRCE c1
DC2 :constant CHARACTER :mdc2;, DC3 :constant CHARACTER :=dc3:
DC4 zconstant CHARACTER :-dc4;, NAI(constant CHARACTER ;nenk;

SYN :constant CHARACTER :m syn; ETB constant CHARACTER &W*t
CAN :constant CHARACTER :- na; EM :constant CHARACTER :-em;
SUB :constant CHARACTER :msub., ESC :constant CHARACTER :-sca:
FS :constant CHARACTER 0s f; GS :constant CHARACTER #s:ga
RS constant CHARACTER ;-ra; us constant CHARACTER ;-us;

DEL constant CHARACTER :-del;

-- Other characters:

EXCLAM :constant CHARACTER '-I'; QUOTATION :constant CHARACTER : "

SHARP constant CHARACTER : ' DOLLAR :constant CHARACTER -';
PERCENT i constant CHARACTER - %; AMPERSAND constant CHARACTER :m W&;
COLON t constant CHARACTER :-': SEMICOLON constant CHARACTER :
QUERY :constant CHARACTER :-'; AT,.SIGN :constant CHARACTER i' (w
LJ3RACKET constant CHARACTER T: B' ACK-.SLASH: constanit CHARACTER ';u ;

R-8RACKET :constant CHARACTER T-1; CIRCUMFLEX constant CHARACTER :
UNDERLINE :constant CHARACTER : .; GRAVE constant CHARACTER :

LBRACE constant CHARACTER T-'; BAR conattant CHARACTER :m TI;
R-.BRACS constant CHARACTER T-;' TILDE constant CHARACTER ~"'

Lower came letters:

1C.A constant CHARACTER :m W:'

LC_.Z constant CHARACTER :m'z';,

end ASCII;

s -- Predefined subtypes:

subtype NATURAL Is INTEGER range 0 *.INTEGER'LAST:

subtype POSITIVE Is INTEGER range 1 .. INTEGER'LAST:

.7..

C. -4

Predefined Language Environment

-- Predefined string type: 17

type STRING Is array(POSITiVE range <>) of CHARACTER;

pragma PACK(STRING);

-- The predefined operators for this type are as follows: 18

-- function "'(LEFT, RIGHT STRING) return BOOLEAN;
-- function "1"(LEFT, RIGHT STRING) return BOOLEAN;
-- function "" (LEFT, RIGHT STRING) return BOOLEAN;
-- functioiiQ= (LLFT, RIGHT STRING) return BOOLEAN;

function >" (LEFT, RIGHT STRING) retunm BOOLEAN;
-- function ">"(LEFT, RIGHT STRING) return BOOLEAN;

-- function " (LEFT :STRING; RIGHT : STRING) return STRING;
-function &"(LE FT CHARACTER; RIGHT :STRING) return STRING;

f- unction " (LEFT :STRING; RIGHT :CHARACTER) return STR I NG;
-- functirn "& (LEFT :CHARACTER; RIGHT CHARACTER) return STRING;

type DURATION Is delta Implementatlon-.def/ned range Implement etlon..de f/ned; t

-- The predefined operators for the type DURATION are the same as for any fixed point type,

-- The predefined exceptions: 2

CONSTRAINT-ERROR :exception;
NUMERIC-..ERROR :exception;
PROGRAM-..ERROR :exception;
STORAGE-.ERROR :exception;
TASKING-.ERROR :exception;

end STANDARD;

Certain aspects of the predefined entities cannot be completely described In the language Itself. 21
For example, although the enumeration type BOOLEAN can be written showing the two
enumeration literals FALSE and TRUE, the short-circuit control forms cannot be expressed In the
language,

Note:

The language definition predefines the tollowing library units: 22

- The package CALENDAR (see 9.6)

- The package SYSTEM (see 13.7)
- The package MACHINE-..CODE (if provided) (see 13.8)
- The generic procedure UNCHECKED...DEALLOCATION (see 13.10.1)
- The generic function tJNCHECKED-CONVERSION (see 13.10.2)
- The generic package SEQUENTIAL-10 Isee 14.2.3)
- The generic package DIRECT-10 (see 114.2.15)
- The package TEXT-10 (see 14.3.10)
- The package 10-EXCEPTIONS (see 14.5)
- The package LOW-LEVEL-10 (see 14.6)

C-15

IThis glossary Is r., part of the standard definition of the Ads programming language.)

D. Glossary 4

"Th,s appendix is informative and Is not part of the standard definition of the Ads programming
language. Italicized terms In the abbreviated descriptions below either have glossary entries
themselves or are described In entries for related terms.

Accept statement. See entry, Attribute, The evaluation of an attribute
yields a predelfined characteristic of a named

Access tyae, A valur of an access type (an entity; some attributes are functions.
access value) Is either a null value, or a value ,
that designates an object created by an Block statement. A block statement Is a
allocatcr, The designated object can be read single statement that may contain a
and updated via the access value, The defini- sequence of statements, It may also Include
tion of an access type specifies the type of a declarative part, and exception handlers;
the objects designated by values of the their effects are local to the block statement,
access type. See also collection.

Body. A body defines the execution of a sub-
Actual parameter. See parameter, program, package, or task, A body stub Is a

form of body that Indicates that this execu-
Aggregate. The evaluation of en aggregate tion is defined in a separately compiled sub-
yields a value of a composite type, The value unit.
is specified by giving the value of each of the Cnen t
components. Either positional association or Collection. A collection Is the entire set of ,
named association may be used to Indicate objects created by evaluation of allocators for
which value is associated with which compo- an access type.
nent.

Compilation unit, A compilation unit Is the
U Allocator. The evaluation of an allocator declaration or the body of a program unit,

presented for compilation as an independent
creates an object and returns a new access text, It Is optionally preceded by a context
.value which designates the object, clause, naming other compilation units upon

which It depends by means of one more with
Array type. A value of an nrray type consists clauses.
of components which are all of the same sub-
type (and hence, of the same type), Each Component. A component Is a value that Is a
component Is uniquely distinguished by an part of a larger value, or an object that is part
index (for a one-dimensional array) or by a falre bet
sequence of indices (for a multidimensional ob

array). Each Index must be a value of a dis- Composite type. A composite type is one
crete type and must lie In the correct Index whose values have components. There are

, range, two kinds of composite type: array types and

record types,
Assignment. Assignment Is the operation
that replaces the current value of a variable Constant. See object.
by a new value. An assignment statement
specifies a variable on the left, and on the Constraint. A constraint determines a subset
right, an exprassion whose value is to be the of the values of a type, A value In that subset
new value of the variable, satisfies the constraint,

D-1

ANSI/MIL-STD-1815A Ada Reference Manual

Context clause. See compilation unit. Entry. An entry is used for communication
between tasks. Externally, an entry Is called

Declaration. A declaration associptes an just as a subprogram is called; its Internal
Identifier (or some other notation) with an behavior is specified by one or more accept
entity. This association Is In effect within a statements specifying the actions to be per-
region of text called the scope of the declare- formed when the entry Is called.
tion. Within the scope of a declaration, there
are places where It Is possible to use the Enumeration type. An enumeration type Is a
identifier to refer to the associated declared discrete type whose values are represented
entity. At such places the Identifier Is said to by enumeration literals which are given
be a simple name of the entity; the name is explicitly in the type declaration. These
said to denote the associated entity. enumeration literals are either Identifiers or

character literals.
Declarative Part. A declarative part is a
sequence of declarations. It may also contain Evaluation, The evaluation of an expression
related Information such as subprogram is the process by which the value of the5 bodies and representation clauses. expression Is computed. This process occurs

during program execution.

Denote. See declaration. Exception. An exception Is an error situation

Derived Type. A derived type is a type whose which may arise during program execution
operations and values are replicas of those of To raise an exception is to abandon normal
an existing typo. The existing type Is called program executior so as to signal that the
the parent type of the derived type. error has taken place, An exceptlor, handier Is

a portion of program text specifying a
-Designate. See access type, task, response to the exception, Execution of such

a program text is called handling the excep-

Direct visibility. See visibility, tion.

Expanded name, An expanded name denotes
an entity which Is declared immediatelyDiscrete Type. A discrete type Is a type within some construct, An expanded name

which has an ordered set of distinct valuas, has the form of a selected component: the
The discrete types are the enumeration and prefix denotes the construct (a program unit;
Integer types. Discrete types are user' for or a block, loop, or accept statement); the
Indexing and iteration, and for choices In case or a thk loop, name statementithe
statements and record variantssimple name of the entity.

* Discriminant. A discriminant is a dis- Expression. An expression defines the com-

tinguished component of an object or value putation of a value.
of a record type. The subtypes of other com- Fixed point type. See real type.
ponents, or even thnir presence or absence, Fx point ty

may depend on the value of the discriminant. Floating point type. See real type.

Discriminant constraint. A discriminant con-
straint on a record type or private type Formal parameter. See parameter.
specifies a value for each discriminant of the Function. See subprogram.

type. "

Generic unit. A generic unit is a template
Elaboration. The elaboration of a declaration either for a set of subprograms or for a set of
Is the process by which the declaration packages. A subprogram or package created
achieves Its effect (such as creating an using the template Is called an Instance of
object); this process occurs during program the generic unit, A generic Instant/atlon Is the
execution, kind of declaration that creates an Instance.

D-2

Glossary

A generic unit Is written as a subprogram or The properties of the model numbers and of
package but with the specification prefixed their operations are the minimal properties
by a generic formal part which may declare preserved by all implementations of the real
generic formal parameters, A generic formal type,
parameter Is either a type, a subprogram, or
an object. A generic unit is one of the kinds of Name. A name Is a construct that stands for
program unit, an entity: it is said that the name denotes the

entity, and that the entity Is the meaning of
Handler. See exception, the name. See also declaration, prefix,

Index. See array type. Named association. A named association 0
specifies the association of an Item with one

Index constraint. An index constraint for an or more positions In a list, by naming the
array type specifies the lower and upper positions.
bounds for each Index range of the array
type. Object. An object contains a value. A

program creates an object either by
Indexed component. An Indexed component elaborating an object declaration or by
"denotes a component In an array. It is a form evaluating an allocator, The declaration or
of name containing expressions which allocator specifies a type for the object: the
specify the values of the Indices of the array object can only contain values of that type.
component, An Indexed component may
also denote an entry in a family of entries. Operation. An operation is an elementary

action associated with one or more types. It
Instance, See generic unit, is either Implicitly declared by the declaration

of the type, or It Is a subprogram that has a
wIhnteiter type. ignenteger type Isra defne oparameter or result of the type.
type whose values mepresent all Integer
numbers within a specific range,

Operator. An operator Is an operation which
Lexical element. A lexical element Is an iden- has one or two operands. A unary operator Is
tifler, a iteral, a delimiter, or a comment, written before an operand; a binary operator

is written between two operands. This note-
Limited type. A limited type Is a type for tion Is a special kind of function call. An
which neither assignment nor the predefined operator can be declared as a function, Many
comparison for equality Is Implicitly declared, operators are implicitly declared by the

S.All task types are limited. A private type can declaration of a type (for example, most type
bp defined to be limited. An equality operator declarations Imply the declaration of the
can be explicitly declared for a limited type. equaBlity operator for values of the type).

Literal. A litetal represents a value literally, Overloading. An Identifier can have several r
that Is, by means of letters and other alternative meanings at a given point In the
characters. A literal Is either a numeric literal,
an enumeration literal, a character literal, or a prga te: ths rpryiscld
tring literaln loverloading. For example, an overloaded

enumeration literal can be an Identifier that
Mode. See parameter. appears in the definitions of two or more

enumeration types, The nffectlvo meaning of - 6
Model number. A model number is an exact- an overloaded Identifier Is determined by -.he

ly representable value of a real type, Opera- context. Subprograms, aggregates,

tions of a real type are defined In terms of allocators, and string literals can also be

operations on the model numbers of the type. overloaded.

D-3

ANSI/IM/L-STD-1875A Ada Reference Manuel

Package. A package specifies a group of Private type. A private type Is a type whose
logically related entities, such as types, structure and set of values are clearly
objects of those types, and subprograms with defined, but not directly available to the user
paramoaers of those types. It is written as a of the type. A private type Is known only by 72
package declaration and a package body. its discriminants (If any) end by the set of
The package declaration has a visible part, operations defined for it, A pilvate type and
containing the declarations of all entities that its applicable operations are defined in the
can be explicitly used outside the package. It visible part of a package, or in a generic for-
may also have a private part containing struc- meal part, Assignment, equality, and ine-
tural details that complete the specification quality are also defined for private types,
of the visible entities, but which are Irrelevant unless the private type is limited,
to the user of the package, The package body
contains Implementations of subprograms Procedure. See subprogram,
(and possibly tasks as other packages) that
have been specified In the package declare- Program. A program Is composed of a
tion, A package is one of the kinds of number of compii*ion units, one of which is
program unit. a subprogram calied the main program,

Execution of the program consists of execu-
Parameter. A parameter Is one of the named tion of the main program, which may Invoke
entities associated with a subprogram, entry, subprograms declared In the other compile-
or generic unit, and used to communicate tion units of the program.
with the corresponding subprogram body,
accept statement or generic body, A formal Program unit. A program unit Is any one of a All

*parameter lis an Identifier used to denote the generic unit, parkage, subprogram, or task
named entity "ithin the body, An actual unit,
parameter iN the particular entity associated
wit!i the corresponding formal parameter by Qualified expression. A qualified expression
a subprogram ',,fl, entry call, or generic is an expression preceded by an Indication of
Instantlation, The mode of a formal Its type or subtype, Such qualification is
parameter specifies whether the associated used when, in its aLsence, the expression :..
actual parameter supplies a value for the for- might be ambiguous (for example as a conse-
Meal parameter, or the formal supplies a value quence of overloading),
for the actual parameter, or both, The
association of actual parameters with formal Raising an exception, Seo ,xception.
parameters can be specified by named
associations, by positional associations, or by Range. A range Is a contiguous set of values
a combination of these, of a scalar type, A range Is specified by giv-

ing the lower and upper bounds for the
Parent type. See derived type. values. A value in the range Is said to belong

to the range.
Pooltional association. A positional assocla-
tion specifies the association of an Item with Range constraint. A range constraint of a ..
a position In a list, by using the same position type specifies a range, and thereby deter-
in the text to specify the item. mines the subset of the values of the type

that belong to the range.
Pragma. A pragma conveyi information to
the co'npiler, Real type. A real type Is a type whose values

represent approximations to the real
Prefix. A prefix Is used as the first part of cer- numbers. There are two kinds of real type: .. <
tain kinds of name. A prefix Is either a func- fixed point types are specified by absolute
lion call or a name, error bound; floating point types ara ".

specified by a relative error bound expressed ,. '1
Private part, See package, as a numbei of significant decimal digits, .. .

D-4

ANS/IMIL-STO-1815A Ada Reference Manual

Type. A type characterizes both a set of Visibility. At a given point In a program text,
values, and a set of operations applicable to the declaration of an entity with a certin
those values. A type definition is a language identifier Is said to be visible If the entity Is an
construct that defines a type. A particular acceptable meaning for an occurrence at that
type Is either an access type, an array type, a point of the Identifier. The declaration is v/si-
private type, a record type, a scaler type, or a b/e by selection at the place of the selector In
task type. a selected component or at the place of the

name in a named association. Otherwise, the
Use clause. A use clause achieves direct declaration Is directly visible, that is, If the
visibility of deo/aratlons that appear In the identifier alone has that meaning.
visible parts of named packages.

Variable. See object.

Variant part. A variant part of a record
specifies alternative record components,
depending on a discriminant of the record. .
Each value of the discriminant establishes a
particular alternative of the variant part, With clause, See compilation unit,

,D1

. .,. . . ,

...... .•.o.

(This syntax mummery Is not part of the ntandard definition of the Ads programming language.! 1

E. Syntax Summary

21 3.1

graph lc-.cheraioter baslc-graphic..cheracter basIc...deciaration
Iiowa r.cafte-etter I other..specala.charaotsr oblec-dociliration ubrcelsto

I type-~declaration Isubtype-cdaclarstlon
basic-graphilc..charncter I:4 1SLbprogram-~dociaratlton Ipaokage...declarstlton

upper-.cose-latter IdigitI okcc oaingerc-oletn
seilhaatr saooaatrI texeptndeciara tion I generloic-nttlaetlon4

baI pclacharacter

baslc..graphlo..chearcter Iformat-effector 3.2 i
2.3 object-declaration :

~~identife dn~lfer,.Jist Iaonetanti subtype-i.ndloatiofl (:- expruession);
letter iIlunde'rlineI Ietter-.or.dIgltl It exrsso]

.4
lettsr-.or-dlgit :: letter I digit nme~airto :-

leter :'. upar..ceejeter bowr..oam~ietsrIdentiflur-list constant :~un/versa.l-totic-.expresslon;

24Identifier..Jist ::. Identifier 1, Identifier) .

numericliteral ::.~V d aml-Iiterel booed-literal33.

241type..decla ration ::zý full-type-cldoclorationA
I Incon~ipoe-teypednlocaration I prlvate-type-.doalarstlon

decimal-i~teral ::~integor lintegeri (exponent) ftp~caao ~
Integer ::~- digit liunderlinel digit) type Identifier IdlscrimlnanLatl i -tp.,definition;

exponent ::- E 14.1 Integer I E - Integer tYpe-eflnition tp ei~in itge..tp..dtnt
anrnerati~oln-typ-lo liin arrav.J-ype...deflnition

* ~~~~~~~~I rocordtype-cdnflnito cesye..e Ition

besc~iteal :I derIved-type-lefinitlon

baeen ::&: Integer
subtype.-declaration :-

baseexendnddigit subtype Identifier Is subtype-.Indlostion;

subtype-Indication ::- type-.mark (constreintl
extended-.dlglt ::-digit I letter

type-.mark ty~po-.name s ubtype-.name
2.5

cd~aacteilteai 'rapho...hareter'constraint :
chaacerIlora 'raph a-h rctr'rungo-.constralnt f loatlng-.polnt-constroint

I fIxed-.poInt..constraint)Index-c.onstraint
2.6 discrimioiant...constraInt

strlng-literal ")graphicho..cierctorl'
3.4

2.9
dearlYCIL..typo..deflnitlon now subtype-indlostlon

prouma ::L=
pragmein Identifier liarr umnentasooaoitlon .

argmn asocatonrange-constniiint range range

IIryum~ont-ldeitflor "->J naexpeo range range.aottnibuoe
larumtntIdetifor expessonI Isimpie-oixprftasion .. simple-expreussion

ANSIIMIL-STD-1815A Ada Reference Manual

3.7.1

* a@numeration-type-.definition discriminonLpart 8

(.niumsrationi..iteral-specificatiofl (discriminant-spscifiCatiofl 1 discriminent-speolfioltlofll)
I snumeration-..iterai-sp6ciflcatIofl) diciietspoicto

enumeration..Iidiacriminnnspeclticatiof :: :mealn-lea
enumratin~.iterL~seuitceton :~ eumert~o~iitrilderntifier-ist :type..n~ark e:. xpression]

enumeration-iiteral := Identifier I cha recta r iiters I

3.6. '2 3.7.2
integor_.tVpe.definitlon : range-.conlstrainlt dliscrimirinnnconstraiflt ::m

3,58 discrImltn nnL.associatiofl 1, diisc rlmfInflantasociationlh)

r~e 1typs-e..finition := diactriminant-associaltofln~
aioatIng-.poInt-constrarift Ifixed-point-coflstraiflt expressanh~mion~ ' (I diaorim/nn~ft-simpiSeomel ->1

3.5.7

fioating-.poinLonfstrllflt :i
floatI ing.accu racy..def In itiofl lrrenge.constraInt) ..

floot Ing-a.ccuracy-def InItIon n:- varient-part
digits satiec-s.implo..expvuusion case disc~Irnonnt-si mpis...name Is

variant
3,5,91 variantl

end case;
fixed..point.constraint ::t

fixed-.accuracy-.definitlofl Irangs...onstralnt] variantchieI oie->i,.4

fixed-.accuracy..dsfinItiofl:: componeniLliat
delta stolk-.simple-expresaion

choice :* simple..sxprossion
3.8 1 discrete-range Iothers I omponentjaimpifliame

unconsiralned...array-.definitlofl j onstrained-.array..defrinition

* ~~unconstrained-array-defirl~tion :3.
straty(Indox-.subtypo-defInItion 1 I. ndex...ubtypse.detflnitiori) Of access-.type..definition &c ases subtypo.,indloat~lonV

componont-,subtypo-Indloatlofl

constralnud..array-.definitiofl

array Index.-oonstralnit of component-subtype-Indlostion31
Index-siibtvpe..definition ::-~ type mark rag <n>pes..vp..eirto

e,-VI

Indxcii.uonxtralint n7,iiort~agaIdsrseagl type idontifier [disorimlnant.42artI:

dilicrote-range : discreste..ubtyps-Indioation I range
J 3.9

3.7
I dclerlaative..part

record..type-definiltiont lbasic-decierative-Item il lister-dociaretivo-Iteml
record

componant-list basIc .. dociarstive...itam :-basic-.diIs iration
end record I representatiun-,ciause Iuse-olouse

Componient-lit ::l iter..declaratlve-itom :;:. body
compoment.dnclaration loIompomntn-decilartoiln I subprogram~derlinratin'n package..iclarstlom

II compontunt..deola ration I varimnt-port I I a Bkdecieoration Igonerio-dSols ratlion
I mull: I Use..Ciauso Igoanrioinstentiation

componeni-declaratinn : body ;:: proper.,.body body-s.tub
Icdcritifier-i~st . corn ponpwiLsubtypS.detiflitlon I * exproessonl:

proper...body
componeint-.kuibtyptL.deflnltiofl:: suhtype-I nd loot Ion subpragraiii...hdy Ipackage-.body I tooa-bodyv

E -2

Syntax Summary

4.1 4.5

name si= ample-name logicsl.I-operator : and or xo r
I character..iltoral o perator-..ymbol
I indexatL-ccmp n W lies rlatlonal-operator <~ > -

s elected-.compuInont Iattribute
blnary-addlng-.operstor + &

slmple-nome ::- Identifier
u nary...addlng...operator : +j

prefix name I function-call
multiplylng..operator *I/ mod r em

41,1 higheriLprecodence.-operator @: * be not

lndexed..com pone nt prefix (expression I. xpreaaionl) 4.6

4.1.2 ~type-.conversionl~: typa..marklwcpresalon)

@11ce : proflxidiscreta..range)
qualified-.expresalon -

4ýi3 type..m ark'(expressIon1II type..mark'aggroeate

oeloctad-component :-prefixeseleotor4,

selector ::w slmpla...ame loto:-
I character-itaral Iopersto-...ymbol Iall noCw subiype.JndloatIon Inew quallflad-e.xpromalon

4.1.4 6,1

attribute ::m pratlxasttribut....doalgnotor sequenoe..of...attem Intl :i- statement lototemenitl

attirlbute...deslgnator s: tatement ~
slmpie-nameo (11un/vemo~..tartc...exprosslon)) I labell I smplo..statement 1ue 11141oompound-s.tatemomt

elmple...tmterment :*- nulL~atatement
4.3 1 asalgnment..atatemoflt procedure..,.aisatatmont

Iexlt...tatemont rotumastatemont
aggregate i:-goto-statement *ntrY..Call..jtatemsnt

(oomponent-jaabooatlon 1, oomponent-assocletionl) deley...aatem'ent aborL~tatement
Irale..,statemnent oode-s.tatement

component-assoolation :
lchoice 11 oholcel ~>Iexpression compound-satatement :i.

If-statement case-s.tatement
Iloop...,tatement bloc~atatament

4A4 1 acoepL-.etteen oleLaotatiment

expression t: label <</*~Jb*LulmpI9..namo>>

I an relatio o o l relation :od tens reistlonl null-statement ::oA null,

relation :
simpioe..apres:slon (relatlonaLoperator slmpie..exproulon] asslgnmont-statement
si mple-expras.Ion (ntoel In range variable-.nome :-expression;
s impile-xpresslon notl In type..mark

5.3
uimple-.expreaaion -

Iuriary..addlng.-operatorJ term lbinary-.Adding-operator termi ilfstatement:-
If condition then

term~ ::- factor lmultlplying-.operator factori sequenoo-.of-satatements
* I .loll condition then

factor :-primary l*primaryl @ be primary I not p~1merv soquence..of..atotementul

* .,primary I u grgt Iarn.iua equenca..of-satemonts)
nu merle-1otemI nl grgt toltera end If;

Inorms I vllocator I functlon-.oali typo-.conversion
4 I quai~fied...exproovion l expreaalon) condition :-boolonima..spresslon

E-3

ANSIIMIL-STD-1875A Ads Reference Manual

5.4 6.3

Case-..statement :-subprogram-.body
sage expresslon Is subprogram....peolficatlon Is

caso...tatement-alternatlve I deoiarstlvs..partl
Icase..statement-.alternatlvel begin -

end case; aaquence-.of..itatements
Iexception

case-..tatement-alternative ::a exception..handler
* when choice 11 choice I> I exception-.handlerlj

*sequence-of-Atatements end Idesignotorl:

* 5.56.4

laop..statomeflt : procecdure..-call-tatement -
Iloop...imple.-iams:1 pi 'eodure-.norma lactual-parameter-part);

IIteration-eoheme] lwoo
sequeno...o-atatements function-call:-

end loop (loop-siample-.noms); funct/on..name (actual-parsmeter..portl

lterationascherne u- whil condition actual..parameter..part :
For locp-.poarnietsr..speciflaetlon iparamoter..association 1, parameter. sseociatlon 1)

loop-.parameter-Apeoiflontlon ::m paeramotor-.association :!- ".
Identifier In (revereel discrato-jange Iformia Ipa rmeter -A1 satual-parameter

4 5,6 formal-.ps remote r :-paranrtetr-slmple..narno

block-statement ::a actual..parameter :
iblocR-slmpla-nome.4 expression I va,/able-.name I Wpe.mark(v#HW*-lnsmo)

declare ldeclare tive..paitJ 7A¶
begin

aequane...o~ststmentepackage-.decia ration -* packoge...peaificatlofl;
* exception

exceptlon-hiadler
IexceIption-lhfldlorl packaegsapeolfleation :

end (b/ock-slrnple..nomel: peak.,o Identifier Is
Ibsmlo-declarstlvejteml)

5.7 (privaet
IboolocldeciarativeItem iI

eulLeStatement ued(.ka*imi.imI
exit Ilaop-normu (when condition),pckg bd

package body p~ackope-simpie-.name Is
* 1 declerstIve-portI

return-statement :-return lexpreseloni bgi
Bequsnces-of-statements

* I exception
except lon-.handier

* ~~~goto-stasemorit :-goto /oboLnems: ec~inhnlrl
end lpackoge..sImpie,..rnaml:

privot. .iype-dcicar, ',n :

subprogram..dociaratlon i:- subprogram....peclfictiotln; type Identifier fdlearmimnamt-part) Is (limited) private!

subptogrom.,Jpealflostlon ::- . .,

I fucto deintrjfo'rmrnLp:rMj return type..msrii

designator ::- Identifier I operator-.symbol 8,4

operstor..symbol ::- strIng-lterel use-claeuse use package-.name Ipecksgo-.nome);

* ~~formal-part =8.
lparometer-specification 1: pars moter-s.poolflostion(Iesig.dcirto ~

ps rams to r-spee 111catlon i: Identifier type-mark renamee oblect-nams:
identilair-Jist mode type-.mork I:- expression) Identifier exception renamese*xcopt/on...nome:

I package Identifier renames peok~g...name:
mode :-IlnI I In out Iout I siibprogramn-speaiflcatian renamnes....

suhprogrom..or.-entry-.nome,

F-4

Syntax Summary

9,1 9.7.2

* took-declarationi: taskspeoilflootlon; conditlonal-entry...cuaill
select

took-.,specification :-entry-.ceIl.,.tatement
* took [type! Identifier [Is* I sescuenoe...of-s:tcmentol

Ientry...declarstlonl also
ireprosentation.-coausel sequence-.of-statoments

and Rtask-simle-npi.mel) end select;

tiaskbody 9.7 ,.3
tosk body teak...eplrie..nhms Is

decloratlve-.Part[¶imod-,entry,..cali l
begin select

sequence-.of-sta toMentz entry-.caI Lots tomeant
I exception I sequence-.of-A.tatements)

exception-.handier or
Ioxceptlon-haridlsrlJ deiay-.altere'stive

end [teokah..moliae..nrnl end select:

9.10
9.5 abort..stetemsnt ::w, abort task-.name Itask-riamol.,
6ntry-.duclaration -

entry identifier ((dlscrete-.rongell (formal-partt
V 10.1

entry...olLstlltenisnt :
*nt~...n~ms(eoteI.~ersstsr..petI:compislaton l: oompiietlon..unltl

accept ent'y..sImple-nome ((entry..Jndox)I [formal-port) [do contot-kcalaus library..unit
sequence.. ofstattments context-clause secondary-.unit

end eid~..Jmple.nem);libraryunit ;

entr...idek::- ~reeionsubprogrmm...cielarstlon Ipaakage..declaration
generic-0dei1, lo gonario..instentletion
subprogram-.bodv

Ole secondary-.unit ::- iibrsry..unlLbody I subunit

delsy..statemsni '&l deay, slmpis..expresalon; library,..unlt...body ý:- subprogram-.body Ipsockage..dY

1011.

9.7 oontext-cisuso 1; with..clsuse fuse..cieusel

c onditional-ontry,..oel I timsd-o.ntry-,oall with-clause :.,
with uin/t..aimpis..nome o, nh...ample-name[:

sssolotivo-walt:w body,.stub :
*swaet subprogrem-speclfictilon Is @Wprote.

seis~sitmetie Ipackage body pdwacks# JImpie-name Is separate;
soet-leIlv task body tusk..sImpia..,ieme Is eeporefte:-,;
soeict-aitemaietl I subunit i:- separete iparen1.un~trnome) proper-.body

Ielse
sequenae..of-.statermnnti ,

end select:

selsotsi1ternstlive ::P-
Iwhen condition . >1 except ion-.d-vclsartion :-identiffer.Jist euception:

aseioci vs..weiLtlternative

solectivo-.welt-aiternative ::w maaepL-aitarnativisecplo-ade
I doiay-..ltemative Iterminate-.altserntlvescpto.hnde :

when exomption-.choios 11 exception-.choicel -

eceapt-aitarnative sequ once-.of-satetm onto
eacepitesttement (sequence..ot...AtatementaJ lpin.coo ~*wplnjseIohs

dielysalternatIve :I-
dslay-.stotement (sequence.-ofstetomentei 11,3

terminatseioternative : termblarte; rsise-sttemeont :-raise [extcept/on,,.ramsJ:

ANS//M/L-STO-?815.4 Ada Reference Manual

12.1 13.1

gmneric-declaration ;:.generlo...peclfloation; reprogentation-.clause
genelc..pecflctlon,, ~type-rsprosentatlon-a.lause a ddress-clause

gone ric-orms Ipart subprogrom-s.peolficatlon type-repreeentation-clauss ::- Iergth.~Asues
I guneric-forreL-part pacaoopwe.spcifloatlon I numeratlon-.raprcsentuitlon...oleuse

genericlformal-.part :i generic lgertrlo.42erameter-.doclarstlon Ircr..crbnaln.cum

gon orlc-.pearme ter-.docisaration :~13.2
Identifier-i1st :Iln loutil type-.mark I:-. exp~reselonj: length-.clause for attribute use olmple..expressiort:

I type Identifier Is generic-.typo..deflnitlon:
I privat e-ype-.doola ration

Iwith subprograntjpeclflcation Jim name); 13.3
1 with subprogram-s.pecification Ila <>I; ~~oreruneoneb :

generlc-.type..deflInlit In u-~ for If'pesi~mple-.nomm use aggregate;
I<>) I range <> I digiits <> Idelta <>

Iarray-.type..definition Iaccoese..type...deflnitlon 13.4

12.3 record..reprosentation...oause :
gensr~;Instnt~aton:~'for type-s.imple.nrnm:e ue
gonale-Imetan tltlonrecord (lilgnment-ciausel

new generk-package-.nome (genorio.mtual-parti: end record;
I procedure Identifier Is

new gonei/c..provedure-jiame (generic-acetueI..part): silgnMent-.clau$G:: at mod sftat/c-..umple. expression;
I function designator Is

now Venor/cJurieflon...nmme (generio..actuai-part): companent-ciAuss :
componeont-name at satt/a-simpie...expression

goneric..aotual-.part -range stotle-jange;
(gaeneric-.asecia t Ion 1. gonario-o.. oawoitioril)

p ~gone rlc-.associs tloii n3.
Igone rlc-ormu aI-pare motor - >1 gems rio.aotuuI..pmara motor dr.la

generic...forrmal-.perameter ,,for simple-a.nae teme at sinipie-.expressioni
paromoetr-slinple-monme Ioperator-.symbol

generlo...avual-jparometer i!-. expression I viodeble...name
I subprogram..narn. entry-.name Itype-markt cod...atatemorit ::m. type-.mark'rocord-..ggregste;

E-S

Syntax Cross Ref erence

In the list given below each syntactic category Is followed by the section number where it Is
defined. For example:

adding-..piorstor 4.5

In addition, each syntactic category Is followed by the names of other categories In whose deflrti-
tion It appears. For example, addlng...operator appesrs In the definition of simple-.expression:

adding-.operator 4.5
simple-.expression 4.4

An ellipsis (,)Is used when the syntactic category Is not defined by a syntax rule. For example:

*lower-Oaneletter..

,~. All uses of parentheses are combined In the term 'O.The Italoiczed prefixes used with some terms
have been deleted here.

abort luLaa~e 5.4
abort-stetemnt 10paramolar..associltlon 614

*abo.Latatarnnt 9. t *atual-paremeter-part 6.4
sImple.ata lament 511 entry-caIl.Jtatemernt 9111

tunatlon-.caII 6,4
abs -, procedure .caII-statement 6.4

factor 4.4
higheat-precadence-operator 4.5 oddre"mus..el 13.5

ropruaentation..clauto 13A
accept4,

acuepat-satement 9,5 "Oeguaute .
code-utatoment 13.8

ucrePLnlOmSOVO 9.7,1 enumeiratlonjaeprossntatIotn..,c'usu 13.3
"ielctive-weILulterfative 9.7,1 primary 4,4

aesept..,talemeltt quIt0.5raao 47,
aooept-alltrmtIve V..1 alignmontlo~uae 13,4
oompound-statoment 51reciardrerpresentatlon..clause 13.4

access
access-.type-definitlon 32 all

"ase..atype.Ajfiritton 3.8oti4,.
genef lo-type-,deflnllon 12.1 allocator 4.e
typa...defnto .. primary 4.4

E- 7

ANSIIMIL-STD-1815A Ada Reference Manual

and ... case
expression cesee.statement 5.4
logical-operator 45varianLpart 3.7.3

argumnentasuociatiofl 2.8 caaestusttement 5.4
pragme 2,8 compound-s.tatement 511

array cabe-statement-alternativis 5.4
con stra Inod.-array-deflnitlan 3.6 case-statement 5.4
unconstralnL..array-.dellnitlon 3.6

characterlIlteral 2.5
*eray-type..dieflnition 3.6 enumeration-l..iteral 3.5. 1

gene ric..type..deflnitlon 12.1 name 4.1
type..Aeflnitlon 3.3.1 selector 4.1.3

asslgnmetnt-statenmunt 5,2 choice 3.7.3
simple-sAtatement 5.1 case-statement-alternativis 5.4

c~omponent-association 4.3
at variant 3.7.3

address,-claeu 13,5
alignment-clause 13,4 od taeme nt 13.8
component-clause 13.4 simple-st.ateement 5.11

attribute 4.1,4 compilation 1011
length-clause 13.2

name4.1comipilation-.unit 10,1
range 35compilation 10.11

attribute-.designstor 4.1,4 coniponent-Assoclatlon 4.3
attribute 4.1,4 aggregate 4.3

basedtre 2.4.2 component-aleuse 13.4
bsditrl2.4.2 record..iepresentation-..oause 13.4

based-integer 2,4.2 component-deolaration 3.7
based-..itera! 2.4.2 component-list 3.7

basod-110'nI 2.4,2 coniponent-le1t 3.7
numeric-iteral 2A4 record,.type-.deflnition 3.7

variant 3,7.3
basic-oheracter 2.1

component-subtype-deflnIitoI1 3.7
basIc-.declaration 3,1 componentdbclal ation 3.,7

baslc-dealarative..jtam 3.9
compound-utatement 5ll

basic. declorativa.Jtm 39statement 5.1
declarative-.part 3.9 ,..

paoksge..speolficatlon 7.1 condition 5.3
exlt....tatement 5.7

baalc..graphlo-.character 2,1 If-satatement 5.3
basic..character 2,1 Iteration,..schoem 5.5
graphlc...character 2.1 select-alternative 9.711

bein conditlonaLentry-caaI 9.7,2
block-staterrient 5,6 select-statement 9,7
package-body 7,11
subprogram-body 6,3
tasiLbodv 9.1 constant

deferred,..constan-ldeoleratiofl 7.4
binary..mddlng-oporstor 4,5 number-cdeclarstion 3.2

simple-.expression 4,4 object-declaretion 3.2

blook-statoment 5,6 constrolned-array-dufInton 3.6
compound-s,.tatement 5,1 erray-type-.defInItloii 3.6

object-decleration 3.2
body 3.9

Iater...declarative-Item 3.9
constraint 3,3.2

body .. subtype-indicatlon 3.3.2
body-.stub 10.2
packsge..body 7.1 cofltext.-lauee 10.1.1
teek-bodV 91 coplto-nt1011

body-stub 10.2 decnalmolterel 2,41
body 3.9 numeric-iteral 2.4

Syntax Cross Reference

doclarativa-part 3.9 else
block-statement 568 conditions Lentry..call 0.712
package-body 7.1 expression 4,4
subprogram-bodV 8.3 lf..jtatement 6.3
taak...body 911 selactiva..welt 9.7.1

declare
:%blook-staternunt 5"i*gj

doerrvid-oonsantmnAeolration 7. fsaeet5.3
basic..docl aration 3.1 etnd

dely ccept-atatement 9.5
block-statement 5.6dslay..statement 9.6 case-statement 5.4
condltional-entrv..ca~l 9.7.20delay-.alternative 917.1 If-statement 5.3

* ,seiectIYA.awlt-lterflatIve 9.7.1 loop-s.totement 5.5
*tlmad.sntry-o.ali 9.7,3 package..body 7.1

* d~ay..aat~ent9,6paokage...pecifloation 711
dslay..ulteren~tl 9710 record-.roprossintatlon-clause 13A4dlVatraie971recor&..typs..dsfntiton 3.7simple-.statement 5.1 selective-..welt 9.7.1

delta subprogram-.body 0.3
lixd..accrac...ufiltln Lbod 9.1fle-cuaycsi~~n359task-peoificatlon 9.1gonoric-.type-.definitlon 12.1 tmd.sty.aI97

34varlanL~part 3.7.3
dewdtyps..definltlon 3.4,

type-dei.nitinlton 3631 tV
12.3 ~~~entry dolrtn

subprogrsni..body 0.3 entry...alLitatemenl 9.5subprogram-4.pecltloatlon 6.1 oondltlonal-entry-.call 9.7.2aimpia-statement 5.1

bealo..ra phla-c..rohaater 2.1 tmd.ety.ol ,.
extencld-.l~glt 2.4.2 mntryjdolaradlon 9.6
integer 2.4.1 takseilain9,1
ietter,.or...dligt 2.3 ts..pcfcto

antryJndox .
aooepata-tstmeflt 9.5

digits..
floatlng..aoour&Waoy.dflintion 3.5.7 aflumerodotiOUteral 3.5.1
gone rc..type-.deflnlItlori 12.1 onumeretlonhlitsral-.spolifloation 3.5.1

dlseretejrange 3.0 eu¶fltio5I5U al~fLipedflSotlof 3.5.1
choice 3,7.3 enumeratlon..type...,dfinltlon 3.5.1
entry-..declaration 9,5
Index-constralnt 3.6 onumeration.-rpreseiontaon..alloe 13.3
loop-paremeter-.apeniflostion 5.5 type-reprosentatlon-clhaus 13.1
slice 4.1.2

enumeration-.typ.e-dfliniton 3.5,1
dleorkimnant-Aaaoolation 3.7.2 typoadoftnltlon 3.3.1

di-RcrimInant..onstraint 3.1.2 exoepftn
disorkmlnant-mon.rulnt 3.7.2 biockatotement 6.6

constraint 3.3.2 exceptlon-.deolaration 11.1
package-.body 711

dleuorlmnin pantmt 3.7.1 renaming-deoci ration 3.5
full-type-.dooe iration 3.3.1 subprogram..body 6.3
Incomplot....typo-.dola ration 3.8.1 took-body 9.1
private-type...deolaration 7.4 ~1.

dleerlminant-peolIIlaa 3.7.1 exception-.handisr 11.2
discriminant.part 3.7.1

exo~pthon.,deoloastion 11.1
baslc..docia ration 3.1

do xceptflofl.handler 11.2accept..atatement 9.5 biock-stotemeit 5,0
package-bodv 7.1

U .. subprograrm-body 6.3
exponent 2.4.1 task-bdy 9.11

E--9

ANSI/M/L-STD-1B?5A Ada Reference Manual

exit .. function..
exlLatatement 5.7 generin-Instantlatiofl 12.3

nil ateent57subprogram-speclficatlon 6.1
simpie,.stetement 5.1 function-coall 6.4

2..1prefix 4.1
* ~~based-Ilterai 2.4.2 p~ .

declmaijlterag 2.4.1 generic 1.1.
*generlc-format..part 1.

* expression~ 4.4
actual-parameteor 6.4 generic-.aotuaLporemeter 12.3
argumenLassociatlon 2.8 geflerlc..iiooiatiari 12.3
menignmen~ftatoment 5.2
attribute-.designator 4.1.4 genoric-.ActuaLpart 12.3
case-s.tater ent 5.4 generlc-Instanlist Ion 12.3
componenx-assoclation 4.3
component-deociertlon 3.7 gonedc-A.assoaiation 12.3
condition 5. goenoric-actu a I-part 12.3
discrImInant.assoofletlon 3,7.12ea~.,eirto ,
entry..Jndox 9.5 basic-.declaration 3.1
generlc-aatual-pesrmotor 12.3 Ister-.doclarativej.term 3.9
gonerle-.paremoter-deciarstlan 12.1 library-.unit 10,11 ~
indexed-.component 4,1.1
number-.declaration 3.2 Venorle-.foninall.poaremee 12.3
objbot...declarsilon 3.2 generic-a.ssociation 12.3
parameter-.specification 6.1
primary 4.4 generic-fonfaL~parn 12.1

4quallflsd...cprosslon 4.7 goercAeiiain12.1
return-statement 5.6gnr8.psliilf
type-.conversion 4.6 gonorlo-instantistlon 12.3

basic-.declarstlofl 3.1
extended-digit 2,42 later...declarstlve-Jitemn 3.9

based-.integer 2.4.2 lbrary-.unit 10.1

factor 4.4 goneri.,,.pararnoter..4eoallason 12.
term 4.4 genericiformal-part 12.1

flixed...ccutacy..definltIon 3.5.9 goer~ia...speofflaadaon 12.1
f Ixed-.poin~oonstrh int 3,5.9 generi-lo...loarstion 12.1

fiModpwint-constraint 3.5.9 gonerio...p.a.emontercecaat 1211
constraint 3.3.2 gnroaaee~crin1.
real-type-.definilton 3.5.0 ot

Voto..sat n ...
111ating..Accuracy,.Aflnituon 3,5.7 o-saein51

* ~~floating-point-oonstralnt 3.5..stte7n

floating-.poifl.-aanstlant 3.5.7 simple-s.tatemenlt 511
constraint 3.3.2 graphio..clirsafter 2 1
real-type-definitlon 3.5.6 character-literal 2.5

string-lJiteral 2.0

fraddrosa-clauso 1 3.i highestLpmrecdeIW*-operstoo 4.5
enumeratlom-representation,.,cisus 13.3~2.
Iteration-sacheme 5.5 dntfe
length-claIuse 13.2 argument-assaclation 2.6
record.,,reprosentatlon,.,lause 13.4 designator 61,

entry-,declaration 9.5
on umoerutionjliteral 3.5.1

formial-porsiater 6.4 fuli.,type-.declasrtlon 3.3. 1
parameter-association 5.4 generlc-Instantietlon 12.3

gonoric-.pare metor-.deociration 12.1
Ion~oLpael 6.1 Identlfier.Jist 3.2

accept-.,tatoment .5Incomplete..Jypu..d~olaration 3.8.1
entry.-deciarstlon 9.5.prmes.~e~foto .
subprogram-s..pecification 6.1 package-specification 7.1

pragma 2,8
prlvae...,type-.deciarstlon 7.4

forrneLeffeotur . renaming-.docleration 6,5
basic-c..haracter 2.1 uimple-manam 4,1

subprogram..npeclflcstlon 611
fuilltype-declarstion 3.3.1 subtype-.declaration 3,3.2

type-.declaratlon 3.3.1 task-specification 9 1

E-1 0

Syntax Cross Reference

Idntflt.Jil3.2 leter-or-digit 2.3
componenL~dociaration 3.7 Identifier 2,3
deferred-constont.Asolarstlon 7.4
discrimlnenLeapiolficatlon 3.7.1 lbrary-unit 10.1
exceptlori,...ecla ration 111.11 compilation-.unit 10.1i ~ genoric-.paremeter...declaratlan 12.1
number-declaration 3.2 library-unit-body 10.1 .object-declaratlon 3.2 secondary-.unit 10,11parameter...speclflcstlon a,1

limited
If . privat-t.ype-.declaratlon 7.4

If-s.tatement 5.3
Iogical-operstor 4.5

If-Matement 531
compound-statement 5.1 loop ,

loop-s.tatement 5.5

generic...prameter...deoleration 12.1 101-lnmtfA91501
loop..parameter-speapficatlon 515 Iteratlon-..shams 5.5
mods 6.1
relation~ 4.4 Ioop-statoment 5.5

kcmeatysmbai 3.8.1 copon-tem t 5.1
type-.declaration 3.3.1 licivr..ot-aseier .

Indx..uonttmnt .6graphlc...charscter 2.1
We-odant30letter 2.3

constrained...array-.deflnition 36
.1constraint 3.3.2 mod

alignment-clauso 13.4Index-subtype..4.flniton 3.6 multiplying-.operator 4.5 ~unconstrained-..rray..deflnltion 3.661
Ind~e~noponnt 41,16.1

Indawlme ooi 4,1.1 pare metar-s.peolflostional
multiplying-.oprator 4.5

integer 2.4,1 term 4.4J
baee 2,4.2
decimmaljteral 2.4.1 na"M 4.1
exponent 2,4.1 abor-t..atotment 9.10

actual-parameter 0.4integer..type..Aeienitho 3.5.4 argument-assoalation 2.9
type-.definition 3.3.1 assignmenLatatement 5.2

component-claube 13.4
ii... entry..calI..Atstiment 9.5

body-sjtub 1102 exceptlon-c.holce 11.2
case..,statement 5.4 exlLatatement 5.7
fuIl.-type-.doolerstlon 3431 function-c,.all 6.4
(lone rlcinstantlatln 12,3 gonerle-.ectual-.paermeter 12.3generic-.parameter...deolaratlon 12.1 gonatric....Instantletion 12.3
packae-ubody 7.11 gonorle-,parometer-.doolaretlon 12.1 ,

package-.specification 7,1 goto...statement 5.0
pelvate..type..,deolarstlon 7.4 prefix 4,1 K
subprogrem..boldy 63primary 4.4 *

subtype-.declaration 3,3.2 procedure-caII,.itatement 6.4
teaskbody, 9.1 raise-s.tatement 11.3
task...apecification 9.1 rensmlng..deolaralIon 6.5
varlant..,part 3.7.3 subunit 10.2

type-.markc 3,3.2
Iteratlon.,asheme 55use-.clause 8.4

loop-..atiement 5.5
lbl5.1 Wallocator 4.0

statement 5.1 dlerivedjtypedeflnltlon 3.4
generio-.Instantlation 12.3

Iater-.Aolarudve-Item 3.9
declarative-.part 3.9 not..

factor 4.4
hingth-s.lauss 13.2 highesLprocedence-.operetor 4.5

type-.reprosentation-.clause 13.1 relation 4,4

Betr2.3 null..
extendod-diglt 2.4.2 oomponen~llet 3.7
identifier 2.3 null-statement 5.1
Ietter-.or-.digit 2.3 primary 4,4

E-1 I

ANSI/MIL -SrTD-? 815.4 Ada Reference Manual

51primary 4.4
elpl.,,aatmet5.1 factor 4.4

numer..delralen3.2 privaft
basic-.declaration 3.1 package-s.pecification 7.1

swmerlioJiteqeal 2.4 private-type-.declaratlon 7.4
primary 4.4 pvivate-t.ypa-A.eolaretdon 7.4

ganorlo..parameter-.doolaratlcn 12,1
gobjectlolaratlon 3.2 type-.decla ration 3.3.1

baalo-deolaratlon 3,1
of procedure 12.

constrained....rray...daflnltlon 3.0 sbrgenram-lnetantlatlon 0l1
unconstrained-o.rray-.definitlon 3.6 abrga~pcfcto

* ,1procedure-.colL~tatomwnt 8
designator 6.1 sml..ttmn

*generlic-ormsi-pararmeter 12.3 proper-body 3.9
name 4.1 body 3.9
selector 4,1.3 subunit 10.2

orqualifled-exprsealiof 4,7
expression 4,4 allocator 4.8
logical-operator 4.5 primary 4A4
eelective..weit 9.7.1
tlmad-.entry..cail 9.7.3 raise

ott~r..apeeeL~hereter,,,raiu....tatement 11.3
graphio..cha rooter 2.1 Sttenei 11.3 V,

*~1aimplo-s.tatement 5.1
choice 3.7.3rag3.

ecplnhoo112component..cla use 13.4
discrete-range 3.6

geflerlc.parameter-declaretion 12.1 reati...onaten 4.4
mode 0.SeAto ,

range
Pokpcomponent-clause 13.4 -body-s.tub 10.2 generia..typs..deflnition 12.1

gonerlc-Inutantlatlcn 12.3 lndeL..aubtype..deflnltion 3,6
package...Jody 7.1 range-..constraint3.
pockogs~p~olflostlon 7.1
renamning-.deelaration 6,5 renge,..oornatrnt 3.5

constaint3.3.2
package-b.ody 7.1 cie-olnstrant tart .

Iibrary..unit..body 10.1 Ix&*~Lcntan ..
proper-.body 3.* flostlng-.point..conatrslnt 3.5.7

Intogor-.typu..deflnition 3.5,4
peakaige-doollaratin 7,1 re~yedfniln3.56

basaldo..dclarstion 3.1 ratp..dhl
Iater....docarativejtsm 3.9 ye.efntn33,
tIbr~ry..unlt 10.1 record

71 record-.reprosentatlon-.clouae 13.4
gacenerlc.spealflostlo n 12.1 record..type..deflnltlon 3.7
package-.declaration 7.1 reoordierpresentednause 13.4

pereeter..aa~eial~n 4 tpe..raprosentatlon-.clauae 13.1
actuaL -param eter -part 6.4 soo rd typ - ei nitn 3.7

.1type..definition 3.3.1
formal-part 6.1 relation 4.49

prama .8expression 4.4

relationsLoperstor 4.5
2.6M relation 4.4

~flu 4.1rem
atre ibut 4.14 multiplylng-.operstor 4.5
Indexed-.component 4.1.1.0 a
solected-..omponent 4.1.3 renam in-omrto

E-1 2

* Syntax Cross Reference

reamning-.doolls.Uon 8.5 simplo..Jlme4.
balc.dlaaton3.1 accept.atatement 9.B

address-.clauso 13.5
* ~ ptenttio..a~aae13.1 attributo-.designotor 4.1.4

basle..deolarativajtemn 3.9 block-statement 5.6
tooksapealflcaston 9.1 body-s.tub ¶10.2

choice 3.7.3
,,.dlscriminant-aeaoclatlon 3.7.2

return-sJtatement 5.6 anumoration..repraa~ntatlon...clousa 13.3
subprogram...peolfication 6.1 forms I-pirometer 6.4

gonerlc..formal-para motor 12.3
* .aetum...ztatmenwrt 5.8 label 5.1

eirmPle-s.tatement 5.1 loop..jtatement 5.5
name 4.1

reverse ... package-.body 7.1 i
loop-.parameter-speolfoatlon 5.5 package-spoolflcatlon 7.11

seocary-unlit 1 selector 4,1.3

task-.apoolflcatlon 9.11
varlarlLpart 3.7.3

selct ,,with-.clause 110,11.1
condlitional-entry-c.all 9.7.2
uelectlv&..wolt 9,.71 almple...tatemet 5.1
tlmed...ntry..call 9.7.3 statement 5.1

meleoat-Aemedv 9.7.1 lI.4.1.2
selective-..wait 9.7.1 name 4.1

selest-s.tateitiet 9.11 apac.-olhareater
compound..atatemnent 5.1 basic-.graphlc..harecter 2, 1 1 1~

seliece~todomponent 4,11,3 pcahroe ,,.-

name 4.1 beasic-graphla..haracter 2.1
selective..walt 9.7.1 statemient51

soleoc"atotment 9.7 sequence..ot..etatemento S.1

sletlOve..wokalfamewst 9.7.1 striniiJiteral 2.6
aeleot-alterntlvo 9.7.1 operator-s.ymbol 6.1

4..3primary 4A

"eloctod-.component 4.1.3 snubpmillranm...by 6,3
Ilbrary-.unlt 10.1

"oiat .. Ubrary..undLbodV 1011
bodystu 10. prper-ody309

subunit 10.2 6
wquw.~tamtta5.1basic-o..claration 3.1

accept..jltematlve 9.7,1 later-.deolarstlve.Jtem 3.9
aaCOPt...tatenlient 9.5 lbrary-.unlt 10,11

boksaeet56subprogromi-spoelfleao 6.1oame...tatemonLaitematiVe 5.4 bd..tb1.
oondltlonalLentry-c.all 9.7.2 geero..paemte...dalral 12.12
delay-.altmaritlve 9.7.1 generlc-..p~cfaramto-larsio 12.1
oxceptlon...handler 11.2 genotamln...ealfaatlon 62.1
If-statement 5.3 subpomlgram..ody 6.3l
loop-Atatement 5.5 subprogram..odecaao 6.1
pocltago-.body, 7.1 sbrga-olrto .
selective-..wait 9.7,1 subt"p
tupoa rul.bod y 6.3 eaibtype-cdeclaratIon 3.3.2

tie~body9.1
timed-..ntry...all 9.7.3 sutp-olrdn3.3.2 9

sImpWe..aPMMeAM 4.4 basic-.deoclortlon 3.1
addressi.olauss. 13.5 ebyenlao ..
sllgnmentlAsusa 13.4 autp-1dosaa.typ..ellm o 3.3.
choice 3.7.3
component-olaun 13.4 loto4.
delay-s.tatement 968 component-subtypo-.deflnlticn 3.7
flxed-.accuracy...definltion 3.. onstraltiod-o.rray...definltlon 3.6

floaingaccuacVdefiilton 35.7dorlvod.type..doflnltlon .
flotln..aocraa..~fitltondiscrete-range 3.6length-clause 13.2 bodoartn3.

ratios 3.5 betcearto3.
relation 4.4 subtype..daolaratlon 3.3.2

urnconstrained....rray..deflnitlan 3.0

E-1 3

ANSIIMIL-STD-1815A Ads Reference Manual

*subuinit 10.2unele
"wcondary..unit 10.1baeieqr2.

Identifier 2.3
took ~ytbInteger 2.4.1

tmok-body 9.1 upperaaose-etto,..
took-speelflcation 911 basic-graphIc-^'hsi.,t..ri 2.11

N.task..bcdy9.

proper-.body 3.9 U

udrse..clauso 3.

task- declarationitem 3.
tlatr-el aai-Is 39rcont.KLprolsenai-lus 13.4.

toompol a vreation 9. Iete..dclrule.,le 3.4

terinslto variant 3.7.3
termlInato-siate motive 0.7.1 varlant.,,pamt 3.7.3

terminate.,alternative 9.7.1 vrot4r ..
seloctIve-wIalt-lernative 9.7.1 compontnt-Ils 3.73

then *.when

exproemlopi 4 case-AtatomeriLAlternatlve 5A4If-staterrent 5.3 exceptlort-handlor 11.2
tlmd..enty..ouI B lecalaternhtive 9.7.11Setstleot97variant 3.7,3

type , while
fuII...type-.declo ration 3.3.1 Ica~~~oen . ,~
generic...parameter-.declaratlen 12.1

prlvats-.type-.doalerstlon 7.4 goneric...paramater..dealarstlorl 12.1
teiek...pociliastlon 11111 with-.clauue 10.1.11 Y

typo..convenelon 4.8wn..~u 1.,
primary 44contSXLolau&e 10.1.1

type-declaration 33,1
basic-.declaration 311 exprsso

typ...einlton 31logical-operator 4.5
ful 1type-.deolasration 3.3.1 .

tp-ak3.3.2 .lea
actual-pokamtaetr 0.4
codu.-ststement 13.1 ao-lea 2.4.2
deferred-.oonstonLdealerstlon 7.4 bsdla
discr m Ina ntapealflcatlon 3.7.1&
g one ric-.actus10aI. re m *tor 12.3 bisr-dlngoeso .
gonedopa ra motor-.decalsration 112.1blay.ddn.oetr45
indox.,ubtypo..doqnItIoI1 3.8 -parameter...paolflcstlon 6.11 attribute 41.
quaIlfled..expression 4.7 chrce-iea .
rqIatlon "larsacteriltea 12.0ren&amlng..deleration cn8..tte5t
ou bprogr i n...pecltlootlon 6.1 quallfled-e.xpression 4.7 .
subtype-indlcatlon 3.3.2(
typn..convorvion 4.5 ceLttmn .

act us I-pars motor 6.4tiype-aprWiontation..illuse 13,1 actue...paremetes..-ps e.
reprosentation..clause 13.1 aggreojato 4.3

attrlbue...dal.1.4ounrdngueao 4.5 atiuedsgao
n sy-dim gp~ejpreaton 4.4 discrlmlnant-constrflnt 3,7.2

sml-xrslndlscrlmlnonLpart 3.7.1
unconstrained-.array..deflinlton 30 ent ry..dealsration 915

arrav..type..definition 3.6 *inumeration-ty'pe-definItlom 3.5.1
formal-part 6.1

E- 14

L

Syntax Cross Reference

generio..actuai..part 12.3
gone ric.-.type-.definklen 12.1
Indeox...onstraint 3.6 asslgnmmnt...latiement 6.2
Indexed-c..omponent 4.1 .1 opnt-clrln3,
pragma 2.9 dicim Ins nt-declarcatlon 3.7.

piay44gone rl c-par m eta r..decl oration 12.1quallfled-expreasson 4.7 n um bar.decga ration 3.2slice 4.1.2 object-declaration 3.2subunit 10.2 pa rpnote r.specif Ication61
type-.converslon 4.6
unconstralned..array..deflnltlon 3.8

abort-statement 9.106
multlplyltg..oternrar 4 9.5
mutpyn-prtr4iaddress-.clause 13.5

alignment-olause 13.49
aassignment-statemoni 5.2factor 4.4 block-statement 5.6* lIghost.-Prooodmnce,.operator 4.5 body-satub 10.2

+chbe...atatemeni 5,4
code-..taternont 13.9binary-o.dding-.operstor 4,6 component-olauaa 13.4exponenft 2.4.1 componont-declaration 3.7unary...ddlng-.operstor 4.5 component-Ilot 3,7
condltional-entry..oall 9.7.2
deforred.conowt-ndeclaratlon 7.4
delay-s.tatement 9.6

abort-statement 0.10 dleorlminent-part 3,7.1
actual-paramoter-.part 6,4 Shtry..calntstotmont 915aggregate 4,3 qntrV..ecla ration 915
disorimlnant-,onstroint 3.7.2 enumeratlon-ropreaentatlon-clause 13,3
enumneration...type...deflintion 3.5,1 exception-..deals ration 11.1gonerl~a-atual-purt 12.3 exit-Atatement 5.7
ldentiflor-Jlst 3,2 formal-.pant 6.1
Index-.constralnt 3.0 full-type-.declaritlon 3.3.1
Indoxed..oomponent 4.1.1 gnredcaso 12.1
progme 2.8 generlo...dtanlartion 112.3unoonstrained-o.rray..deflnitlon 3.6 generlc...inamtentietlarton1.
uue...oluaa 6.4 ooto-s.tatement SIR
with-lo..luse, 10.111 It..statemont 6.3

incomplete..type-.doclaratlom 3.9.1
length-.clause 13.2
loop....tatement 5.5

binory-o.ddlIng..oporator 4.5 null-s.tatement 5,1
exponlent 2.4.1 number-cldocleratlon 3.2
unary-.addlng..oporstor 4.5 obieot-deolaration 3.2

package-.body 7.1
* *,,package...doclaraction 7.1

based.Jlteral 2.412 pragmao 2.8
docima-Ilteral 2.4.1 private-.type-.declaration 7.4
selected-component 4.1,3 prucedure-.callijtatement 0.4

raise-s.tatement 11.3
record-reprosentatlon-clause 1 3.4

rings 3. reflimliig..docieratlofl 9.5 8
return-s.tatemmnt 516
soleotlys..welt 91.71

muitiplylng-operstor 415 subprogram-body 6.3
subprogram-.dooiarstlori 6.1 -

oubtype-cdecla ration 3,3.2
roelational-oporator 4,5 tMalLbody 911

l ask..declarstian 9.1
termlIna to-si.mtsrnalive 9.7,1
tlmed-.entry..csli 9.7.3
use-clause 9,4block..statomont 5,6 varlant-part 3.7.3

c~omponent-.declaration 37wt-lue1,1
deferred,..consten-ldeclaration 7.4 wt..iue1.

¶diforiminant.apecification 3.7.1
exception-.dociarailon 11111
generic..,parometer-.declaration 112.1 cola Ilona Ioperator 4.5
Ioop-..tatement < <
number..doolaration 3.2lal51
object-deoclertion 3,2lae
pars mstor-s.peolifcatlon 6,1

res~gdcaiin05relalional-operntor 415

E- 15

ANSI/M/L-STD-1815A4 Ada Reference Manual

*generlc..paramgew..doolanstlon 12.1 ratol-pso 4.5
generic..tyipo-.definltlon 1 2.1 r~t~lIO~~O
lndsN..ubtype..deflnition 3.6

relational-operator 4.5
relotionaL~operstor 4.5

,7argumomt-asolaoltion 2.6 label 5.1
case..atatemen-Altemlatlve 5.4

*componont-sauclatiorl 4,3
dlscrlmlnhnt-assoclation 3.7.2
exceptlon-.haridler 11.2 case...statement-.alternotlys 5.4

gnrcascain12.3 compononLauuociutlon 4.3
gaaeterluassoclotlon 6.4 discrlmlnant-assoclatlon 3.7.2

* paramelterasonatlon 9.7 exceptlon-handler 11.2

variant 3.7.3 variant 3.7.3

E-1

* Thi *ppendlx le not pen of the standard definitlon of the Ads programminlng linguage],

F. Implementation-Dependent Charaoteritls tics

The Ada language definition allows for certain machine-dependences In a controlled manner, No
machine-dependent syntax or semantic extensions or restrictions are allowed. The only allowed
"Implementatlon-dependences correspond to Implementation-dependent pragmas and attributes,
certain machine-dependent conventions as mentioned In chapter 13, and certain allowed restric-
tions on representation clauses.

The reference manual of each Ada Implementation must Include an appendix (called Appendix F) .
that describes all Implementation-dependent characteristics, The appendix F for a given Implemen-
tatIon must list In particular:

(1) The form, allowed places, and effect of every Implementation-dependent pragma. 3

(2) The name and the type of every Implementation-dependent attribute. 4

(3) The specification of the paokage SYSTEM (see 13.7).

(4) The list of all restrictions on representation clauses (see 13.1) ,

(5) The conventions used for any Implementation-generated name denoting Implementation- 7
dependent components (see 13.4).

: * (6) The Interpretation of expressions that appear In address clauses, Including those for Interrupts I
(see 13.5).

(7) Any restriction on unchecked conversions (see 13.10.2). 2

(8) Any implementation-dependent characteristics of the Input-output packages (see 14). ,,

F-i
,...............

[This Index Is anot rart of the standard definition of the Ada programming language,.

Index

An entry exists In this Index for each technical term or phrase that Is defined in the reference .
"manual. The term or phrase Is In boldface and Is followed by the section number where It is
defined, also In boldface, for example:

Record aggregate 4.3.1

References to other sections that provide additional information are shown after a semicolon, for
example:

Record aggregate 4.3.1; 4,3

References to other related entries In the Index follow In brackets, and a line that Is indented below
a boldface entry gives the section numbers where particular uses of the term or phrase can be "
found; for example:

Record aggregate 4,3,1; 4.3
[see also: aggregate]

as a basic operation 3.3.3; 3.7.4
In a code statement 13.8

Thu Index also contains entries for different parts of a phrase, entries that correct alternative ter-
minology, and entries directing the reader to Information otherwise herd to find, for example:

Check
losee: suppress prragmsa,

;,; ~in an abnormal task 9.,10 "
Abandon elaboration or evaluation (of declarations or in a nelect alternative 9.7,11
otutements) in g an exit statement 5,7

"lose: exception, raise statement) Including a neto statement 5.7
including a reto statement 5,9"A"r-lt-k910 9Including a return statement 5,8 .,.

sAbnormal tsok 9.10 *9.9 raising an exception 11.5
(see also: abort statement) to communicate values 9.11

seI recipient of en entry call 9.7,2, 9.7.3, 11,5;: 9.5 tc m ae ls9
* raising taaklngd.rror In a celling task 11.1: 9.5 Access to external flies 14.2

Abort statement 9,10 Access type 3.8: 3.3, 0
[ies also: abnormal task, statement, task) lase also: allocator, appropriate for a type, class of type,

as a simple statetmunt 5,1 collection, derived type of an access type, null accoss
value, object designated by,,,

Abs unary operator 4.3.0; 4.5 as a derived type 3,4
lass also: highest precedence operator) as a generic formal type 12,1.2, 12,3,5

a an operation of a fixed point type 3.510 deallocation lsee: uncheoked..dealloctlon]
as an operation of a floating point type 3,15.8 designating a limited type 7,4,4
as an operation of an Integer type 3.5.5 designating a task type determining task
In a factor 4.4 dependence 9.4

formal parameter 6,2
Absolute value operation 4.5,. name in a controlled pragma 4,8

object initialization 3,2.1
Accept alternative (of a selective wait) 0.7.1 operation 3.8.2

for an interrupt entry 1315,1 prefix 4,1
value designating an object 3,2, 4.8

Accept statement 9.5; 9, 0 value designating an object with dlsorlmlnants 5.2
(see also: entry call statement, simple name in,,,, stats- with a discrimInant constraint 3.7,2
ment, task) with an Index constraint 3,1,1

accepting a conditional entry call 9,7,2
accepting a timed entry call 9.7.3 Access type definition 3.8; 3.3,1, 12,1.2

* and optimization with exceptions 11,6 as a generic type definition 12.1
as a compound statement 5,1
as part of a declarative region 8,1 Access.chsck
entity denoted by an expanded name 4.1,3 ieee: constraint-orror, suppress]

I-1 Abandon s Access.check

Ilk , ..

ANSI/MIL-STD-1815A Ada Reference Manual
'0

Accuracy All in a selected component 4.1.3
of a numeric operation 4,537
of a numeric operation of a universal type 4.10 Allocation of processing resources 9.8

Activation Allocator 4.0; 3.8, D
[see: task activation) Ieee also: access type, collection, exception raised during....

initial value, object, overloading of... I
Actual object as a basic operation 3.3.3; 3.8.2

Igee: generic actual objecti as a primary 4.4
creating tn object with a discriminant 4.8; 5.2

Actual parameter 6.4.1; D; (of an operator) 6,7: lof a sub- for an array type 3.6,1
program) 6,4: 6.2. 6.3 for n generic formal access type 12.1.2

osee ni.o: entry call, formal parameter, function call, for a private typo 7.4.1
procedure call statement, subprogram call) for a record type 3,7.2

characteristics and overload resolution 6.6 for a task type 9.2; 9.3
In a generic Instantlation [see: generic actual must not be the argument of a conversion 4,6
parameter) raising storage-error due to the slie of the collec-
of an array type 3.8.1 tlon being exceeded 11. 1
of a record type 3.7,2 setting a task value 9.2
of a task type 9,2 without storage check 11.7
that is an array aggregate 4.3.2 t o ck
that Is a loop parameter 5,5 Allowed 1.6

Actual parameter part 1,4 Alternative
In a conditional entry call 9,7.2 Icoe: accept alternative, case statement alternative, closed
in an entry call statement 91 alternative, delay alternative, open alternative, select alter-
in a function call 6.4 native, selective wait, terminate alternative"
in a procedure call statement 6.4 n , t , ae t
In a timed entry call 9,7.3 Ambiguity

lese: overloadingl
Actual part

lese: actual parameter part, generic actual part) Ampersand
A t. ibpr ra(see: catenationl

Actual subprogram character 2.1
[see: generic actual subprogram) delimiter 2.2

Actual type Ancestor library unit 10.2
leee: generic actual type)

SAdding operator AAnd operator
[see: binar adding operator, unary adding operator) (see: logical operator)

Addition operation 4.5.3 And then control farm]
accuracy for a real type 4,567 ieee: short circuit control farm)

Anonymous type 3.3.1; 3,5,4, 3.5,7, 3.5,9, 3.6, 0.1ADDRESS (prodeflned attribute) 13.7.2; 3.5.5•, 3,5,8, anonymous base type (set: first named subtype)

3.5.10, 3.6.2, 3.7.4, 3.8.2, 7.4.2, 9,9, 13.7, A n m b t s f a ut
[see also: address clause, system,addresnl ANSI Samarian national standards Institute) 2,1

ADDRESS 1predafined type) Apostrophe character 2.1
Ieee: system address) in a character literal 2.5

Address clause 13.5; 13.1, 13,7 Apostrophe delimiter 2.2
Igoe also: storage address, syetem,addresaa In an attribute 4,1.4

as a representation clause 13.1 of a qualified expression 4.7
for an entry 13.5.1

AFT (predefined attribute) for a fixed point type 3.5.10; A Apply 10.1.1
Appropriate for a type 4,1

Aft field of tOXt-.1o Output 14.3.8, 14.3.10 for an array type 4.1.1, 4.1.2
for a record type 4,1,3

Aggregate 4,3, D for a took type 4,1.3
see also: array aggregate, overloading of-.., record o t
aggregatel Arbitrary selection of select alternatives)1.1

as a basic operation 3,33; 3.e.2, 3.7.4
as a primary 4,4 Argument association in a pragma 2.0
in an allocator 4,8
in a code statement 13,8 Argument Identifier In a progma 2.8
in an enumeratloit representation clause 13,3 Ae a
in a qualified expression 4,7 Arithmetic operator 4.5
must not be the argument of a conversion 4,1 lsee alto: binary adding operator, exponentiatIng operator,
of a derived type 3,4 multiplying operator, predefined operator, unary adding

operatorl
Alignment clause (in a record representation clause) 13.4 as an operation of a fixed point type 3r5)10

Accuracy a Arithmetic operator 1-2

as an operation of a floating point type 3.5.8 Attribute 4.1.4; D
as an operation of an Integer type 3.5.5 (sen also: predefined attribute, representation attribute]
rounding for real types 13.7.3 as a basic operation 3.3.3

as a name 4.1
Array aggregate 4.3.2; 4.3 as a primary 4,4

-see also: aggregate) in a length clause 13,2
e sa basic operation 3.3.3; 3.8.2 in a static expression In a generic unit 12.1 '

In an enumeration repreuentation clause 13.3 of an access type 3,5,8

of an array type 3.6.2
Array assignment .2.1 of a derived type 3.4

of a di.screte type or subtype 3.5.5
Array bound@ of an entry 9.9

Isee: bound of an array! of a fixed point type 3,5.10

of a floating point type 3.5.8Array component of an object of a task type 9.9 ".
Isee: array type, component, Indexed component) of a private tvpe 7,4.2; 3.7.4

of a record type 3,7,4
"Array type 3.6: 3.3, D of a static subtype in a static expression 4.9"I"see also: component, composite type, constrained array, of a task type 9,9

constrained.... index, matching components, null slice, of a type 3.3
slice, unconstrained,..I of a type as a generic actual function 12.3,6

as a full type 7.4.1 of a type with dlscriminents 3,7,4
as a generic formal type 12.1.2 renamed as a function 8,5
as a generic parameter 12.3.4 that Is a function 3.5.5
"as the type of a formal parameter 6,2 tio
conversion 4.6 Attribute designator 4.1.4
for a prefix of an indexed component 4,1.1 A u i r
"for a prefix of a slice 4.1.2
"operation 5,6.2; 4.5.2, 4,5,3
operation on an array of boolamn components 4.5,1,
4.5.8 Bar
with a component type with discrIminants 3,7.2 [see: vertical bar]
with a limited component type 7.4,4

SArray type definition 3.6: 3.3.1, 12.1.2, 12,3,4 BABE (predefined attribute) 3.3.3; A" Array t dfor an access type 3.8.2
[eee also: constrained array definition, elabordtlon of..., for an array type 3,8.2
unconstrained array definition] for a discrete type 3.5.5

"as a g~nerlc type definition 12,1 for a di poret type 3.5.5:: • ~~~for a fixed point type 3.5.10 •.,,./

for a floating point type 3.5.8
Arrow compound delimitet 2.2 for a private type 7.4.2•,"•1for a precord type 37.4,. ..

ASCII (american standard code for Information interchange) for a record type 3,7.4
2.1 Bass type (of a subtype) 3.3S,;,, as a static subtype 4.9 ,
ASCII (predefined library package) 3.5.2; 2.8, C as atart type 4.9. .',as target type of a conversion 4.8

(see also: graphical symbol] due to elaboration of a type definition 3,3,11

name [see: name of a base type)Assignment compound delimiter 2.2: 5.2 of an array type 3.8; 4.1.2
in an object declaration 3.2,1 of a derived subtype 3,4

of a dlscriminant determining the set of choices of a"Assignment operation 5.2; D variant part 3,7,3
[see also: initial value, limited type] of a fixed point type 3,5.9

as a basic operation 3,3, 3.3.3; 3.5.5, 3.5,8, 3,5.10. of a floating point type 3.5.7
3.6.2. 3.7.4, 3.8.2, 7.4.2, 12.1.2 of a formal parameter of a generic formal sub.
for a generic formal type 12.1.2 program 12,1.3
not available for a limited type 7.4,4 of an integer type 3.5.4
of An array aggregate 4.3.2 of a parent subtype 3.4
of an Initial value to an object 3.2.1 of a qualified expression 4,7

to an array variable 5.2,1; 5.2 of a type mark 3.3,2
to a loop parameter 5,5 of a type mark In a membership test 4.5.2
to an object designated by an access value 3.8 of the discrete range In a loop parameter specifics-
"to a shared variable 9,11 t1on ,.-

of the expression in a case statement 6.4Assignment statement 5,2; D of the result of a generic formal function 12.1.3 '> _
[see also: statement) of the result subtype of a function 5.8

as a simple statement 5.1 of the subtype indication In an access type definition
"3.8Associated declarative region of a declaration or statement of the type in the declaration of a generic formal

'8.1 object 12.1,1
Assciaio of the type mark in a renaming declaration 8.5 .4• Ameoaistion

*9.• [see: component associatlon, discrlminant association, Based literal 2,4,2; 14.3.7 . ,
"generic association, parameter association] [see also: colon character, sharp character]

as a numeric liters; 2.4

1-3 Array aggregate 0 Rased literal

-. 4. .

V,011MI~L-.0IU-IWOU'l AaU IOTSTrlc6 Mvifluai

Basic character 2.1 Body stub 10.2: D
Isee also: basic graphic character, character] acting as a subprogram declaration 6.3

as a body 3.9
Basic character set 2.1 as a portion of a declarative region 8.1

is sufficient for a program text 2,10 must be In the same declarative region as the
declaration 3,9, 7,1

Basic declaration 3.1
as a basic declarative Item 3.9 BOOLEAN (predefined type) 3.5.3; C

derived 3.4: 3.5.3
Basic declarative Item 3.9 result of a condition 5.3

in a package specification 7.1: 72 result of an explicitly declared equality operator 8.7

Basic graphic character 2.1 Boolean expression
(see also: basic character, digit, graphic character, space [see: condition, expression]
charactor, special character, upper case letter]

Boolean operator
Basic operation 3,3,3 [see: logical operator]

Isae also: operation, scope of..., visibility...
accuracy for a real type 4.5,7 Boolean type 3.5.3
implicitly declared 3.1, 3.3.3 [see also; derived type of a boolean type, predefined type]
of an access type 3.8.2 operation 3.5,5; 4.5.1, 4.5,2, 4.5.6
of an array type 3.6,2 operation comparing real operands 4,5,7
of a derived type 3,4
of a discrete type 3,55 Bound
of a floatinxed point type 3.5.108 lee: error bound, first attribute, last attribute]

of a limited type 7,4,4 Bound of an array 3.6, 3.6.1
of a private type 7.4.2 [see also: index range, slice)
of a record type 3.7.4 aggregate 4,3.2
of a task type 9.9 ignored due to lndex...oheck suppression 11,7
propagating an exception 11,8 Initialization In an allocator constrains the allocated
raising an exception 11.4.1 object 4.8
that Is an attribute 4,1.4 that is a formal parameter 6.2

that is the result of an operation 4,5,1,4.5.3, 4.5.6
Belong

to a range 3,5 Bound of a range 3.5; 3.5.4
to a subtype 3,3 of a discrete range In a slice 4.1.2
to a subtype of en access type 3.8 of a discrete range Is of un6verel-nteger type 3.0.1

of a static discrete range 4i 9 n t ye
Binary adding operator 4.5; 4.5.3, C

[see also: arithmetic operator, overloading of an operator] Bound of a scaler type 3.5
for time predefined type 9,6
In a simple expression 4.4 Bound of a slice 4.1.2
overloaded 6.7

Box compound delimiter 2.2
Binary operation 4.5 In a generic parameter declaration 12,1, 12.1.2,

12.1.3: 12,3.3
Bit In an index subtype definition 3,8

[see: storage bitse
Bracket

Blank skipped by a text-lu procedure 14M3.5 (see: label bracket, left parenthesis, parenthesized expres-
slon, right parenthesis, string bracket]

Block name 5.6
declaration 5.1
implicitly declared 3,11

Block statement 5.6; D CALENDAR ipredefined library package) 9.6, C
[see also: completed block statement, statement)

as a compound statement 5,1 Call
as a edeclarative region 8.1 (see: conditional entry call, entry call statement, function
entity denoted by an expanded name 4.1.3 call, procedure call statement, subprogram call, timed
having dependent tasks 9.4 entry call!
including an exception handler 11.2; 11
including an Implicit declaration 5.1 CALLABLE (predefined attribute) At
including a suppress pregma 11.7 for an abnormal task 9.10
raising an exception 111.4,1, 11.4.2 for a task object 9.9; A

Body 3.9: D Calling conventions
[see also: declaration, generic body, generic package body, lsee: subprogram declaration)
generic subprogram body, library unit, package body, of a subprogram written In another language 13.9
proper body, subprogram body, task body]

as a later declarative item 3.9 Cannelation of an entry call statement 9.7.2, 9.7.3

Basic character * Canceletion 1-4

. . *

•"~~. . .. '. .'' •;•.. . .i '.: ' , ,•• ,; •. .. : .' ',. • , .,

Index

Carriage return format effector 2.1 CLOSE (input-output procedure)
ee letter, owerc ,pper ca rin an Instance of directIs 14,2.1; 14.2,5

Ca[of a letter, In an Instance of sequentlalJo 14,2.1, 14.2,3
[In texLio 14.2.1; 14,3,10

Case statement 5.4 Closed alternative (of a selective wait) .,71; 11.1
(see also: statement! lase also: alternativol

as a compound statement 5.1 er

Case statement altematlve 5.4 Close file 14.1
Code statement 13.8

Catenation operation 4.5.3 Cse alsod statement) 13.
for an arr.'y type 3,.,2 as also p s tatement 6.1
In a replacement of a string literal 2.10 C s aspetaent46.1

Catenation operator 4.5; 2.6, 3,6,3, 4.5.3, C raising an exception 14.4

ieee also: predefined operatorl

Collection (ot an access type) 3.8; 4.8, D
Cheraster 2a1 r(see also: access type, allocator, length clause, object,

divide, dot, equal, exclamation mark character, graphic of a derived alocae typo 13,2; 3.4eear
character, greater than, hyphen, less then, minus, other fdv c t 1;
special character, parenthesis, percent, period, plus, point Colon character 2.1 '
character, pound starling, quotation, semloolon, sharp, [see a!so: based literal!
space, special character, star, underline, ver"loal bar] replacing sharp character 2.10

In a lexical element 2, 2,2
names of characters 2.1 Colon delimiter 2.2
replacement In program text 2.10 Coon l e 2.2

Column 14.3.4
CHARACTER (predefined type) 3.5.2; C

as the component type of the type string 3,4,3 Comma
character 2,1Character literal 2.5; 3,,2, 4.2 delimiter 2.2

[see also: scope of,.,, space character literal, visibility of...!
as a basic operation 3,3,3 Comment 2a7: 2.2'.osu 63
as an enumeration literal 3,5.1 In C m onformltg construct 03,1
as a name 4,1
as a selector 4,1.3 Communication
declared by an enumeration literal specification 3,1 between tasks ion: accept statement, entry,
In a static expression 4.9 rendezvous]
In homograph declarations 8.3 of values between tasks 9.5, 9.11
must be vIsible at the place of a string literal 4.2

Comlparieon •
Character type 3.5.2; 2.5 loe; relational operator]

operation 3.5.6 [eeia rt

Compatibility (of constraints) 3.3.2
Check [aee also: constraint]

[see: suppress pragma! failure not causing constrainLerror 11,7
of a discrete range with an Index subtype 3.6,1Choice 3.7,3 of discriminant constraints 3.7.2

[see also: exception choice! of fixed point constraints 3.5,9
In an aggregate 4,3 of floating point constraints 3,5,7
In an array aggregate 4.3.2 of index constraints 3 , 5,1
In a case statement alternative 4 of inde constraints 3.6.1
In a component association 4,3, 4,3,1, 4.3.2 of range constraints 3.5

In a record aggregate 4.3.1 Compilation 10.1; 10, 10.4
In a variant of a record type definition 3,713 am a tn quenc of lex10 al elements 2

aIncluding an Inlne preagme nt3s2
Circularity in degiendence between compilation unite 10.5icdgn ne g.3

• "; 'L "'n0., Compillation order '. ;•
Clasa of type 3.3 12.1.2 [lee: order of compilation]

[ese also: access typo, composite type, private type, scolar [eoro mpan
type, task type] Compilation unit 10.1, 10, 1s0ec D uni

of a derived type 3,4 loie alsoai unitb10.1;u, 1econdary unit]

compiled after library units named In Its contextt•,•Clause clause 10,3 :•
[see: address clause, alignment clause, component clause, followed by 1 n Inl0ns pragma 0.3.2
context clause, enumeration representation clause, length with a context clause 10.1,1
clause, record representation clause, representation with a use clause 8.4
clause, use clause, with clause]

.. CLOCK (predofined function) .6 Compile time evaluation of expressions 10.6; 4,9

[see also: system,ticki Compiler 10.4

"" -5 Carriage return * Compiler

9 r•: " '• i• " . • - i • i ' I i : ,.i ' ; . ' . " .

ANSI/MIL-STD-?815A Ada Reference Manual

Compiler listing Composite typo 3.3; 3.6, 3.7, D, Ises: list pragme, page pragma] lose also: array type, class of type, component, discrimi- .;

nant, record type, subcomponent)
"Compiler optimization Including a limited subcomponent 7.4.4

osee: optimization, optimize pragmal including a task subcomponent 9.2
object Initialization 3.2.1 [see also: Initial value).

Completed block statement 9.4 of an aggregate 4.3
with a private type component 7.4.2Completed subprogram 9.4 !

Compound delimiter 2.2
Completed taek 9.4: 9.9 Isee also: arrow, assignment, box, dellmItur, double dot,

loee also: tasking-error, terminated task) double star, exponentiation, greater theat or equal, in-
as recipient of an entry call 9,5, 9.7,2, 9.7.3 equality, left label bracket, less than or equal, right Is-
becoming abnormal 9.10 bel bracket)
completion during activation 9.3 names of delimiters 2,2 ",
due to an exception In the task body 11.4,, 11.4.2

Compound statement 5.1
Component (of a composite type) 3.32 3.6, 3.7, D Isee also: statement]

[see also: component association, component clause, Including the destination of a goto statement 5,9
component list, composite type, default expreulon,
dependence on a discrimlnant, discrlminant, Indexed com- Concatenation
ponent, object, record type, selected component, suboom- Rae: catenation-
ponenti

combined by aggregate 4.3 Condition 5.3
depending on a dlscrlmInant 3,7,1; 11.1 lsee also: expression]
name starting with a prefix 4,1 1.,termining an open alternative of a selective wit
of an array 3.6 [see also: array type] 9.7.1

of a constant 3.2,1 in an exit statement 5.7
of a derived type 3,4 in an if statement 5,3
of an object 3.2 in a while iteration echoim 5.5
of a private type 7,4,2
of a record 3,7 (sea also: record typeo Conditional compilation 10,6
of a variable 3,2.1
simple name as a choice 3.7.3 Conditional entry call 0.7.2; 9,7
subtype 3,7 and renamed entries 8.5
subtype Itself a composite type 3,6,1, 3.7.2 subject to an address clause 13.5.1
that is a task object 9.3
whose type Is a limited type 7.4,4 Conforming 6.3.1

diacriminant parts 8,131; 3,8.1, 7,4,1
Component asesciation 4.3 formal parts 0,3,1 P.

in an aggregate 4.3 formal parts In entry declarations and accept state-
including an expression that is an array aggregate ments 9,5
4n3m2 subprogram specifications 6.3.1, 6,31
named component association 4.3 subprogram speulfications In body stub and subunit
named component association for selotIve visibility 10.2

8,3type marks 8,,11; 7,4,3

positional component association 4.3 tpmk6,7"
Conjunction

Component clause (In a record representation clause) 13,# [teo: logical operator]

Component deelaratlon 3.7 Constant 3.2.1; D
[see also: declaration, renord type definition] lsee also: deferred constant, loop parameter, object)

as part of a basic declaration 3.1 access object 3.8
having an extended scope 0.2 formal parameter 6.2
in a component lilst 3.7 generic formal object 12.1,1, 12.3
of an array object 3.6.1 * in a static expression 4.9 M

of a record object 3.7.2 renamed 8,5
visibility 6.3 that Is a slice 4.1,2

Component list 3,7 Constant declaration 3,2.1
in a record type defintiort 3.7 [see also: deferred constant declaration)
In a variant 3,7,3 as a full declaration 7,4.3

with an array type 3.6.1
Component subtype definitionrecord type 372

[ees also: dependence on a dlscrlminantl w
in a component delrlaratIon 3.7 CONSTRAINED (predefined attribute)

Component type for an object of a type with dlscrlmlnants 3,7.4: A
catenation with an array type 4,5,3 for a private type 7.4.2, A
object initialization tsee: Initial value]
of an expression In an array aggregate 4,3,2 Constrained array definition 3.6
of an expression In a record aggregate 4,3.1 in an object declaration 3.2, 3.2.1
of a generic formal array type 12,3.4
operation determining a composite type operation Constrained array type 3.6
4.5.1, 4.5.2 [see also: array type, constraint)

Compler listing * Constrained array type

..- ,

Index

,ie ~~~Including a use clause 8A4•i'•..
' Constrained subtype 3.3; 3.2.1, 3,8, 3.,11, 3.7, 3.7.2, 6,4,1, Inerted nby the environment 8 0. 4

12.3.4 inaseredbynith enirnen.2.
Jose also: constraint, subtype, type, unoonstrained sub- ofa"uuit1.
type]

due to elaboration of a type definition 3.3.1 Context of overload resolution 8.7

due to the elaboration of a derived type definition see also: overloading]

3.4 Control form
, object declarations 3,2,1 [lse: short circuit ontrol form]

of a subtype indication In an allocator 4,8 [sr c oo r
SCONTROLLED (predefined pragme) 4.0; B

Constraint (on an object of a type) 3.3, 3.3.2; D OTOLD(rdfndpam)46
(see also: accuracy constraint, compatibility, constrained Conversion operation 4,6
subtype, dependence on a dlisoriminnt, discriminant con- Isee also: explicit conversion, Implicit conversion, numeric
straint, elaboration of,,., fixed point constraint, floating type, subtype sonverslon, type conversion, unchecked
point constraint, index constraint, range constraint, satisfy, conversioni

" subtype, unconstrained subtype) applied to an undefined value 3,2.1
explicitly specified by use of a qualification 4.7 a"ld o ba n u .3f3e v4 35,248as a basic t'peration 3.3.3; 3,3, 3,5,5, 3,5,8, 3.5,10, .
in a subtype Indication In an allocator 43,62, 3,7,4, 3,8,2, 7.4.2
not considered In overload resolution 8.7 between array types 4.6on a derived subtype 3.4 between numeric types 3,3.3, 3.5,5, 4,6
on a formal parameter 6,2 from universalfixed type 4,3.5.5, ,.on a formal parameter of a generic formal sub- in a static expression 4.9 .

program 12,1,3 of a universal type expression 5.2
on a generic actual parameter 12,3,1 of the bounds of a loop parameter 5.5
on a generic formal object 12,1,1 to a derived type 3.4
on a generic formal parameter 12.1; 12.3,1 to a real type 4.5,7
on an object designatLd by in access value 3.8 tarelyp4.7
onl a renamed object 8,5 Convertible univeral operand 4.0
on a subcomponent subject to a component cluse C ebuel rd
must be static 13.4i must be static 13,4 Copy (parameter passing) 0.2 -, .', ,

on a subtype of a generic formal type 12,1,2 Cp(armtpsin)6
on a type mark In a generic parameter declaration COUNT (predefined attribute) for an entry 0.3, A
12,3.1
on a variable 3,2,1, 3.3, 3.6 COUNT (predefined Integer type) 14.2, 14.2.5, 14.3.10:
on the result of a generic formal function 12,1,3 14,2.4, 14.3, 14,133, 14,3,4, 14,4

CON8TRAINTERROR ipredeflned exceptlon) 11,1 CREATE (input-output procedure)
[see also: suppress pregma] RA (inut- o f dure) ,14.'1..1...

raised by an accept statement 9.5 in an Instance of direct.l.Jo 14.2,1: 14.2.3in an instance of sequentileL.o 14.2,1 : 14,2,3 -. ";:,

raised by an actual parameter not In the subtype of In textjo 14,2.1, 14,3,1: 14.3,10
the formal parameter 6.4.1 raising an exception 14.4
raised by an allocator 4.8
.raised by an assignment ,2 34 Current column number 14.3: 14,3,1, 14,3,4, 14,3.5, 14.3.0
raised by an attribute 3.5.5
raised by e component of an array aggregate 4.3.2 Current index of a dirout access file 14.2, 14.2.1; 14,2,4
raised by e component of a record aggregate 4.3.1
raised by an entry call statement 9.5 Current line number 14.3: 14.3.1. 14.3,4. 14.3.5
raised by a formal parameter not In the subtype of
the actual parameter 6,4,1 Current mode of a file 14.1, 14.2.1: 14.2.2, 14.2,4, 14.3,
raised by an index value out of bounds 4,1,1, 4.1.2 14,3.5, 14.4
reload by a logical operation on arrays of different ,'..5,14-
lengths 4.5.1
"raised by a name with a prefix evaluated to a null Cep n r4 41 44 4
access value 4,1 Current se of a direct access file 14.2
raised by a qualification 4.7 C n e d t s e
raised by a result of a conversion 4, CURRENTNPUT (texLlo function) 14,32:14.3.10"
raised by a return statement 5,0 •8

raised by Incompatible constraints 3.3.2 CURRENT-OUTPUT textlo function) 14.3.2:14.3.10
raised by Integer exponentiation with a negative CT x i1
exponent 4,5.e
reload by matching failure In an array asalgnment
6.2,1
raised by naming of a variant not present Ina record DATA..ERROR [,1oput-output excoption) 14.4; 14,2.2,4 4,1.t 14.2.3, 14.2.4, 14,2.5, 14.3.5, 14.3.7, 14.3.8, 14.3.9,
"raised by the elaboration of a generic Instantietlon 14,3,10. 14.5
12.3.1, 12.3.2, 12.3.4, 12.3.5
raised by the Initialization of an object 3.2,1 Data
raised by the result of a catenation 4,5,3 ioao: day, month, time, year]

Contuxt clause 10 1.1; D
[see also: use clause, with clause] DAY predefined function) 9.6

determining order of elaboration of compilation Deed code elimination
units 10.5
In a compilation unit 10,1 [se: conditional compilation]

1-7 Constrained subtype 0 Dead code ellmination

ANSI/MIL-STD-1815A Ada Reforence Manual

Dealloestion Default expression
Isee: access type, unchecked.deallocation [tsee: default Initial value, default Initialization, dlscrimlnent

specification, formal parameter, generic formal object,
Decimal literal 2.4.1; 14,3,7, 14.3,8 initial value]

as a numeroi literal 2,4 cannot include a forcing occurrence 13.1
for a component 3.3; 7.4.3, 7.4.4

Decimel number (in text o) 14.3.7 for a component of a derived type object 3.4 .
for a discrlminant 3,7.1; 3.2,1, 3.7.2, 12.3,2

Decimal point for a formal parameter 6.1, 6.4.2; 6.4, 0.7, 7.4.3
Jose: fixed point, floating point, point characterl for a formal parameter of a generic formal sub-

program 12.1; 7.4.3
Deoalation 3.1; D for a formal parameter of a renamed subprogram or

(see also: basic declaration, block name declaration, body, entry 8.8
component declaration, constant declaration, deferred for a generic formal object 12.1, 12.1,1; 12.3constant declaration, denote, discrlminant specification, for the discriminants of an allocated object 4.8
entry declaration, enumeration literal specification, excep- in a component declaration 3.7
tlon declaration, exception raised during.... generic In a diserlminant specification 3,7,1
declaration, generic formal part, generic Instantlation, Including the name of a private type 7.4.1
generic parameter declaration, generic speciflictlon,
hiding, Implicit declaration, Incomplete type declaration, Default file 14.3.2; 14.3
label declaration, local declaration, loop name declaration,
loop parameter specification, number declaration, object Default generic formal subprogram 12.1; 12.1.3, 12.3,8
declaration, package declaration, package spcificatlon,
parameter specification, private type declaration, reanm- Default Initial value (of a type) 3.3
Ing declaration, representation clause, soope of..., lsee also: default expression, Initial value.
specification, subprogram declaration, subprogram for an acces type object 3.8; 3.2.1 (see also: null
specification, subtype declaration, talk declaration, task access value)
specification, type declaration, visibility) for a record type object 3.7: 3.2.1

as an overload resolution oontemt 0,7
determined by visibility from an Identifier 1.3 Default initialization (for an object) 3.2.1, 3.3
made directly visible by a use clause 8.4 (see also: default expression, default Initial value, Initial
of an enumeration literal 3,.,1 value)
of a formal parameter 6.1
of a loop parameter 8,5 Default mode (of a file) 14,2,1; 14,2.3, 14,2.5, 14.3.10
overloaded 86.
raising an exception 11.4,2: 11.4 DefaulLaft (field length)
to which a representation olause applies 13,1 of fixed.lo or floaUo 14.3.8; 14,3,10

Declarative item 3.9 Defluft.base
lsee lso: basic declarative item, later declarative Item) of Integer-io 14,3,7; 14.3.10

In a code procedure body 13.8
In a declarative part 3.9: 6.3.2 DefaulLeup (field length)
In a package specification 6.3.2 o; fixedIo or flooLIo 14,3,8: 14.3.10
In a visible part .7.4
that Is a use clause 6.4 Default..fore (field length)

of flxed-lo or flo.Uo 14,3,8; 14,3,10
Declarative part 3,9; D

love also: elaboration of...) Defouklsetting (letter case)
In a block statement 5.6 of enumeration-lo 14.3.9; 14.3.110
In a package body 7.1; 7.3
In a subprogram body 6.3 DefoulLwidth (field length)
In a task body 9,1; 9.3 of enumeratlonJo 14.3,9; 14,3.10
including a generic declaration 12.2 of Integer.lo 14.3.7; 14.3.10
Including an Inline pragma 8.3,2
including an interface pragma 13,9 Deferred constant 7.4.3
including a representation clause 13,1 of a limited type 7.4.4
Including a suppress pragme 11,71
IncludIn, a task declaration 9.3 Defenred constant declaration 7.4; 7.4.3
with Inlpflott declarations 5.1 Is*e also: private part (of a package), vislble part (of a

package)l
Declarative region 8.1: 8.2, 8,4 as a basic declaration 3,11

Isee also: scope of..,I Is not a forcing occurrence 13.1
determining the visibility of a declaration 863
formed by the predefined package standard 0.6 Definition . .
in which a declaration Is hidden 8,3 lase: access type definition, array type definition, compo-
including a full type definition 7,4.2 nent subtype definition, constialned array definition,
including a subprogram declaration 6.3 derived type definition, enuntoretlon type definition,

generic type definition, Index subtype definition, Integer
Declared Immediately within type definition, real type definition, record type definition,

Isea: occur immediately within) type definition, unconstrained array definition)

Default determlhatlon of a representation for an entity 13.1 Delay alternative lof a selective wait) 0.7.1 9

"Deallocation 0 Delay alternative i-8

Ilk .,

Index

Delay expression 9.6; 9.7.1 Designate 3.8, 9,1; D
liese also: duration) ln@e also: access type. allocator, object designated by...,

in e timed entry call 9.7,3 task designated by,.,, task object designated by .- "I

Delay statement 9.6 Designated subtype ll an access type) 3.8
lose also: statement, task] D

as a simple statement 5,1 Designated type (of an access type) 3,6 ,
In an abnormal task 9,10
in a select alternative 9.7,1 Designator (of a function) 6.1
in a timed entry call 9.7.3 lace also: attribute designator, operator, overloading of ...

in a function declaration 4.5
DELETE (input-output procedure) in a subprogram body 6,3

in an Instance of direcLio 14.2.1: 14.2.5 in a subprogram sppcification 6.1; 6.3
in an Instance of sequentlaiJo 14,211, 14.2,3 of a generic formel subprogram 12.3.6; 12.1. 12,1.3
in text-lo 14.2,1; 14.3.10

of a library unit 10.11
Delimiter 2.2 overloaded 6,8

(see also: ampersand, apostrophe, arrow, assignment,
colon, compound delimiter, divide, dot, double dot, equal, DEVICLERROR (Input-output exception) 14,4: 14.2.3,
exclamation mark, exponentlatlon, greater than or equal, 14.2.5, 14.3,10M 14,5
greater than, Inequality, label bracket, lees then or equal,
less than, minus, parenthesis, period, plus, point, Dilt 2.1
semicolon, star, vertical bar] slas also: basic graphic character, extended digit, letter or

Delta (of a fixed point type) 3,.1. digitIn a based literal 2.42
lsee also: fixed point type) in a decimal lteral 2,4,.1

of universal-fixed 4.5,5 in an Identifier 2,3

DELTA (predefined attribute) 3.5.10; 4.1.4, A DOIit (of a floating point type) 3,5.7
lae also: floating point type]Diotal an entity 3.1, 4.11; D • •Im

(see also: declaration, entity, name) DIGIT$ (predefined attribute) 3.5.8, 4,1,4, A

Dependence between complaetin units 10.1; 10.5 Dimensionality of an array 3.6
(see also: with cimusel

circularity implying illegality 10,0 Direct aceess file 14.2; 14,1, 14.2.1

Dependence on a dclorimlnant 3.7.1, 3.7 Direct input-output 14.2.4; 14,2.1
[see also: component subtype definition, component, on-
straint, dlscriminant constraint, dlsartmlnant, Index con- Direst visibility 8.3: D
straint, suboomponent, subtype deflnition, varlant part) lose also: basic operation, character literal, operation,

affecting renaming 8.5 operator symbol, selected component, visibility)
by a aubcomponent that Is an actual parameter 6.2 due to a use clause 8.4
affect on compatibility 3.7.2 of a library unit due to a with clause 10,1.,
effect on matching of components 4,5,2 within a subunit 10,2
"for an assignment 5.2

DIRICTJO (predefined Input-output gensric package) 14.2,
14.2.4: 14, 14.1. 14.2.5. C

Dependent task 9.4 exceptions 14.4: 14.5
delaying exception propagation 11,4.1 specification 14,2.5
of an abnormal task 9.10

Discrete range 3.65 3.6.1
Derivable subprogram 3,4 Joee also: range, static discrete range]

prohibiting representatlon clauses 13,1 as a choice 3.7.3
as a choice In an aggregats 4,3

Derived subprogram 3.4 for a loop parameter 5,5
as in operation 3.313 in a choice In a case statement 5.4
Implicitly declared 3.3.3 In a generic formal array type declaration 12,112:

12,3.4
Derived type 3.4: D In an index conotraint 3,0

(se6 also: parent type! In a loop parameter specification 5,5
conversion to or from a parent type or related t,,pe In a alive 4,1.2
4.6 of entry Indices in an entry declaration 9,5 S
of an access type smee: acces type, collection)
of an access type designating a took type determIn- Disatete type 3.15: D
Ing task dependence 9.4 (lee also: basic operation of..., enumeration type, Index,
of a booleen type 3.4, 3.5.3 integer type, iteration scheme, operation of..,, scaler type]
of a limited type 7.4,4 as a generic actual parameter 12,313
of a private type 7,4,1 as a generic formal type 12.1.2
subject to a representatlon clause 13,1, 13.6 expression In a case statement 5.4

of a disorlminant 3,7,1
Derived type definition 3.4; 3.3.1 of a loop parameter 5,5

[lee also: elaboration of...! of Index values of an array 3,0
operation 3,5,15: 4,5.2

" 1 -9 Delay expression * Discrete type

ANS//MIL-STD-1815A Ada Reference Manual

Discriminant 3.3, 3.7.1; 3.7, D Dot
lsee also: component clause, component, composite type, [see: double doti
default expression, dependence on..., record type, "elected character 2.1 [see also: double dot, point character.

component, subcomponent) delimiter 2.2
in a record aggregate 4,31 delimiter of a selected component 8.3: 4.,1.3

initialization in an allocator constrains the allocated
object 4.8 Double dot compound delimiter 2.2
of a derived type 3,4
of a formal pararoster 5.2 Double hyphen starting a comment 2.7
of a generic actual type 12.3,2
of a generic formal type 12.3, 12,3.2 Double star compound delimiter 2,2
of an implicitly initialized object 3.2,1 [see also: exponentiation compound delimiter]
of an object deaignated by en access value 3.7.2;
5,2 DURATION (predefined type) 9.6; C
of a private type 7.4.2; 3.3 (see also: delay expression, fixed point type]
of a variant part must not be of a generic formal of alternative delay statenmants 9-71
type 3.7.3
simple name in a variant part 3.7,3
subcomponent of in object 3.2,11
with a default expression 3,71; 3,2,1

Effect
Discrimlnant association 3.7.2 Isee: elaboration has no other effect]

in a discriminent constraint 3.7,2
named dlscrlminant association 3,712 ELABORATE (predefined progma) 10,5; B.
named discrIminant association for selective
visibility 8,3 Elaboratedi 3.9
positional discrlmlnant association 3.7,2

Elaboration 3.9: 3.1, 3.3, 10,1, D
Disarlminent constraint 3.7.2: 3.3.2, D [see also: exception raised during,, order of elaboratlon]

lame also: dependence on a diacriminlntl
ignored due to aCOesu.check suppression 11,7 optimized 10.6

in an allocator 4,1 Elaboration has no other effect 3.1
"on an access type 3.8
violated 11.1 Elaboration of

Diecimiantan access type definition 3,8
paDlriminsn part 3.7.1: 3.7 an array type definition 3,6

lose also: elaboration of-.,] a body stub 10,2
absent from a record type declaration 3.7 a component declaration 3,7
as a portion of a declarative region 8,1 a component subtype definition 3,7
conforming to another 3.,11, 6.3,1, 7,4.1 a constrained array definition 3,6
In a generic formal type declaration 3.7.1; 12.1 a declaration 3,1
in an Incomplete type declaration 3,1,1 a declarative item 3,9
in a private type declaration 7.4, 7.4,1 a declarative part 3.9
in a type declaration 3.3, 3,3.1 a deferred constant declaration 7,4,3
must not include a pregma 2,8 a derived type definition 3.4
of a full type declaration Is not elaborated 3.3.1 a discrimInant constraint 3,712

a discriminant part 3.7.1
Discrimlnant specIflctlon 3.7,1 a discriminant specification 3.7,1

[see also: default expression] &n entry declaration 9.5
as part of a basic declaration 3,1 an enumeration literal specification 3,5.1
declaring a component 3,7 an enumeration type definition 345.1 .1

having an extended scope 8.2 a fixed point type declaration 3,5.9
In a discriminant part 3.7.1 e floating point type declaration 35.7
visibility 8.3 a formal part 6.1

o full tyne declaration 3.3.1 •..• :

DlscriminonLohock a generic body 12.2
lees' constrainLerror, suppress] a generic declaration 12.1

a generic instantlatIon 12,3
Disjunction an incomplete type declaration 3.11.1

(see: logical operatori an index constraint 3.0.1
an integer type definition 3.5.4

Divide a library unit 10.5
character 21 a loop parameter specification 5.5
delimiter 2.2 an object declaration 3.2.1

a package body 7.3
Division operation 4.5.5 a package declaration 7.2

accuracy for a real type 4.5.7 a parameter specification 6.1
a private type declaration 7.4.1

Division operator a range constraint 3.5
leoe: multiplying operatorl a real type definition 3.,81

a record type definition 3.7
Division-check a renaming declaration 8,5

lsees: numeric-error, suppress] a representation clause 13,1

Discrimneant * Elaboratlon of 1-10

* .. *.. .

Index

aLibprogram body 0.3 program coll, timed entry caill)
a ubprogramn declaration 8.1 to an abnormal ;ask 9.5, 9,10, 11.5; 9.5

a subtype declaration 3.3.2 to communicate values 9.11
a subtype lndi';ation 3.,12
a task body 9.1 I ntry cell statement 9.5
a task declaration 9.1 (see also: accept statement, actual parameter, statement,
a teak specification 0,11 task declaration, task)
a type declaration 3.3.1, 3.8.1, 7.4.1 a5C a simple stutement 5.1
a type definition 3.3.1 in an abnormal task 9,10
an unconstrained array definition 3.6 In a corsditionli entry call 9.7.2; 9.5
a usu clause 8.4 In a timeod entry call 9.7.3, 9.5

E~eboration...check Entry declaration 9,15
iseee rrogrein-ourror exception, suppress) Ise@ also: einhuration of..]

as an overloaded declaration 8.3
Element In a file 14, 14,1,) 14.2 as part uf a basic deoclaration 3,1

In a direct at.;Coas file J4.2.4 cannot Include a forcIng occurrence 13,11
In a sequential access file 14.21 having an extended scope 8.2

in a task specification 9.1
KLEMENT-.TYPE (generic formal type of o.'~. i14.2.0: Including the name of a private typo 7,4.1
14.1, 14.2.4 visibility 8.3

ELEMENT-.TYPE lgenerlo formalI type of sequsntlal-.lo) Entry family 9,5
14.2.3; 14.1, 14.2.2 denoted by a selected component 4A1.3

name starting with a prefix 4.1
RIGe Parvt

of a conditional entry call Ill, Enuy, Index (In the namre of en ent" of a family) 0.5
of an if statement 5.3 for an open accept alternative 9,7.1
of a selectives wait 9.7. 1: 11. 1 In a conditional entry call 9.1.2

In a. timed entry cali 9.7,3
EMAX (predefined attribute) 3.5.8; A

Is*e also: machine..,,*naxt entry queue lof calls awaiting scooptencs) 9.5
count of calls In the queue 9,911

limiin due to queued Interrupts 13.5.1
isaee: niachirio-s.minl of an abnormal teask 9.10

Empty string literal 2.6 Enumeration lIteral 3.5.1, 4.2
lesee also: overloading of..., predefined function)

End of line 2.2 as en operation 3,13.
cmaseparator 2.2 as an operator 31.5.

dmue to a format effector 2.2 aso result for Image attribute 3,515
terminating a comment 2.7 as the parammotr for value attribute 3.,1l

Implicitly deoclarod 343.
IND-ERROR Iinput-output exception) 14.4, 14.2.2, 14.2.3, In a static exproession 4.9
14.2.4, 14.2.5, 14.3.4, 114,315, 14.3.6, 14.3.10, 14.5 In pregme system-.name 13.7

of a derived type 3.4
END-.OP..PILE (input-output function) overloaded 8.3 .,

In an Instance of direoUo 14.2.4: 14.2.5 renamed as a function 8111
In an Instance of oaqvantilaJo 114.2.2; 14.2.3 representation 13.3
In textic 14,3.311, 14.3. i0

END-OFLINE ltaxLio function) 14.3.4: 14.3.10 Enumeration literal specification 3.5.1
raising an exceptiun 114,4 as part of a basic deolaration 3.

* ,made directly visible by a use clause 8,4
END.0F..PAOE (teeLlo function) 14.$.4: 14.3.10, 14,4

Enumeration representation clause 113.
Entry (of a task) 9.5: 9, 9.2, D as a representation clause 113,1

less also: actual parameter, address attribute, all~bt of...
formal parameter, Interrupt entry, overloading of..., Enumeration type 3.5.1; 3.3, 3.5, D
parameter and result type profile, parameter, subprogram) seve also: discrete type, scalar type)

deciared by instantiatIon of a generlc formal 15 a character type 3.5.2
parameter 12.31 as a generic formal type 12,11.2
deoooted by an Indexed component 4.1,1.1 as a generic parameter 12.3.3
denoted by a selected component 4,1,3 boolean 3.5.3
neme [see: name of an entry] operation 3.5,5
name starting with a prefix 4.11
of a derived task type 3.4 Enumeration type definition 3.51: 3.3.1
of a task designated by an object of a task type 9.5 Jsee also: elaboration of ...)I
renamned 8.5
subject to an address clause 13.5, 13.5.1 INUMERATION-10l (taxLilo Inner generic package) 14.3.9;
subject to a representation ciause 13.1 14.3.10

Entry call 9.5; 9, 9.7.1, 9.7.2, 9,7.3 Environment of a program 10.4
Ise* also: actual Parameter, conditional entry call, sub- environment task calling the main program 10.1

i-i 1 E/eboratlon-.c/ieck 0 Envlronment

ANSI/MIL-STD-1815A Ada Reference Manual

EPSILON (predefined attribute) 3.5.8; A of the bounds of a loop parameter 5.5
of the conditions of a selective wait 9,7.1

Equal
character 2.1 Evaluation order
delimiter 2.2 Isa.: order of evaluation)

EaualitV operator 4,5; 4.5.2 Exception 11; 1.6, D
lose also: limited type, relational operator) [see also: constrainLerror, numeric-error, predefined

Axplicitly declared 4.4.2, 6.7: 7,4,4 program-errur, raise statement, raising of ,,, storageoerror,
for an access type 3.8.2 tasking-error, time.error,

. for an array type 3,6,2 causing a loop to be exited 5.5
- for a generic formal type 12.1.2 causing a transfer of control 5.1

for a limited type 4.5.2, 7.4.4 due to an expression evaluated at compile time -
for a real type 4.6.7 10.6 "
for a record type 3.7.4 Implicitly declared In a generic Instantlation 11,1

in Input-output 14.4; 14.6
Erroneous execution 1.0 renamed 8,5

leee also: programoerror] suppress progma 11,7
due to an access to a deallocsted object 13,10.1 s s a1
due to an unchecked converlion violating properties Exceptlon choice 11.2
of objects of the result type 13.10.2
due to assignment to a shared variable 9,11 Exception declaration 11.1: 11
due to changing of a discrImInant value 5.2, 6.2 as a basic declaration 3,1
due to dependence on parameter-passing
mechanism 6,2 Exception handler 11.2: D
due to multiple address clauses for overlaid entitles In an abnormal task 9.10
13., In a block statement 5,6
due to supprencion of an exception check 11,7 In a package body 7,1: 7,3
due to use of an undefined value 3.2.1 In a subprogram body ,3

in a task body 9, 1
Error bounds of a predefined operation of a reel type 3,5.9, including a raise statement 11,3 , .L

4,,7; 3.5.6, 3,5,7 Including the destination of a goto statement 5.9
Including the name of an exception 111.1

Error detected at not allowed in a code procedure body 13.8
compilation time 1.6 raising an exception 11,4,1
run time 1,6 selected to handle an exception 11.4,1: 11.6

Error situation 1.,6 11, 11.1; 11.6 Exception handling 11.4; 11,4,1, 1,4.2, 11. 5

Error that may not be detected 1.e Exception propagation 11
delayed by a dependent task 11.4.1

Evalualton (of in expreslion) 4.x; o from a declaration 11,4.2
(see also: compile time evaluation, expression) from a predefined operation 11,6

at compile time 4.9, 10.6 from a statement 11,4,1
of an actual parameter 0.4,1 to a communicating talk 11.5
of an aggregate 4.3: 3.3.3
of an allocator 4.8 Exception raised during execution or elaboratlon of
of an array aggregate 4,3,2 an accept statement 11.5
of a condition 5.3, B,5, 5,7, 9,7.1 an allocator of a task 9,3
of a default expression 3,7.2 a conditional entry 9.7,2
of a default expression for a formal parameter 8,4.2: a declaratIon 11,4,2: 11.4
6.1 a declarative part that declares tasks 9.3
of a discrete range 3,5; 9,5 a generic InstantiatIon 12.3.1, 12.3.2, 12.3.4,
of a discrete range used in an index constraint 3.6,1 12.3.5
of an entry Index 9,5 a selective wait 9,7.1
of an expression In an assignment statement 5,2 a statement 114.11: 11,4 %
of an expression In a constraint 3,3.2 a subprogram call 6.3; 6.2, 6,5
of an expression In a generic actual parameter 12,3 a task 11,5
of en Indexed component 4.1.1 a timed entry call 9.7.3
of an initial value (see: default expression) toak activation 9,3
of a literal 4.2; 3,3.3
of a logical operation 4,5.1 Exceptins avd optimis!ion 11.0
of name 4,1; 4,1,1, 4.1,2, 4.1.3, 4.1.4 En a
of a name in an abort statement 9.10 Eclaomation charactee 2.1 .
of a name In a renaming declaration 815 replacing vertical bar 2,10
of a name of a variable 5.2, 0.4.1. 12.3
of a primary 4.4 Exclusive disjunction
of a qualified expression 4,7; 4.8 (see: logical operatorl
of a range 3,5
of a record aggregate 4.3.1 Execution
of a short circuit control form 4,5.1 Ieee: sequence of statements, statement, task body, task) I -0
of a static expression 4,9
of a type conversion 4.6 Exit statement 8,7
of a universal expression 4,10 Ieee also: statement]

Epstlon 0 Exit statement 1-12

*'' % . . ,., . .. , b. . La .. 2. t- u1. . a -. a a, . a

Index

as a simple statement 5,1 in a return statement 5,8
causing a loop to be exited 5.5 in a specification of a derived subprogram 3.4
causing a tvansfer of control 5.1 In a type conversion 8,7
completing block statement execution 9.4 Including the name of a private type 7,41

specifying an entry In a family 4.1.1
Expanded name 4.1.3; D specifying the value of an Index 4,1,1

denoting a loop 5,5 with a boolean result 45,11, 4.5,2, 4.5.8
In a static expression 4.9
of a parent unit 10.2 Extended.digit in a based literal 2,4.2
replacing a simple name 8,3,1 Etnli.4External file 14.1 ',

Explicit conversion 4.6 (see also: fiele
Isse also: conversion operation, implicit conversion, sub-
type conversion, type conversion]

from universal-fixed type 4.5.5
to a real type 4,5.7 Factor 4.4

Explicit declaration 3.1: 4.1 In a term 4.4
see also: declaratiotn] FALSE boolean enumeration literal 3.5.3; C

"Explicit Initialization
[see: allocator, object declaration, qualified expreosloni Family of entries

(see: entry family)
' "iExponent of a floating point number 3.5.71 13,1.3 FIELD Ipredeflned Integer subtype) 14.3.5: 14.3.7, 14.3.10

Exponent part F (o
in output of real values 14,3.8 File object of a file typel 14.1
of a based literal 2,4.1, 2.4,2 (see also: external file)
of a decimal literal 2,4.1

File management 14.2.1
Exponentiatlng operator 4.5: 4.5,. in texLlo 14.3.1 4

fee also: highest precedence operator) F e a 1 4 4 , 13 3
In a factor 4,4 File terminator 14.3. 14,3.19 14.3,4, 14.3.5, 14,16, 14.3.,9
overloaded 8,7 14,18. 14,3.9

Exponentiation compound delimiter 2,2 FILE-MODE (input-output typo)
leae also: double star compound delimitert In an Instance of dlreeolo 14,1, 114.2,1: 14.2.5

in an Instance of sequential-lo 4.1, 14.2,1:14-2,3
Exponentiation operation 4.$,6 In texLlo 14,1, 14.2.1: 14.3.10

Expreselon 4.4: D FILE-TYPE (input-output type)
faee also: compile time evaluation, default expression, in an Instance of dlrecL.io 14,1, 14,2,1: 14,2,
delay expression, evaluation, qualified expression, simple 1412,4, 14.2.5
expression, static expression, universal type expressionl in an Instance of sequenthllalo 14,1, 14.2.1: 14,2,as an actual parameter 6.4, 6,4,1 14,22, 14,2.3

as a condition U In texLlo 14.1, 114,2.1: 14,2, 14.3,3, 14.3.4,

as a generic actual parameter 12.3: 12,3.1 14,31, 14,3.7, 14.3.8, 14,3.9, 14.3.10 .. ,-
as the argument of a pragme 2,8
in an actual parameter of a conditlonal entry call FINE-DELTA
97,2 Isee: system.fine.deltal
In an actual parame-ir of an entry call statement
9,5 FIRST ipredeflned attribute) A
in an actusi parameter of a timed entry call 9.7.3 Ieee also: bound)
in an allocator 4.8 for an access value 3,8.2
In an assignment statement U.2 for an array type 3,8.2
in an attribute designator 4,1,4 for a scalar type 3,5
In a case statement 5.4
in a choice in a case statement 5,4 First named subtype 13,1
In a component association 4.3 Ieee also: anonymous base type, representation clausa)
In a component declaration 3,7
In a constraint 3,3.2 FIRST-BIT Ipredeflned attribute) 13,7,2; A
In a conversion 4, [see also: record representation clause]

- In a dscrlminant association 3.7,2 ..
In a discriminant specifloatlon 3,1.1 Fixed accuracy definition 3.5.9
in a generic formal part 12,11
"in an Indexed component 4,1,1 Fixed point constraint 3.8.9; 3.5.0
In a length clause 13.2 on a derived subtype 3,4
in a name of a variable 5.2, 6,4,1.12,3
in a number declaration 3,2 Fixed point predefined type 3.5.9
"In an object declaration 3.2, 3.2.1
in a parameter specification 6.1 Fixed point type 3.5.9; 0
In a primary 4,4 [see also: basic operation of.... duration, numeric type,
In a qualified expression 4.7 operation of.... real type, scalar type, small,
"in a representation clause 13,1 system.flne-delta, systemmax._mantissai

1-13 Expanded name 0 Fixed point type

ANSI/MIL-STD-1815A Ada Reference Manual

accuracy of an operation 4.5.7
as a generic actual type 12.3.3 Fra at61 .as a generic formal type 12..2 Isee also: generic fc~rmal part, parameter type profile]as a generic formal type 12.1.2

error bounds 4.5.7: 3.5. conforming to another 6.3.1

operation 3.5.10: 4.5.3, 4.54, 4.5 in an accept s~stoment 9.5

result of an operation out of rangs of the type 4.51 i7 an entry declaration 9,5
in a subprogram specification 6.1

FIXED_.lO (text..Jo inner generic package) 14,3.8:14.3,10 must not inciude a pragma 2.5
Formal subprogram ! i

FLOAT (predefined type) 3.5.7; C F ormal subprogram

FLOAT-1O (text-lo inner generic package) 14.3.8:14.3,10 I ormal tubprog:aml
Formal type

Floating accuracy definition 3.5.7 Iee: generic formal type,
Format effector 2.1 "

Floating pcoint constraint 3.5.7; 3,15.6 omtetco .losee also: carriage return, form feed, horizontal tabulation,
on a derived subtype 3.4 line feed, vertical tabulation)

as a separator 2.2 -:"
Floating point predefined type is a epaaor 2.2

Ilas: FLOAT, LONG-FLOAT, SHORT-FLOAT] in In end of le 2.2."

Floating point type 3.5.7: eFormat of text.lo input or output 14.3.5, 14.3.7, 14.3,8,

lsee also: numeric type, real type, scalar type, 14,3.9
mystem.maewdigitsl S",' ~Formula *

accuracy of an operation 4,5,7 ermu a
as a generic actual type 12,3,3 s e si
as a generic formal type 12,1,2 Fa 11',.,',Frame 111.2
error bounds 4,56.; 3,5,6
operation 3,5,8; 4.5,3, 4,5,4, 4.5,5, 4,5.0 and optimixation 11.6.'•',in which ant exception Is relised 11,4,1, 1114.2'
result of an operation out of range of the type 4,5,7 i c eo s 1 1

"Font design of graphical symbols 2.1 Full declarationof a deferred constant 7,4.3
,=. ,.For loop"Is*@: loop Ptatementl Full type declaration 3.3.1

iee:lopstteen)dlscrlmlnant part Is not elaborated 3,3,11
• j• ,.",of an Incomplete type 3.8.1"""

Forcing occurrence (of a name leading to default determina- of a limited private type 734.4
tion of representation) 13.1 of a private typ e 7.4,1; 7.4,42

FORE (predefined attributel for a fixed point type 3.5,10; A, Function 6.1, 6.5; 6. 12.3, D

ri t i r p 14 4lsIe also: operator, parameter and result type profile,'•" : ~Fort field of ttxtLio Input or output 14.3.111, 14.3.10: 1413,.5 .
parameter, predefined function, result subtype, returnS• ~~statement, subprogram) :"

FORM (input-output funotion) ste, pra•' ~as a main program 10.1.!
in an instance of dlrectiJo 14.2,1; 14,2.51asmai pg 10.1
in an Instance of sequentlel-o 14.2,1, 14,2,3 r
in text-lo 14,2,1: 14,3.10 result lese: returned value)
raising en exception 14,4 that is an attribute 4.1,4; 12.3.6

Form feed format effector 2.1 Function body
F e elaoe: subprogram bodYl

Form string of a file 14,1: 14.2,1, 14.2,3, 14,2.5, 14.3,10 FFunction celil 6,4 6.,

Formal object [see also: actual parameter, subprogram call)

liee: generic formal object) as a prefix 4,, 4.1,3
as a primary 4.4 4.

Formal paronseter 0,1; D: (of an entry) 9,5: 3.2, 3,211; (of a in a static expression 4.9
function) 6.5: lof an operator) 6.7; (of a subprogram) 6.1, with a parameter of a derived type 3.4
6.2, 6.4: 3.2, 3,2.1, 8,3 with a result of a derived type 3.4

lse also: actual parameter, default expression, entry,
generic formal parameter, mode, object, subprogram] Igoe: subprogram spncifto ationl

so a constant 3,2.1
es an object 3.2
as a variable 3,2.1
names and overload resolution 6.6
of a derived subprogram 3.4
of a generic formal subprogram 12.1, 12.1.3 Garbage collection 4,8
of a main program 10.1 "'
of amin operaiona 13, Generic actual object 12.3.1; 12.1,1
ofIge also: generic actual parameter)
of a renamed entry or subprogram 6.5
whose type is an rtray type 3.461 Generic actual parameter 12.3; 12
whose type Is a limited type 7,44 [see also: generic actual object, generic actual sub-
whose type is a record type 3,7.2 program, generic actual type, generic association, generic

formal parameter, generic Instantlation, matching]

FIxed.Jo * Generic actual parameter 1-14

...I

Index

cannot be a universal-fixed operation 445,5 Igee alsa: generic formal parameter)
for a generic formal access type 12.3,5 formal function 12.1,3
for a generic formal array type 12.3.4 with the same name as another 12,3
for a generic formal object 12,11,11
for a generic formal privete type 12.3.2 Generic formal type 12.1. 12.1,2: 12.3
for a generic formal scalar type 12.3.3 (see also! constraint on.,, discrimInant of..., generic formal
for a generic formal subprogram 12,113; 12.3.8 parameter, subtype Indication...)
for a generic formal type 12.1.2 as Index or component type of a generic formal
Is not static 4.9 array type 12.3.4
that Is an array aggregate 4,32 formal access type 12.1.2, 12.3.6
that Is a loop parameter 5.5 formal array type 12.12, 12.3.4
that Is a task type 9.2 formal array type (constrained) 112.12

. I formal discrete type 12.1.2
formal enumeration type 121.2

Generic actual part 112,3 formal fixed point type 12.1.2
lsubprogram 12,1.3, 12,3. formal floating point type 12,1.2

%Generic actual sbrga12,.31.36formal Integer type 12.1.2
sies alsa: generic actual parameter) formal limited private type 12.3.2

formal limited type 12.1,2
Generic actual type formal part 12.1,2

l ase: gatmoric actual parameter) formal private type 12,1. 2, 12,3.2
for a generic formal access type 12,3.5 formal private type with d1i2.mi,2ants 12.3,2
for a generic formal array type 12,3.4 formal scalar type 12w1m2, 1213.3
for a generic formal soler type 12,313 f cr 1 2
for a generic formal type with dlaCriminante 12.3,2 Generic function
for a generic private formal type 12,3,2 lies: generic subprogram)
that Is a private type 7.4,1

eneri associatio12.3Generic instance 12.3: 12, 12,1, 12.2, D
ses also: generic actual parameter, generic formalof...
parameter, generic asi 2 inilned In place of each call .32
pa named of a generic package 12,3

named generic association 12.3 of a generic subprogram 123named generic association for selective visibility 8.3 riiga xeto 11iii•'

positional generic association '12.3
Generic body 12.2:12.1, 12.1,2,12,3,2 lGeneric instantlation 12.3: 12,11, 12.1.3, 12.2, D

(see also: body stub, elaboration of...) lame also: declaration, lasboration of-, generic actualS~parameter)
In a package body 7.1 pa rameter
including an exception handler 11,2: 11 as a basic declaration 3,1
including an exit statement 5,7 as a later declarative item 3,9 ,as a library unit 10,1Including a gitl statement 5.9 before elaboration of the body 3.9, 111,11
Including an Implect declaration 5r1 Implicitly declaring an exception 11.1
must be In the same declarative raglan so the invoking an operation of a generic actual type 12.1,2declaration 3.9, 7,1 of a predefined input-output package 14.1
riot yet elaborated at an Instantiation 3,9 recompiled 10.3

Generic delaboration 12.,112, 12.2,12with a formal access type 12,315
with a formal array typo 12.3.4ls also: elaboration ofr...) wito a f- s p

and body as a declarative region 8.1 with a formal subprogram y 12,3.3
and proper body In the same compilation 10,3
as a basic declaratiun 3.1
as a later declarative item 3.9 Generic package 12.1; 12
as a library unit 10.1 for Input-output 14•""in a package sp•ecification 7,1!o nu-upt1
n a k Instantlation 12.3; 12, 12.1 [eas aleo: genericrecompiled 10,3 InstantlationJ.

"Generic formal object 12.1, 12.1,1; 3.2, 12,3, 12,3.1 specification 12.1 laee also: generic specification)
leea also: default expresaion, generic formal parameter) Generic pselaga body 12,2; 12,1

of an array type 3.7.1 lasg also: package body)

Generic parameter declaration 12,1: 12.1.1, 12,1.2, 12.1.3,
Generic formal parameter 12., 12.3; 12, D12,3

"lsse also: generic actual parameter, generic association, lsea also: generic formal parameter)
generic formal object, generic formal subprogram, generic ti a declarative region 8.1
tormal type, matching, object) having an extended ticops 8.2

*as a constant 31.211 visibility 8.3
* as a variable 3.2.1

of a limited type 7.4.4 Generic procedure
of a tack type 9,2 isee: generic subprogram)

"Generic formal part 12,1; 12, D Generic specification 12.1; 12.3.2 "0
Igoe also: generic package specification, generic sub-

*•'•;; Generic formal subprogram 12.1, 12.1.3: 12,1.2, 12.3, program specification)
12.3.6

1-15 Generic actual part 0 Generic specification

ANSI/MIL-STD-1815A Ada Reference Manual
*,0

Generic subprogram 12.1; 12 of a subprogram &6

body 12.2; 12.1 (see also: subprogram body] of or by a derived subprogram 3.4
Instantliation 12.3: 12, 12.1 [ase also: generic of the package standard 10.1
Instantlatonil within a subunit 10,2
interface pragms Is not defined 13,9
specification 12,1 esse also: generic specIflctlonl Highest precedence operator 4.5

(see also: &be, arithmetic operator, oxponentiating .
Generic type definition 12.1; 12.1,2, 12,3,3, 12.3,4 operator, not unary operator, overloading of an operator,

predefined operetorl
Gonasc unit 12, 12.1; 12,2, 12,3, D as an operation of a discrete type 3.5,5

(see also: generic declaration, program uniti as an operation of a fixed point type 3,5.10
including an exception declaration 11.1 as an operation of a floating point type 358
Including a raise statement 11.3 overloaded 6,7
subject to a suppress pragma 11,7 0
with a separately compiled body 10,2 somograph (declaration) 8.3loee also: overloading), --

Geeric unit body and use clauses 8.4
(see: generic body) Horlsontal tabuistion

Generic unit specifloiaton as a separator 2,2
lsee: generic specificationi character In a comment 2.7

format effector 2,1
GET (t*xL.io procedure) 14.3,5 14.3, 14,3,2, 14,3.4, in textio input 14,3.5
14.3. 0

for character and string types 14,3,6 Hyphen character 2,1
for enumeration types 14,3,9 (see also: minus character'
for integer types 14.3.7 starting a comment 2,7
for real types 14.3,8
raising an exception 14,4

GET-LINE Itext-lo procedure) 14.3.6: 14,3,10
Global declaration 3.1 Identifier 2.3: 2,2

of a variable shared by tasks 9,11 leee also: direct visibility, loop parameter, name,
overloading of,,,, scope of,,,, simple name, visibility)

Gete statement 5,9 and an adjacent separator 2,2
(see also: statement) as an attribute designator 4.1.4

as a simple statement 6,1 as a designator 6,1
causing a loop to be exited 5.5 as a reserved word 2,9
causing a transfer of control 5.1 as a simple name 4,1
completing block statement execution F.4 can be written In the basic character set 2.10

denoting an object 3.2,1
Graphic character 2.1 denoting a value 32,12

late also: basic graphic character, character, lower cole In a deferred constant declaration 7,4,3
letter, other special character) In an entry declaration 9,1

In a character literal 2,5 in an exception declaration 11,1
In a string literal 2.6 In a generic Instantlation 12.3It, an incomplete type declarotlon 3.8,1

Graphieal symbol 2.1 In a number declaration 3,2,2
lise also: ascii! In an object declaration 3,2not available 2,10 in a package specification 7,11

In a private type declaration 7.4; 7.4.1
Greater than In a renaming declaration 8,5

character 2,1 In a subprogram specifloction .1
delimiter 2,2 In a task specification 9,1 1.
operator lsee: relatlonal operator] In a type declaration 33.1: 7.41

In Its own declaration 8,3
Greater then or equal In p~agma system-name 13,7

compound delimiter 2,2 of an argument of a pragma 2,8
operator [see: relational operator) of an enumeration value 3,5,1

of a formal parameter of a generic formal sub-
program 12,1,3
of a generic formal object 12,1, 12,1A .
of a generic formal subprogram 12,1; 12.1,3

Handler of a generic formal type 12,1: 121,2
(see: exception handler, exception handling) of a generic unit 12,1

of a library unit 10,1
Hiding lof a declarationi 1,3 of a pragma 2 8

[see also: visibility! of a subprogram 0,1
said renaming 8,5 of a subtype 3.3.2
and use clauses 8,4 of a subunit 10,2
due to an Implicit d,,loratlon 8,1 of homograph derilaratlons 8,3 7
of a generic unit 12,1 overloaded 8,8
of a Ilhrary unit 10,1 versus simple name 3.1

Generic subprogram 0 Ident/fier 1-16

".' " * " "1' ' * * ' i " " "

Index

Identifier list 3.2 Incompatibility (of constraints)
in a component declaration 3.7 [see: compatibilityl
In a deferred constant declaration 7.4
in a dliscriminant specification 3.7,1 Incomplete type 3.8.1
in a generic parameter declaration for generic for- corresponding full type declaration 3,3,1
meal objects 12.1
in A number declaration 3,2 Incomplete type declaration 3.8.1; 3.3.1, 7.4.1
in an object declaration 3.2 as a portion of a declarative region 8,1 ' .

Sin a parameter specification 6.1
Incorrect order dependence 1.6

Identity operation 4.5.4 [see lso: program error]
assignment statement 5.2

If statement 5.3 bounds of a range constraint 3.5
[see also: statement] component association of an array aggrsgate 4.3.2

as a compound statement 5,1 component association of a record aggregate 4,3.1 '9
component subtype Indlcation 3.,6

Illegal 1.6 default expression for a component 3.2.1
default expression for a dlecrlmlnant 3.2,1

IMAGE (predeflned attribute) 3.5.5; A expression 4,6
Index constraint 3.6

Immediate scope 8.2; 8,3 libray unit 10.5
parameter association 6,4

Immediately within (a declarative region) prefix and discrete range of a Wlice 4,1.2
[see: occur Immediately within]

Index 3.6; D
Implementation defined lase also: array, discrete tvi'o, entry Index]

[see: system dependent)
INDEX (input-output function)

Implementation defined pragma F In an instance of direc~lo 14,2.4; 14.2.6

Implementation dependent Index constraint 3,6, 3.6.1; D
[Bee: system dependent) [see also: dependence on a dIscrimInent.

ignored due to Index.check suppression 11,7
Implicit conversion 4,6 In an allocator 4,8

[see also: conversion operbtlon, explicit Ponversion, sub- In a constrained array definition 3,6
type conversion] in a subtype Indication 3.3.2 I,, -

of an Integer literal to an Integer type 3.5.4 on an access type 3.8
of a real literal to a real type 3.5.6 violated 11,1
of a universal expression 3.5.4, 3.5,6 Index of an element In a direct access file 142; 14.2.4
of a universal real expression 4.5.7

1 Implicit declaration 3,1; 4.1 Index range 3.6
," - ~~matching 4452".",

"([ee also: scope of...) matc'ng.,,,
by a type declaration 4,5' ".'Index subtype 3,6
hidden by an explicit declaration 8.3 Ine utp .
of a basic operation 3.1, 3,3,3
of a block name, loop name, or label 6.1; 3.1 Index subtype definition 3.6

of a derived subprogram 3.3,3, 3i4ndex typeI•..,of an enumeration literal 33.3,
.- of an enumeratnlityoeralr ,33 of a choice In an array aggregate 4.3.2
of an equality operator 6.7
of en exception due to an Instantlation 11.1 of a generic formal array type 12.3.4

of a library unit 8.6, 10.1 Indox-chock "..'-
of a predefined operator 4,5 le co n o p
of universal-fixed operators 455 [sae: constraint"rror, suppress]

Implicit Initialization of an object Indexed .iomponent 4.1.1; 3.6, D
I[see: allocator, defauit Initial valuel •n a basic operation 3,313; 3.3, 3.6.2, 3.8.2as a name 4,1

Implicit representation clause as the name of an entry 9.5
for a derived type 3,4 of a value of a generic formal array type 12.1.2

Indication
"In membership test [see: cubtype Indication'i

lose: membership test]
Inequality compound delimiter 2.2 .

"In mode
lase: mode in) Inequality operator 4.5; 4.5,2

lsee also: limited type, relational opersatri
In out mode cannot be explicitly declared 6.7

"[see: mode in out] for an access type 3.8,2
for an array type 3.6.2

IN-FILE (input-putout file mode enumeration literal) 14.1 for a generic formal type 12.1.2
for a real type 4.5.7 .

SInclusive disjunction for a record type 3.7.4

"seee: logical operator] not available for a limited type 7.4.4

1-17 Identifler list e hnequallry operator

,

ANSI/M14.-STD-B185A Ada Reference Manual

Initial value (of an object) 3,2.1 Integer type definition 3.5.4: 3.3.1
lose alsowallocator, composite type, default expression, [see also: elaboration of..

defa lt Iitil vauedefault Initialization)
In an mllocator 4.8: 3.8, 7.4.4 Integer type expression
of an array object 3.6.1 In a length clause 13.2
of a constant 3,2.1 In a record representation clause 13.4Iof a constant In a static expression 4.9
of a discrImInant of a formal parameter 8.2 INTEGER-10 (text-io Inner generic package) 14.3.6: 14.3, 10
of a discriminant of an object 3.7.2
of a limited private type object 7.44
of arn object declared in a package 7,1 INTERFACE (predefined pragma) 13.9; 8
of an out mode formal parameter 0.2

7.of a record object 3.7,2 Interface to other languages 113.911

Initialization Interrupt 1J.15
[see: assignment, default expression, default Initialization,
Initial value) Interrupt entry 13.5,1

[see also: address attribute)
INLINE (predefined pragma) 6.3.2; 8

creating recompilation dependence 10.3 Interrupt queue
*)nee: entry queue)

INOUT-.FILE (Input-output file-mode enumeration literal)I14.1 10-EXCEPTIONS (predefined input-output pasckage) 14.4;
14, 14.1, 114.2.3, 14.2.5, M 3.10, C

In put-output 14 specification 14,5
lass also: directico, io..exceptlons, low-ieveL-lo, saquen-
tial-...o, textLo) 1S..-OPE N (input-output function)

at device level 14,6 in an Instance of directlia 14.2,1: 14.2.5
exceptions 14,4; 14,5 in an Instance of sequentlsl-io 14,2,1, 14,2.3
with a direct access tile 1 4.2.4 in text-lo 14,2,1; 14.3,10
with a sequential file 14.2.2
with a text file 14.3 IS0 (international organization for standardization) 2.1

Instance IS0 seven bit coded character set 2.1
4 [see: generic Inetance1

Item
instentiation Isee: basic declarative Item, later declarative Item)

loee: generic instantiation)
Iteration scheme 5.5

INTEGER (predefined type) 3.5,4; C losee also: discrete type)
o,' base type of a loop parameter 5.5
as default typa for the bounds of a discrete range

3..:9.5

Integer literal 2.4 Label 5.1
lass also: baised Integer Iltetal, universal..Inleger type) Isee also: address attribute, name, statement)

as a bound of a discrete rne95declaration 6,1 ~4_ ~
as a unIversal-intecier literal 3454 Implicitly declared 3.1
In based notation d.,.4,2 target of a got* statement 5.9
in decimal notation 2.4.1

Label bi-,r.Net
Integer ppirt compound delimiter 2.2

aE base of a b~sed literal 2.4.2
of a decimal literal 2.4.1 Lsbe'ee$ 3tatem~ý!- 5.1

In a code statement 13.8
Integer predefined type 3.5.4

(rae also: INTEGER, LONG-INTEGER, SHORT...ITEOER(I LARCE (predefined attribute) 3.5.81, 3.5.10; A

Integer subtype LAST (predefined attribute) A
lsne: priority] leee al'ro: bound)

due to an Integer type definition 3,5.4 for dn access value 3.8.2
for an array type 3.6,2

Integer type 3.5.4; 3.3, 3.5, D for a sclalr type 3.5
Isea also: discrete type, numeric type, predefined type,
scalar type, system~max-int, system.mln-..nt, univer- LAST-SBIT (predefined attribute) 13.7.2; A
sal-integer type) (sees also: record representation clause)

as a generic formal type 12.1.2
as a generic parameter 123.33 Later declarative Item 3.9
operation 3.5.15; 4.5.3, 45,54, 4.5.5, 4.5.13
result of a conversion from a numeric type 4.6 Layout recommended
result of an operation out of range of the type 4.8 lsees: paragraphing reconmmended]

Integer type declaration LAYOUT-ERROR (Input-output exception) 14.4; 14,3.4,
(see: Integer type definition) 14.3.5, 14.3.7, 14.3.8, 14.3.9, 14,3.10, 14.5

Initial value * Layout-.e rror18

Index

Loading taro@ In a numeric literal 2.4.1 that Is a package 7.1 :"":•
visibility due to a with clause 8,3

Left label bracket compound delimiter 2.2 whose name Is needed In a compilation unit 10.1,1
with a body stub 10.2

Left parenthesis Limited private type 7.4.4
character 2.1 [see also: private typal
delimiter 2.2 as a generic actual type 12,3.2

as a generic formal type 121,2* Legal 1.6
Limited type 7.4.4: 9.2, 12.3.1, D

LENGTH (predefined attribute) 3,6.2; A [see also: assignment, equality operator, Inequalityfor an acCe-s value 3,8,2 operator, predafinad operator, task typea
as a full type 7.4.1Length clause 13.2 component of a record 3.7

as a representation clause 13.1 generic formal object 12.1.1
for an access type 4.8 In an object declaration 3.2.1
specifying small of a fixed point type 13.2: 3,5.9 limited record type 3,7.4

operation 7,4.4; 4.5.2Length of a string literas 2.6 parameters for explicitly declared equality operators

6.7Length of the result
of an array comparlxnn 4,5.1 Line 143, 14.3...
of an array logical nugation 4.516 Le4 1.
of a catenation 4,5,3 LINE (taxt-lo function) 14.3,4; 14,3.10

raising an exception 14.4Length-.check
lees: constraint-error, suppress) Line feed format effector 2.1

Lees then Line length 14.3, 14.3.3; 143.1, 14,3,4, 14.3.5, 14.3.6
character 2.1
delimiter 2.2 Line terminator 14.3:14.3.4, 14.3.5, 14.3.8, 143,7, 14.3.8,
operator [see: relational operator] 1413,9

Less then or equal LINE-LENGTH (text-lo function) 14.3.3. 14.3-4; 14,3,
compound delimiter 2.2 14,3,10 ttof i) 3-31 3
operator [see: relational operator] raising an exception 14,4

Letter 2.3 List
lsee also: lower case letter, upper case letter) iset: component list, Identifier-list,

e or E in a decimal literal 2.4.1 a o , r
In a based literal 2.4,2 LIST Ipredefined pragma) "
in an identifier 2,3

Listing of program text
Letter.or.digit 2.3 [see: list pragma, page pragma]

Lexical element 2, 2.2: 2,4, 2.5, 2.6, D Literal 4.2: D
as a point In the program text 8.3 [see also: based literal, character literal, decimal literal,In a conforming construct 8,3.1 enumeration literal, Integer liltsal, null literal, numeric
transferred by a text.lo procedure 14.3, 14.3.5, literal, overloading of,,,, real literal, string literal]
14.3.9 as a basic operation 3,33

of a derived type 3.4Lexicographic order 4.5.2 of universal-integer type 3.5.4
of universal-real type 3,5.6

Library package specification [see: onumeration literal specification)
(ase: library unit, packages

having dependent tasks 9.4 Local declaration 8.1
Library package body in a generic unit 12,3

[e:Library unt package body)(see: library unit, package body] Logical negation operation 4.5.0"' '
raicing an exception 11.4.1, 11.4.2 L ero

ibrary unit 10.1; 10.5 Logical operation 4.5.1

[see also: compilation unit, predefined package, predefined Logical operator 4.5: 4.4, 4.5.1, C
subprogram, program unit, secondary unit, standard (see also: overloading of an operator, predefined operator) .
predefined package, subunit] as an operation of boolean type 3.5.5

compiled before the corresponding body 10,3 for an array type 3,8.2
followed by an Inline pragma 6.3.2 in an expression 4.4
Inciuded in the oredefined package standard 9.6 overloaded 6,7
must not be subject to an address clause 13.5
named In a use clause 10,5 Logical processor 9
named In a with clause 10.1 1: 10.3, 10.5 L r
recomplled 10.3 LONGFLOAT (prtbdeflned type) 345.7: C
scope 8.2
subject to an Interface pregme 13,9 LONG.INTEGER (predefined type) 3.5.4; C

1-19 Leadhng zeros 0 Long-Integer

%.....

ANSII/MIL-STD-1815A Ada Reference Manual

Loop name 5.5 Master (task) 9.4
declaration 5.1
implicitly declared 3,1 Matching components
In an exit statement 5.7 of arrays 4.5,2; 4.5,1, 5,2.1

of records 4.5.2
Loop parameter 5.5

iees also: constant, object] Matching generic formal
as an object 3.2 and actual parameters 12,31

access type 12.3.5
Loop parameter specification 5.5 array type 12,3,4

Isee also: elaboration of...] default subprogram 123.86; 12,1.3
as an overload resolution context 8.7 object 12.3.1: 12.1.1
Is a declaration 3.1 private type 12.3.2

scaler type 12,3.3
Loop statement 5.5 subprogram 12.3.6; 12.1.3

ieee also: statement] type 12.3,2, 12.3.3, 12,3.4, 12.3.5; 12,1.2
as a compound statement 5.1
as a declarative region 8,1 Mathematically correct result of a numeric operation 4.5:
denoted by an expanded name 4,1,3 4.5,7
including an exit statement 5,7 .'.DITS

MAX-DIGITS ":

LOW-LEVELIO (predeflned Input-output package) 14.0: oeee: system,max-..dig its
14, C -A.N:,•: ~~MAX..INT ;;••

Lower bound lsee: systemmax.lnt"
slee: bound, first attribute]

MALMANTISSA
Lower case letter 2.1 (see: systemmaLxmantlssa",::!•: ~Ise* also: graphic charalctelr) .:ii

ia to In a based literal 2.4.2 Maximum line length 14.3
e In a decimal literal 2,4,1 A
in an identifier 2.3 Maximum page length 14.3

Membership test 4.4, 4.5.2
cannot be overloaded 6.7

Machine code insertion 13.0
Membership test operation 4.8

Machine dependent attribute 13.7.3 loee also: overloading of...,
Mcnas a basic operation 3,3.3: 3.3, 315.6, 35,.8, 3.5,10,
Machine rapresentation 3.6.2, 3,7,4, 3.8.2, 7.4.2

seoe: representation] for a real type 4.5.7

MACHINE-CODE (predefined package) 13.3: C MEMORY-SIZE (predefined named number)

MACHINEEMAX (predefined attribute) 13.7.3; 3.5.8, A system~memoiyji

MACHINEEMIN ipredefined attribute) 13.7.3: 35,8.. A MEMORY-SIZE (predafined pragma) 13.7: ,

MIN-INT
MACHINEMANTISSA (predefined attribute) 13.7.3; 3.5,8, loee: system~minilnt.
A

"Minimization of storage
MACHIN EOVERFLOWS (predefined attribute) 13.7.3; Isee: pack predefined pragma]
358, 3.5.10, A"'" "' Minus
MACHINE-RADIX (predefined attribute) 13.7.3; 3.5.8, A character [Meeu hyphen slaracter"

character in an exponent of a numeric literal 2.4.1
MACHINE-ROUNDS (predefined attribute) 13.7,3: 3.5.8, delimiter 2.2
Z.5. 10, A operator Ieee: binary adding operator, unary adding

Main program 10.1 operatorl

execution requiring elaboration of library lInits 10.5
"Included In the predefined package standard 8.6 Mod operator 4.5.5
Including a priority pragma 9,8 [see also: multiplying operator]
raising an exception 11.4.1, 11.4.2
termination 9A MODE (input-output function) "

in an instance of direc-LIo 14,2,1: 14.2.5
MANTISSA (predefined attribute) 3,5,1, 3.5.10; A in an Instance of sequentlal-lo 142,11; 14.2.3

in textlo 14.2.1; 14,3,3, 14.3.4, 14.3.10
Mantissa

of a fixed point number 3,5.9 Mode (of a file) 14,1: 14.2.1
of a floating point number 3.5,7; 1337.3 of a direct access file 14.2; 14.2.5

of a sequential access file 14.2: 14.2.3
"Mark of a text.Jo file 14.3.1; 14.3.4

saee: type markl

"Loop name 0 Mode 1-20

..,......... . , •i :•: , i "

I ndex

Mode (of a formal parameter) 6.2: 6.1, D Name (of in entity) 4.1; 2.3, 311, D
losee also: formal parameter, generic formal parameter) Isee also: attribute, block name, denote, designator,

of a formal parameter of a derived subprogram. 3.4 evaluation uf,.,. forcing occurrence, function call, Identifier,
of a formal parameter of a renamed entry or sub- Indexed component, label, loop name, loop parameter,
program 8.5 operator symbol, renaming declaration, selected compo-
of a generic formal object 12.1.1 nent, simple name, slice, type-.mark, visibility)

Mode In for a formal parameter 6.1,.0.2: 3.2.1 as a prfixar 4.1
of a function 6.5 as the argument of a pragma 2,6
of an Interrupt entry 13,5.1 as the aqpressian In a case statement 5.4

conflicts 8.b
Made In for a generic formal object 12.11.; 3.2.1, 12.3, declared by renaming Is not allowed as prefix of cer-
12.3.1 tain expanded names 4,113

declared In a generic unit 12.3
Mods In out for a formal parameter 65.1, 6.2: 3.2.1 denoting en entity 41

of a function Is not allowed 5,5 deniotin~g en abject designated by on access value
of an Interrupt entry Is not allowed 113.5,1 4.1

generated by att Implementation 13.4
Made In out forea generic formal objoct 12.11,11:3.2.1, 12.3, starting with a prefix 4.1; 4A.1,,4.1.2, 4.1.3, 4,1,4
12.3.1

Name string (of a file) 14.11:14.2.1, 14.2.3,114,21,514,3,
Mode out for a formal parameter 6.1, 6.2 14.3,10, 14,4

of a function Is not allowed 6.5
of an Interrupt entry Is not allowed 13.5.1 NAMFLERPOR (input-output exception) 114.4: 14.2.1,

14,2.3, 14.2.5, 14.3.10, 14.5
MODE-ERROR finput-output exception) 14.4: 142.22,
14,2.3, 14.2.4, 14.2.5, 14.3.1, 14.3.2, 14.3.3, 14.3.4, Named association 61.4,2, D
14.3,5, 1141,310, 14.5 losee also: component association, discriminanst associa-

tlon, generic Association, parameter association]
Model Interval of a subtype 4.5.7

Named block statement
Model number (of a reel type) 3.5.6; D (see: block name] ,!,a

(see also: real type, safe number]
accuracy of a real operation 4.6.1 Named loop statement
of a fixed point type 3459; 3.5.10 Iseee: loop name)
of a floating point type 3.5.7; 3.5.8

Named number 3.2; 3,2.2
Modulus operation 4.5.5 as art entity 3.1

as a primary 4,4
MONTH (predefined function) 0.6 In a static expression 4.9

Multidimensional array 3.6 NATURAL (predefined Integer subtype) C

Multiple Ngto
component declaration 3,7; 3.2 Nsegationia iotnoeain
deferred constant deolaestion 7.4, 3.2
diacriminant specification 3.7.1; 3.2 Negation operation (numeric) 4.5.4
gentilc parameter declaration i1l;1 3.2
number declaration 3.2.2: 3.2 Negative exponent
object declaration 3,2 In a numeric literal 2,41
parameter specification S.A; 3.2 to 3n expunentietion operator 4.5.0

Multiplication operation 4.5.8 NEW-LINE (tex~io procedure) 14.3.4; 14.3.5, 114.36,1,
accuracy for a real type 4.5.7 14.3.10

Multiplying operator 4.5: 4.5.5, Crasnanecpin1.
loss also: arithmetic operator, overloading of an operator] NEW-.PAGE Itex.t-o procedure) 14.11.4; 14.3.10

In a term 4,4 raising en exception 14.4
overloaded 0.7

No other effect
Must (legality requirement) 1.0 (&see: elaboration lies no other effect)

Mutually recoursive types 3.8.1; 3,3.1 Not equal
compound dolimiter Ise@. Inequality compound
delimiterd
operator (see: relational operatorl

NAME (Input-output function) Not In membership test
In en Instance of dirsct-lo 114,2.1 (se: nmembership testi
In an Instance of sequantla~l-o 14.2,1 Ntuayoeao

in te~io 1.2.1see; highest precedence operator)

NAME (predefined type) As an operation of an array type 3.6.2 1
lsee: system~namel asa operation of boolean type 3.5.5

Inafactor 4.4

1-21 Mods 0 Not unary operator

ANSI/MIL-STD-1815A Ada Reference Manual

Not yet elaborated 3.9 not raised due to optimization 11.6
raised by a numeric operator 4.5

Null access value 3.8: 3.4, 4.2, 6.2, 11,1 raised by a predefined integer operation 3.5.4
lsee also: default Initial value of an access type object] raised by a real result out of range of the safe

causing constraint..error 4,1 numbers 4,5,7
not causing constraint-error 11,7 raised by a universal expression 4,10

raised by integer division remainder or modulus
Null array 3.6.1: 3.8 4.56

aggregate 4,3.2 raised due to a conversion out of range 3.5,4, 3.5.6
and relational operation 4,5.2
as an operand of a catenation 4.5.3

Null component list 3.7 Obect 3.2: 3,2,1, D

Null literal 3.8, 4.2 Igoe also: address attribute, allocator, collection, compo-
esle also: overloading of.,,I nent, constant, formal parameter, generic formal

as a basic operation 3.3.3; 3,8,2 parameter, initial value, loop parameter, size attribute,
as a primary 4,4 storage bits allocated, subcomponent, variablej .).

must not be the argument of a conversion 4,8 a an actual parameter 6,2
as a generic formal parameter 12,1.1

Null range 3.5 created by an allocator 4,8
as a choice of a variant part 3,7,3 created by elaboration of an object declaration 3.2,1
for a loop parameter 5,5 of an access type lsee: access type object)

of a file type (see: filel
Null record 3,7 of a task type liee: task object.

and relational opiration 4.5.2 renamed 8,5
subject to an address clause 13.5

Null slice 4.1,2 subject to a representation ciause 13,1
laie also: array type] subject to a suppress pragma 11.7

Null statement 5,1 Object declaration 3.2, 3.2.1 ..- A

loee also: statement Isea also: elaboration of..., generic parameter declaration]
as a simple statement 5.1 as a basic declaration 3,1

as a full declaration 7,4,3
Null string literal 2.0 Implied by a task declaration 9,1

in a package specification 7.1
Number of an array object 3.6.1

lies: based literal, decimal literal] of a record objeut 3,7,2
with a limited type 7,4.4

Number declaration 3.2, 3.2.2 with a took type 9,2: 9,3
as a basic declaration 3,1

Object designated
NUMBER-BASE (predefined Integer subtype) 14.3.7: by an access value 3.2, 3.8, 4,0; 4.1,3, 5,2, 9,2,
143.10 11,1 leae also: task object designated.,. I

by an access value denoted by a name 4,1
Numeric literal 2,4, 4.2: 2,2, 2,4.1, 2,4.2 by aln access-to-array type 3,6,1

lose also: universal type expression) by an access-to-record type 3,7,2
end an adjacent separator 2,2 by a generic formal access type value 12.3,5
as a basic operation 3,3,3
as a primary 4.4 Object module
at the parameter of value attribute 3,5.5 for a subprogram written In another language 13.9
as the result of image attribute 3.,55
assigned 5,2 Obsolete compilation unit (due o recomplaion) 10.3
can be written in the basic character set 2,10
in a co, orming construct 6,3,1 Occur immediately within (a declarative region) 1.1: 8.3,
in a static expression 4,9 8.4, 10,2
in pragma memory-elie 13,7
in pragma storage.unlt 13.7 Omitted parameter aseediaton for a subprogram cail 0.4,2

Numeric operation of a universal type 4.10 OPEN (input-output procedure)
in an instance of direoLlo 14-2.1: 14.1, 14.2.5

Numeric type 3.5 in an instance of sequential/o 14.2.1: 14.1, 14.2.3
lsee also: conversion, fixed point type, floating point type, In textio 14,2.1; 14,1, 14.3,1, 14,3,10
integer type, real type, scular type] ralsinp an exception 144

operation 4.5, 4,52, 4.5.3, 4.5.4, 415,5 4.5.8
Open alternative 9.7.1

Numeric type exprension jIge 8130. alternativel
In u length clause 13,2 accepting a conditional entry call 9,7.2

acc;epting a timed sintry call 9.7.3

Numeric value of a named number 3.2 a t a d t l 3
Open file 14.1

NUMERICEHROR (predefined exception) 11.1
Isee also: suppress pragmal Operation 3,3, 3.3.3: D

n0'r raised due to lost overflow conditions 13,7,3 Iges also: basic operation, direct visibility, operator,

Not yet elaborated 0 Operation 1-22

ýd ýA- 4- -, . 4 it. 4

index

predefined operation, visibility by selection, visibility) Order of compilation (of compilation units) 10.1, 10.3:
classification 3.3.3 10.1.1, 10.4
of an access type 3.8.2 creating recompilation dependence 10,3
of an array type 3.8.2
of a discrete type 3.5.5 Order of copying beck of out and In out formal parameters
of a fixed point type 3.5.10 6.4 ,.*

of a floating point type 3,5,8 9
of a generic actual type 12.1.2 Order of elaboration 3.9
of a generic formal type 12.1.2; 12.3 [see also: Incorrect order dependencel; (of compilation
of a limited type 7.4.4 unitsl 10.5: 10.1.1
of a private type 7.4.2; 7.4.1
of a record type 3.7.4 Order of evaluation 1.6
of a subtype 3.3 lane also: Incorrect order dependence)
of a subtype of a discrete type 3.5.D and exceptions 11.6
of a type 3.3 of conditiuns in an if statement 5,3
of a universal type 4.10 of default expressions for components 3.2.1
propagating an exception 11. of expressions and the name in an assignment
subject to a suppress pragma 11,7 statement 5,2

of operande In an expression 4,5
Operator 4.5: 4,4, C, D of parameter associations in a subroutlrn. olil 8.4

see also: binary adding operator, designator, exponen- of the bounds of a range 3,5
tilting operator, function, highest precedence operator, of the conditions in a selective %r:' 9.7.1
logical operator, multiplying operator, overloading of..., .
predefined operator, relational operator, unary adding Order of execution of statements 5,1 `7operator] losee aleso: Incorrect order deopendsncol i.',,as an operation 3,3,3 see also operation) s i tn

Implicitly declared 3,3.3 Ordering operator 4.5: 4.5.2
In on expression 4.4
in a static expression 4,9 Ordering relation 4.6.2
of a derived type 3.4 Isee also: relational operator)
of a generic actual type 12,1.2 for a real type 4,5,7
overloaded 6,7: 6,6 of an enumeration type preserved by a represents-
renamed 8,5 tion clause 13,3

of a scalar type 3,5
Operator declaration 0.1; 4,5, 6,7

Other effect
Operator symbol ,1 lsee: elaboration has no other affect)

lose also: direct visibility, overloading of ,,, scope of,.,,
visibility by selection, visibilityl Other special charecist 2.1

as a designator 6,1 ise also: grap•hc fhtracterl
as a designator In a function declaration 4,5
as a name 4,1 Others 3.7.3
before arrow compound delimiter 8.3 as a rhoice In an array aggregate 4.3,2
declared 3.1 ax a choice In a case statement alternative .4"
declared in a generic unit 12.3 as a choice In a component association 4,3
In a renaming declaration 8,5 as a choice In a record aggregate 4,3,1
In a selector 4.1.3 as a choice In a variant part 3.7.3
In a otatlc ixprseslori 4,9 as an exception choice 11.2 ...
not allowed as the designator of a library unit 10.1
of a generic formal function 12,113, 12.3
of homograph declarations 8.3
overloaded 6,7; 6.6 Out mode

lose: mode outl

4optimliation 10.6 OUT-FILE (input-output file mode enumeration literal) 14.1
lose also: optimize Overflow of real operations 4,5.1; 13.7.3

and exceptions 11,04,..7.13,7,3
OPTIMIZE ipredeflned prigms) 3 Overf8ow.check

(see: numerlo.error, suppress)
Or else control form

(see: short circuit control form] Overlapping scopes
Psse: hiding, ovarloadingl

Or operator Overlapping slices in array assignment 5.2.1
seve: logical operator)

Order Overlaying of objects or program units 13.5
(see: Lexicographic order) Overloading 8,3; D

Order not defined by the language slee also: designator, homograph declaration, identifier,Osee: incorrect order dependence) operator symbol, scope, simple name, subprogram,
visibilityl

Order of application of operators In an expression 4.5 and visibility 8,3
O r pio f r s a xs 4in an assignment statement 5.2

1-23 Operator * OverloadIng

ANS/IMIL-STD-185A Ads Reference Manual

in an expression 4,4 Including an Inline pragma 6.3.2
resolution 6,6 including an Interface pragma 13,9
resolution context 8.7 Including a representation clause 13.1
resolved by explicit qualification 4,7 Including a suppress pragma 11,7

Overloading of Page 14.3, 14.3.4
an aggregate 3,4 '
an allocator 4,8 PAGE (predefined pragms) 8
a declaration 8.3
a designator 6,6; 6.7 PAGE (texLlo functlon) 14.3.4; 14.3.10
an entry 9.5 raising an exception 14,4
an enumeration literal 3.5,1; 3,4
a generic formal subprogram 12.3 Page length 14.3, 14.3.3; 14.3.1, 14.3.4, 14,4
a generic unit 12.1
an identifier 6,8 Page terminator 14.3; 14.3,3, 14.3,4, 14.3.5
a library unit by a locally declared subprogram 10.1
a library unit by means of renaming 10.1 PAGE-LENGTH ltexLlo function) 14.3.3: 14.3.10
a literal 3.4 raising an exception 14,4
a membership test 4.5,2
an operator 4,5, 6,7: 4,4, 6.1 Paragraphing recommended for the layout of programe 1,5
an operator symbol 6,6; 7. .
a subprogram 8,6: 6,7 Parallel execution
a subprogram subject to in Interface pragma 13.9 .Ise: task] ,-
the expression in a case statem ent 5,4 Paam ter-Parameter 0 '

ose also: actual parameter, default expression, entry, for-
mal parameter, formal part, function, generic actual
parameter, generic formal parameter, loop parameter,

PACK (predefined pragma) 13.1: B mode, procedure, subprogram)
of a main program 10,1

Package 7, 7.1: D
Is@@ also: deferred constant declaration, library unit, Parameter and result type profile 6,6
predefined package, private part, program unit, visible
part) Parameter association 6.4, 6.4.1

as a generic Instance 12.3: 12 for a derived subprogram 3.4
Including a raise statement 11.3 named parameter association 6.4
named In a use clause 9,4 named parameter asoclatinn for selective visibility
renamed 8,5 8.3
subject to an address clause 13,5 omitted for a subprogram cel! 6,4.2
subject to representation clause 13,1 positional parameter association 6,4
with a ceparately complied body 10.2

Parameter declaratlon
Package body 7.1, 7.3: D Isee: generic parameter declaration, parameter

lose also: body stub) specificationl
as a generlo body 12.2
as a proper body 3.9 Parameter part
as a secondary unit 10.1 lass: actual parameter part)
a a secondary unit compiled after the cor..
responding library unit 10,3 Parameter specification 6.1
in another package body 7.1 Iso also: loop parameter epselficatlon)
Including an exception handler 11.2; 11 as part of a basic declaration 3,1
including an exit statement 5.7 having an extended scope 8,2
including a goto statement 5,9 In a formal part 6.1
Including an implicit declaration 5.1 visibility 8.3
must be in the same declarative region as the
declaration 3,9 Parameter type profile 6.6 6.
raising an exception 11 4.1, 11.4.2
recompiled 10.3 Parent subprogram lof a derived subprogram) 3.4
subject to a suppress pragme 11.7

Parent subtype (of a derived subtype) 3.4
Package declaration 7,1, 7.2; D

and body as a declarative region 8.1 Parent type (of a derived type) 3.4; 0
as a basic declaration 3.1 lies also: derived type)
as a later declarative item 3,9 declared In a visible part 3.4 9
as a library unit 10,1 of a generic actual type 12.1,2
determining the visibility of another declaration 8,3 of a numeric type Is predefined and anonymous
elaboration raising an exception 11.4.2 3.5.4, 3.,.7, 3,6.9
In a package speciflcation 7,1
recompIled 10,3 Parent unit (of a body stub) 10.2

compiled before Its subunits 10,3
Package identifier 7.1

Parenthesis
Package speclfication 7,1, 7.2 character 2.1

In a generic declaration 12.1 delimite 2.2

Overloading of 0 Parenthesis 1-24

'. . .- '., , • . , .

incaex

*Poreanthooited expression Pragms 2.8; 2, D
as a primary 4.4; 4.5 (see also: predefined pragmal
In a static expression 4.9 applicable to the whole of a complastion 110,11

argument that Is an overloaded subprogram name
Part 6.3.2, 8.7, 13.9

(see: actual parameter part, declarative part, disorlminernt for the specification of a subprogram body In
part, formal part, generic actual part, generic formal part, another language 13,9
variant part] for the specification of program overlays 13,5

in a code procedure body 1 3.81.
Partial ordering of compilation 10.3 recommending the representation of an entity 13.1

specifying Implementation conventions for code
Percent character 2.1 statements 13,8

[see also: string literal)
replacing quotation charactear 2,10 Precedence 4.5

Period character 2.1 Precision (numeric) '
[see also; dot character, point character) lace; delta, dligito)

Physical processor 3; 9.8 PRED (predefined attribute) 3.5.5; 13.3. A

Plus Predecessor
character 2.1 Iveee: pred attrlbutel
delimiter 2.2
operator Inea: binary adding operator, unary adding Predefined attribute

* operator) lnees address, base, callable, constrained, count, first,
*unary operation 4.5.4 first-bit. Image, last, last-bit, pos, prod, range, eisa, small,

sitorage...eiz, suco, terminated, vel, value, width)
Point character 2.1

isee also: dat) Predefined conetant 6.6 C
in a based literal 2.4,2 love also: eystem~system-nomel . *

In a decimal literal 2.4.1 for CHARACTER values (see; aecl)
In a numeric literal 2.4

Predefined exception 6I.6. 111.1: 11.4.1, C
Point delimiter 2.2 lots also: constraint-error, io-..xceptions, numeric-.error,

access type)program-e.rror, tasking..srror, time-e..rror)
loss: acestp)Predefined function 3.6; C

lIe# also: attribute, character lioral, enumeration literal,"Potbility 1.1 peeie sel irr ucin
of programs using real types 13,.73; 3.56 rdfndgnr0 irr ucin

Predlefined generic library function 3.3:, C
POO lpredefined attribute) 3.5.5; 13,3, A lees also: unchecked-.convesrion]

POUITION 1predefined attribute) 13.7.2: A Peilie eei irr akg

lose- nai m: rec r toprov nal i slu e ees also: directLic, Input-output p ac kage, saquentila -lo)

as parameter tovlattribute 315Predefined generic library procedure 111.5; C
of an enumeration literal 3.5.1 Ie lo nhce..eloain
of an Integer value 3.5.4
of a value of a discrete type 3.5 Predefined generic library subprogram 31.6:11 C

retuned y pa atr~bue ~Predefined Identifier 5.6: C

position of a component within a recordPrdfedlbaypcge36C
see: record representation clause) IP ealo redefined geri library package, 8r.6:lnC

Poseition of an element In a direct access filie 14.2 package, ascii, calendar, Input-output package, lo...xcep-
tions, low-levsi.1o, machino..code, system, text...o)

Poeitional association 6.4: 6,4.2, D
Ieee also: component association, disoriminant associa- Predefined library subprogram
tion, generic association, parameter association) Ie:peeie eei irr uporm

POS111ITIVE (predefined Integer subtype) 3.111: 14,317, Predefined named number
14.3,11, 14.3.9, 14.3.10, C lose: system.fine-.delta, system. max-..digits, eystem~max~jnt,

as the Index type of the string type 3.6.3 systemn~max...mantisea, system. memory-..sze,
system.min-Int, eystorm,storage-.unit, system.tlck)

POBITIVL-COUNT 1prodefined Integer subtype) 14.2-.5
* *14,3.10: 14.2.4, 14.3, 14.3.4 Ptedlefinsd operation 3.3, 3.3.3; 8.6

lots also: operation, predefined operator)
* .Potentially visible declaration 8.4 accuracy for a real type 4.5.7

of a discrete type 3.5.5
Poun stelingcharcter2.1of a fixed point type 3.5.10
v~ serlng ~ -.. of a floating point type 3.5.9

Power operator of a universal type 4.10
lose: expooorntiating operator) propagating an exception 11.6

1-2 5 Perontheu/ied expression * Prede fined operation

Av.•II/L-,5 -761•, Ad• Reference Manual

Predefined operator 4.5, 8.6; C of a deferred constant 7.4; 3.2.1
seee also: ohe, arithmetic operator, binary adding operator, operation 7.4.2

catenation, equality, exponentlating operator, highest
precedence operator, inequality, limited type, logical Private type declaration 7.4; 7,4.1, 7.4.2
operator, multiplying operator, operator, predefined opera- Isee also: private part (of a package), visible part (of a
lion, relational operator, unary adding operator) package)]

applied to an undefined value 3.2.1 as a generic type declaration 12,1
as an operation 3.3.3 as a portion of a declarative region 8.1
for an access type 3.8,2 Including the word 'limited' 7.4.4
for an array type 36,2
for a record type 3.7.4 Procedure 6.1; 6, D
implicitly declared 3.3,3 oeee also: parameter and result type profile, parameter,
In a static expression 4,9 subprograml
of a derived type 3.4 as a main program 10,1
of a fixed point type 3,5.9 as a renaming of an entry 9,5
of a floating point type 3,5.7 renamed 8,5
of an integer type 3.5,4
raising an exception 11,4.1 Proeedure body

lese: subprogram body]
Predefined package 8.6; C including code statements 13,8

Jsee aleo: ascli, library unit, predefined library package,
standardl Procedure call 6.4: 6, 0

for input.output 14 (eee also: subprogram call!

Predefined pragma Procedure call statement 6,4
lvee: controlled, elaborate, Inline, Interface, list, leae also: actual parameter, statement)

memory-Jize, optimize, pack, page, priority, ahared, as a simple statement 5,1
storage.unit, suppress, sy.tem...nme with a parameter of a derived type 3.4

Predefined subprogram 6.6: C Procedure specification
lose also: Input-output subprogram, library unit, [see: subprogram specifloation.
predefined generic library subprogramJ

Processor ,
""'Predefined subtype 8,1: C

see also: field, natural, number-base, positive, priority? Profile
leaes: parameter and result type profile, parameter type

Predefined type 6.6: C profile.
love also: boolean, character, count, duration, float,
integer, long-float, long-integer, priority, short-float, short, Program 10; s
Integer, string. system, address, system name, time, Is@* also: main program) 1

unlversal-integer, univeraalral P a ly
Program legality 1,6 ,,.,,

Pref i% 4.1: D
lose also: appropriate for a type, function call, name, Program library 10,1, 10.4; 10,5
selected compolent, selectorl creation 10,4; 13.7

in an attribute 4,1,4 manipulation and status 10,4
in an indexed component 4,1.1
In a selected component 4,1,3
in a sloe 4.1.2 Program optimization 11,6: 10.6
that is a functlon call 4,1
that is e name 4.1 Program text 2.2, 10,1; 2.10

Primary 4.4 Program unit 6, 7. 9, 12; D
In a factor 44 liese also: address attribute, generlo unit, library unit,
In a static expression 4,9 package, subprogram, task unit?

body separately compiled Joee: subunit) ..
PRIORITY (predefined integer subtype) 9I,; 13,7, C including a declaration denoted by in expended

ioee also: Task priority! name 4,1,3
including a suppress pragma 11.7

PRIORITY (predefined pragma) 03.3; 13.7, 9 subject to an addreas clause 13.5
i~ee salso: Task priority! with a separatoly compiled body 10.2

Private part (of a package) 7.2: 7.4.1, 7.4.3, D PROORAM-ERROR ipredafined exception) 11.1
ieee also: deferred constant declaration, private type Ilee also: erroneous execution, Puppreae prgmal
declarationl relied by on erroneous program or Incorrect order

Private type 3,3. 7.4, 7.4,1; D raised by a generic Instantlation before elaboration
ISe also: close of typo, derived type of # pof the body 3.9; 12.1, 12,2
limited private type, type with dieprlminentsf raised by a selective walt 9,7,1

ait generic actual type 12.3.2 raised by a subprogram call before elaboration of
as a generic formel type 12.1.2 the body 3.9; 7.3
as a parent type 3,4 raised by a task activation before elaboration of the *
corresponding full type declaration 3.3.1 body 3.9
formal parameter 6,2 raleld by reaching the end of a function body 6,5

,,Predefined operstor 0 Progrem error 1-26

* 1'ropagstion of an exception ignored due to range-.check auppress~on 1 1.7
*(see: oxception propagation] in a fixed point constraint 3.5.9

In a floating point constraint 3.5.7
Proper body 3.9 In an Integer type definition 3.5.4

as a body 3,9 In a subtype Indication 3.5: 3,3.2
In a subunit 10.2 onl a derived subtype 3.4
of a library unit separately compiled 10.1 violated 11. 1

PUT Itext-lo procedure) 14.3, 14.3.5: 14.3.2, 14.3.10 Rang...chetk
for character and string types 14.3.6 [eee: constrc-tt-error, auippress]
for enumeration types 14.3.9
for Integer types 14.3.7 READ (input-output prooedure)
for real types 14,3.8 In an Instance of directie 14.2.4; 14.1, 14.2,
raising an exception 14.4 14.2.5

In an Instance of sequentlal-lo 114,2.2; 14.1, 14.2,
14.2.3

Reading the value of an object 6.2, 9.11
Qualification 4.7

as5a basic operation 3,3.3, 3.3, 3.5.5, 3.5.08 3.5.,10, Real literal 2.4
3.6.2, 31.4.4 3.8.2, 7.4.2 lsee also: untiversaL..real typel
using a name of an enumeration type as qualifier in based notation 2,412
3.5.1 in decimal notation 2.4.1 -

Is of type universal-real 3.5,6
Qualified expression 4.7: 0

as a primary 4.4 Real type 3.5.6: 3.3, 3.5, 0
In an allocator 4,111 Ieee also: fixed point type, floating point type, model
In a caseo statement 5A4 number, numeric type, safe number, easelr type, univer-
In a static expression 4.9 gal-real type)
qualification of an array, aggregate 4,3.2 accuracy of an operation 45,61
to resolve an overloading ambiguity 6.611 representation attribute 13.7.3

result of a conversion from a numeric type 4457: V
Queue of entr calls 4.6

loes: entry queue) result of an operation out of range of the type 4.5.7

Queue of Interrupts Reel type definition 3.11.6:111 3.31.1 3.5,7, 3.5.9
late: entry quouel lose also: elaboratIon of...l

Quotation character 2,1
In a string literal 2,61 1111CECIVIL.CONTROL iiow-Javello procedure) 14.4

replcemnt y prcen chracer .10Reciprocal operation In exponentiation by a negative Intager

ReomorpIlation 10.3
Radix of a floating point type 3.5.7; 13.7.3Reodarets4.143

Raise statement 11.3: 11 (sel also: aggrogatel
ieeeals: ecepion attemntias a basic operation 3.3.3: 3.7.4

as a simple statement 5.1 I oesaeet1.
laeIncluding the name of an exception 11. 1 Rcr opnn

Raiin ofanexcpton 1,11.: lssn: component, record type, selected componenti
les ialo: oxceptionl

causing a transfer of control 5.1 Record representation clause 13.4
lass also: first-bit attribute, lost-bit attribute, position

FlRange 3.5; D attribute)
Iseer also: discrete rungs, null rengel aso a representatIon clause 13.1

as a discrete range 3.6 4

In a record representation clause 13.4 Record type 3.M 3.3. D
In a relation 4,4 loee also: component, composite type, discriminant,*'
of an Index subtype 3.6 matching components, subcomponent, type with discrimi-
of an Integer type contaminng the result of an opera- nants, variant)
tion 4,5 formal parameter 6.2
of a piredefined Integer type 3.5.4 Including a limited subcomponent 7.44 t
of a real type containing the result of an operation operation 3,7.4

~~ca byan ttriute4.14ARcord type declaration
[see: record type definition, type daclarstionl

RANGE (pradefined attribute) 3.6.2: 4.1.4, A as a declarative region 0.1
for n aces vale 38.2determining the visibility of another declaration 0.3

Range constraint 3.5: D Record type definition 3.7: 3.3.1
Isee also: eiaboration of ... (see also: component deciaratian1

'I1-27 Propagation 0 Record type definition

Recursive as a portion of a declarative region 8.1
call of a subprogram 6.1, 12.1: 6.3,2 cannot Include a forcing occurrence 13,1
generic Instantlation 12,1, 12,3 for a derived type 3.4
types 3.8.1: 3.3.1 for a private type 7.4.1

implied for a derived type 3,4
RX entrant subprogram 6,1 in an overload resolution context 8,7

in a task specification 9,11
Reference (pwameter passing) 6,2 . ,.Reserved word 2.9; 2,2, 2,3

Rotation (in an expression) 4.4 ,. .RESET (input-output procedure)•

Relational expression in an instance of direct-lo 14,2,1; 14.2.5
iles: relation, relational operator) in an Instance of sequentlal-lo 14,2.1; 14.2.3

In toxt-lo 14,2.1; 14.3.1, 14,3.10
Relational operation 4.5,2

of a boolean type 3.5,3 Resolution of overloading "
of a discrete type 3.5. Joee: overloading!
of a fixed point type 3,6.10
of a floating point type 3,5.8 Result subtype (of a function) 6.1
of a scalar type 3.5 of a return expression 5,11:11
result for real operands .5.,7

Result type profile
Relational operator 4.A; 4.5,2, C lsee: parameter and...,

lees also: equality operator, Inequality operator, ordering
relation, overloading of an operator, predefined operator) Result type end overload resolution 6.6 .

for an access type 3,,2
for an array type 36,82 Result of 5 function
for a private type 7,4.2 [see: returned value)
for a record type 3,7.4
for time predefined type 9,8 Return
in a relation 4A4 Iee: carriage return)
overloaded 8,7 L ,

Return statement 5.8
Relative address of a component within a record lsee also; function, statement]

lass: record representation clause) as a simple statement 5.1
causing a loop to be exited 5,5

Rom operator 4.5.5 causing a transfer of control 5,11
(Ree alsom multiplying operator) completing block statement execution VA

completing subprogram execution 9,4
Remainder operation 4,.11 expression that Is an array aggregate 4,3,2 ,,.,

In a function body 6,5
* Renaming declaration 1.5: 4.1, 12,1,3, DR r a

lee also: namel Returned value
"" as a basic declaration 3V1 see: function caill

as a declarative region 8,1 of a function call B.8, 5.5: 8,5
cannrt rcname a unlvervalifixed operation 4,5,5 of an instance of a generic formal function 12,1,3
for an array object 3,6.1 of a main program 10,11
for an entry 9,5 of an operation 3.3,3 i'. ,
for a record object 3,7,2 of a predefined operator of in Integer type 3.5,4
name declared is not allowed ae a prefix of certain of a predefined operator of a real type 3.5.6, 4.5.7
expanded names 4,1.3
to overload a library unit 10.1 Right label bracket compound delimiter 2,2
to overload a subunit 10.2
to resolve an overloading ambiguity 6. Right parenthesis

character 2,1
Rendervous lof tasks) 9.5: 9, 9.7.1, 9.7.2, 9.7,3, 0 delimiter 2,2

during which ert exception Is raised 11,5 Rounding . ,
priority 9,8 In a teal-to-integer conversion 4.6
prohibited for an abnormal task 9.10 of results of real operations 4,5,7: 13.7.3

Replacement of characters In program text 2,10 Run time check 11,7; 11,11

Representation Wof a type and its objecta) 13,11
recommendation by a pragma 13,1

Representation attribute 13.7,2, 13.7.3 Sell interval 4.A.7
as a forcing occurrence 13,1
wltr•. prefix that has a null value 4,1 Safe number (of a real type) 3.5,6: 4,6,7

Isse also: model number, real type representation
Representation clause 13,11; 13.6, 0 attribute, real typea

Is@e also: address clause, elaboration of,,., enumeration limit to the result of a rail operation 4.547
representation clause, first named subtype, length clause, of a fixed point type 3.5.9; 3.5.10
record representation clause, typea of a floating point type 3.8.7; 3.5.8

as a basic declarative item 3,9 resuit of unlvjrnal expression too large 4.10

RecursIve 0 Safe number 1-28

SAPLEMAX (predefined attribute) 3.5.0; A Selower 4.1.3: 0
losee also: prefix, selected component)

*AFF-LAROE (predefined attribute) 3.5.5, 3.5.10: A
Semicolon character 2.1

BAFE-81M0ALL (predefined attribute) 3.5A6 3.5.10; A
Semicolon dellmiter 2.2

Satisfy Is constraint) 3.3: D followed by a pregma 2.8
[see also: constraint, subtype)

a discriminant constraint 3,712 SEND-.CONTROL (lowJeveLilo procedure) 14.8
an Index constraint 316.11
a range constraint 3.5 separate compilation 10, 10.1: 10.5

of a proper body 3.9
Scalor type 3.3. 3.5; D of a proper body declared In another compilation

raee also: class of type, discrete type, enumeration type, unit 10,2
fixed point type, floating point type, Integer type, numeric
type, real type, static expression) Separator 2.2

as a generic parameter 112,1.2, 12.3.3
formal parameter 8,2 Sequence of statements 5.11
of a range In a membership test 4.5.2 In an accept statement 915
operation 35,5.5 4.5.2 In a basic loop 5.5

In a block statement 5.6: 9.4
Scheduling 9.8; 13.5.1 In a case statement alternative 6.4

In a conditional entry cell 9.7.2
Scheme In an exception handler 1112

lees: Iteration schemeal In an If statement 5.3
In a package body 7.11: 7.3

Scope 1.2: 8.3, D In a selective wait statement 9.7.1
lasee also; basic operation, character literal, declaration, In a subprogram body 0.31 9.4, 13.0
declarative region. generic Instance, Identifier, Immediate In a task body 9.1; 9.4
scope, Implicit declaration, operator symbol, overloading, In a timed entry call 9,7.3

vialbIlityl Including a raise statement 11.3
"1of a use clause 8.4 of code statements 13.8

raising an exception 11,4,1
Secondary unit 10.1

(see also: compilation unit, library unit) Sequential access file 14.2: 14,11. 14.2.1
compiled after the corresponding library unit or
parent unit 10,3 Seqiuential execution
subject to pragma elaborate 10.1 Imes: sequence of statements, statement)

*StCONDS (predefined function) 9.0 Sequential Input-output 114.2.2; 14.2.1

$selet alternative (of a selective Wait) 9.7.1 ISEQUENTIALIO ipredefined Input-output generic package)

Select statement 9.7; 9,7,1, 9.7,2, 9.7.3 14 xc.14.2.;o14 14.1. 14.2.,
lasee also! statement, task, terminate altemnative] specification 14.2.3* as a compound statement 5.11

In an abnormai task 9.10 SET..COL (textLio procedure) 114.44: 14.3.10

Selected component 4.1.31 8.3. D STIDX(nu-uptpoeue
loee also: direct visibility, prefix, seiecotor, visibility by S .InDE anInputaotptnrcef dure)o1,..,1-.
selection, visibility] na ntneo la~ 424 4,

* , s a basic operation 3,313: 33, 3.7,.4 3.6.2, 7A4.2 BIT-INPUT (textLio procedure) 14.3.2: 14.3.10
as a name 4.1rasnanecpin1,

as the name of an entry or entry family 9A asn necpin1,
for selective visibility 8,3 E-NE(etlprcde)1.4,1.30
In a conforming construct 6.3.1,S11Eic~i rcdr)1434 431
starting with standard 8.6 IET-.LINE-.LENCITH (textio procedure) 14.3.3:, 14.3.1.0
using a block name 5.6 raising an exception 14,4
using a ioop name 5.5
whose prefix denotes a package 6.3 SET..OUTPUT (texLlo procedure) 14.3.2: 14.3.10
whose prefix denotes a record object 8.3 raising en exception 14,4
w hose prefix denotes a task object 6.3 S T P G - E a H (e ~ o p o e u a 4 3 3 4 3 1

$election of an exception hade 14 1.,1..;11araising an exception 14,4

Selective visibility$NMD(rdfndpom).1;3
lace: visibility by selection)SHfE (peefedram).1:

Seletivewait9.7.; 97Shared variable (of two tasksi 9,11
seeo also: terminate alternative) esaso ak

accepting a conditional entry call 9.7,2 Sharp character 2,1
accepting a timed entry cell 9.7.3 Igee also: based literall
raising program-..error 11.1 replacement by colon character 2.10

1-29 Safe..emax * Sharp character

AfIV011IIfL-01Lj-161D, ACIS MO~erence MnfluUi

Short circuit control form 4.5, 4.5.1; 4.4 of a derived type 3.4
as a basic operation 3.3.3: 3.5.5 of an obj.ect as an object 3,2
in an expression 4,4 of a value of a generic formal array type 12.1.2

of a variable 3.2.1
SHORT-FLOAT (predefined type) 3.5.7; C starting with a prefix 4.1. 4.1.2

HaORTINTEGER (pradeflned type) 3.5.4; C SMALL (predefined attribute) 3.,.8, 3.8.10: A
[see also: fixed point type)

Sign of a fixed point number 3.5.9 specified by a length clause 13.2

Sign of a floating point number 3.5.7 Small of a fixed point model number 3,5.9

Significant decimal digits 3.5.7 Some order not defined by the language
lase: incorrect order dependence,

Simple expression 4.4 "
as a choice 3.7.3 Space character 2.1
as a choice in an aggregate 4.3 eac also: basic graphic character]
as a range bound 3.5 as a separator 2.2
for an entry Index In an accept statement 9,5 in a comment 2,7
In an address clause 13,5 not allowed In an Identifier 2.3
In a delay statement 9,0 not allowed in a numeric literal 2.4,1
in a fixed accuracy definition 3,5.0 -
in a floating accuracy definition 3,5.7 $pace character literal 2.5; 2.2
In a record representation clause 13,4
In a relation 4.4 Special character 2.1

lies also: basic graphic character, other special character)
Simple name 4.1: 2,3, D In a delimiter 2.2

Ise also: block name, identifier, label, loop name, loop
simple name, name, overloading, visibility) Speolfication

as a rholce 3.7,3 Iees: declaration, discrimInant speclfluation, enumeration

as a formal parameter 6.4 literal specification, generic specificatlon, loop parameter
as a label 5,1 specification, package specification, parameter specifics-
as a name 4,1 tion, subprogram apeciflcatlon, task speciflcation)
before arrow compound delimiter 8,3
In an accept statement 9,5
in an address clause 13,5 STANDARD (predefined package) 6.6: C
in an attribute designator 4.1.4 ioee also: library unitl
In a conforming construct 0,3.1 as a declarative region 8.1
In a dlscrlminant association 3,7,2 enclosing the library units of a program 10,1,1.
In in enumnration representation clause 13,3 10.1, 10,2
in a package body 7.1 including Implicit declarations of fixed point cross-
In a package speciflostlon 7,1 multiplication and crose-division 4,51
in a record representation clause 13,4mlictn dro-vo.5
In a selector 4,1,3 STANDARDINPUT (texLtIo function) 14.3.2; 14,3,10
in a suppress pragma 11.7
in a task body 9,1 STANDARD..OUTPUT (temLio function) 14,3.2: 14,3.10
In a variant part 3.7,3
in a with clause 10,1.1 star
versus identifier 3.1 lsee: double star)

character 2,11
simple statement 5.1 delimiter 2,2

Islee also: statement)
Statement 5.1: 5, D

Single task 9.1 Isee also: abort statement, accept statement, address
attribute, assignment statement, block statement, case

SIZE (input-output function) statement, code statement, compound statement, delay
in an Instance of direct..lo 14,2,4: 14,2,5 statement, entry call statement, exit statement, goto state-

ment, If statement, label, loop statement, null statement,
SIZE (predefined attribute) 13.7.2: A procedture call statement, raise statement, return state-

lise also: storage bits) mont, select statement, sequence of statements, target
specified by a length clause 13.2 statement)

allowed in an exception handier 11,2
SKIPLINE (text..Io procedure) 14.3.4: 14,3.10 as an overload resolution context 8.7

raising an exception 14,4 optimized 10,.
raising an exception 11.4.41 : 11.4

SKIPPAGE Itextlo procedure) 14.3.4; 14.3.10 that cannot be reached 10.6
raising an exception 144

Statement alternative
SliWe 4.1.2 leee: rase statement alternative)

sewe also: array type)
as a basic operation 3,313: 3,0.2, 3.8.2 Static tionstroint 4,9
as a name 4, I on a subcomponent subject to a component clause
as destination of an assignment 5.2,1 13.4
of a constant 3,2.1 on a typo 3,5,4, 3.5.7, 3.5.9, 13.2

Short circuit Stattc constraInt 1-30

Ihdnx

Static discrete range 4.9 STORAGE_8!7 (predafined attribute) 13.7.2; A
as q choice of an aggresate 4.3,2 (see also: v orage units alloutsd]•
as a choice of a case ntatement 5,4 for an access type 3,8,2
as a choice of a variant par, 3,7,3 for a task object or taik type 9,9

specified by a length olause 13,2
Static expression 4.9: 8.7

as a bound In an Integer type definition 3.5.4 STORAGE-UNIT ipredafined nemod number)
as a choice In a case statement 5.4 leee: system.sioragerunit-
a.' a choice of a variant part 3,,3,
for a choice In a record aggregate 4.3,2 STORAGEUNIT (predefined pregme) 13.7; 8
for a discriminant In a record aggregate 4.3.1 losee also: system.storage..unlt]
In an attribute designator 4.1,4
In an enumeration representation clause 13.3 STRING (predeflned type) 3.6.3; C
in a fixed accuracy definition 3,5,9 asee aaIs: predefined type) A
In a floating accutecy definition 3 5.7 as the parameter of value attribute 3,5,5 '"
In a generic unit 12.1 as the result of Image attribute 3,5,5
In a length clause 13,2
In a number declaration 3,2, 3,2,2 String breoket 2.6; 2,10
in a record rooresentation clause 13.4
In prlorlt'i pragma 9,8 Sio'u literal 2.6, 4.2; ,.2, 3.a.3

whose type Is a universal type 4,10 toIee alsO: overloading of,,.. percent mark character, quote-
lion character]

Static others choice 4.3.2 as a basic operation 3,.3,3, 4.2; 3.6,2
as an operator symbol 6,1

Static kw ubtype 4.9 as a primary 4,4
of a discriminant 3.7.3 must riot be the argument of a conversion 4,6
of the expression In a case statement 5.4 replaced by a catenation of basic characters 2.10

STATUS-.ERPOR 0lnputoutput eoXooton) 14,4; 14,2.1, stub
14.2,2, 14,2,3, 14,2,4, 14.2.5, 14.3.2, 14,3.3, 14.3,4, [tee: body stub]
14.3,5, 14.S.10, 14.5 Subaggregata 4.3.2

Storage address of a component 13,4
[asee alsoe: address clause) Subcomponent 3.3; D

[see also: component, composite type, default expression,
Storage bits diacriminant, object)

allocated to an object or type 13.2; 13,7,2 [see also: depending on a dliscriminant 3,7.1,; 5,2, 8,2 8.5
size) of a component for which a component clause Is
of a record component relative to a storage unit given 13,4
13,4 renamed 8,5 .. ,'

"sizeo of a storage unit 13.7 that is a task object 9.2; 9,3
whose type Is a limited type 7.4,4

SStorage deallooetion whose type Is a private type 7.4.1
[see: unchecked-deallocatlon] Su, ga ';Subprogram 0: D ,.,.,

Sturage minimization [see else: actual parameter, completed subprogram,
[see: pack pidgmal derived subprogram, entry, formal parameter, function,

library unit, overloading of,.., parameter and result type
:.itorage reclamation 4.8 profile, parameter, predefined subprogram, procesure,

program unit]
Storage representation of a record 13.4 as a generic Instance 12.3, 12

as a main program 10.1
Storage unit 13.7 as an operation 3.3.3; 7.4.2

offset to the start of a record component 13,4 Including a raise statement 11.3
size of a storage unit in bits 13.7 of a derived type 3.4

overloaded 8,6
Storage units allocated renamed 8.5

[see: storagejizej subject to an address clause 13,5
to a collection 13.2: 4.8, 11,1, 13,7.2 subjoct to an Inline pragma 6.3,2
to a task activation 13.2; 3,.9, 11.1, 13.7.2 subject to an Interface pragma 13.9

subject to a representation clause 13.1
"Storuegscheck subject to a suppress pragme 11,7

lee: program-error exception, suppress) with a separately compiled body 10,2

STORAGE-ERROR (predefined exception) 11.1 Subprogram body 6.3; 6, D
[see also: suppress pragmal (see also: body stub)

raised by an allocator exceeding the allocated as c generic body 12.2
storage 4,8; 11,1 as a library unit 10.1
raised by an elaboration of a declarativw Item 11, 1 as a proper body 3.9
raised by a task activation exceeding the allocated as a secondary unit 10.1
storage 11.1 as a secondary unit compiled after the cor-
raised by the execution of a subprogram call 11,1 responding library unit 10,3 '

1-31 Static discrete range 0 Subprogram body

o" , , , .. ,. . ,, . -. . .- , . ., . . . ,"L

ANSI/MIL.-STDr-181?5A Ada Reference Manual

having dependent tasks 9.4 of a formal parameter or result of a renamed sub-
In a package body 7,1 program or entry 8.5
Including an exception handler 11,2 11 of a goneric formal type 12,1.2
including an exit statement 5.7 of an Index of a generic formal array type 12.3.4
including a goto statement 5.9 of an object (see; elaboration of...,
Including an implicit declaration 5.1 of a prlvas.e type 7.4, 7,4,1 .
including a return statement 5,8 of a real type 3,517, 3.5.9: 3.5.6, 4.5,7 9Including code statements must be a procedure of a record type lees: constrained rucord type, die-

body 13.8 crlminant constraint]
inlined In place of each call 6.3,2 of a scaler type 3.5

must be In the same declarative region as the of a task type 9.2
declaration 3.9, 7,1 of a variable 5,2
not allowed for a subprogram subject to an Interface subject to a representation clause 13,11
pragma 13.9
not yet elaborated at a call 3.9 Sub.ype oonversion 4.6
raising an exception 11.4,1, 11.4.2 Iser alo: conversion operation, explicit conversion,
recompiled 10.3 Implicit conversion, type conversion]

IM an array asslgnment 5.2.1; 5.2
Subprogram call 6.4: 6, 6.3, 12.3 to a real type 4,5.7

slee also: actual parameter, entry call statement, entry cal-
I, function call, procedure call statement, procedure celil Subtype declaration 3.3.2; 3.1

before elaboration of the body 39,11.1 Aand forcing occurrences 13,11
statement replaced by an Inlining of the body 6,3,2 as c• basic declaration 3.1
statement with a default actual parameter 6.4.2 including the name of a private type 7,.4.1
to a derived subprogram 3.4
to a generic Instance 12 Subtype definition

lees: comoonent subtype definition, dependence on a die-
crimInant, Index sibtype definition]

Subprogram declaraton 6.1; 8, D
and body as a deolarativo, region 8.1 Subtype indication 3.3.2
as a basic declaration 3,1 Ieee also: elaboration of... •,.
as a later declarative Item 3.9 as a component subtype Indication 3,7
as a library unit 10,1 as a discrete range 3.'
as an overloaded declaration 8.3 for a subtype of a generic formal type 12,1,2
implied by the body 8.3, 10.1 in an access type definition 3.8
In a package specification 7.1 In an allocator 4,8
made directly visible by a use clalise 8.4 in an array type deflhitlon 3.6
of an operator 6.7 In a component declaration 3,7
recomplled 10.3 in a constrained array definition 3.6

in a derived type definition 3.4
Subprogram specification 6.16 In a goneric formal part 12.1

and forcing occurrences 13,1 In an object declaration 3,2, 3.2,1
conforming to another 8.3.1 In an unconstrained array daefinition 3.6
for a function 6.5 including o fixed point constraint 3.5.9
In a body stub 10.2 Including a floating point constraint 345.7
In a generic declaration 12.1: 12.1.3 with a range constraint 3.A
in a renaming declaration 8.5
In a subprogram body 6.3 Subunit 10.2: D
Including the name of a prlvato type 7.4.1 lsee also, library unit)
of a derived subprr'grem 3.4 as a ctmpilation uwit 10,4

as a library unit 10,4
Subtraction operation 4,5.3 as a secondary unit 10.1

for a real type 4.5.7 compiled after the corresponding parent unit 10.3
"not allowed for a subpl igram aubject to an interface

Subtype 3.3, 3.3.2; D pragma 13.9
lsee also: attribute of.... baos attribute, con~trc•ned sub- of a compilation unit suhiect to a context utiuse

type, constraint, first named subtype, operation of..., result 10.1 1
subtype, satisfy, size attribute, static subtype, type, raising an exception 11,4.1, 11.4,2
unconstrained subtypel recompiled (does not affect other compilation unitg)

declared by a numeric type declaration 3.4.4, 3.5.7, 10.3
3.5.9
In a membership test 4,5.2 SUCC iprodefined attribute) 3.16.5; 13,3, A
name lase: name of a subtype, type-mark of a sub-
type) Successor
not considered in overload resolutlon 8,7 leee: succ attribute]
of an eccess type 3.8
of an actual parameter 6,4.1 SUPPRESS ipredefined pragma) 11.7: 11.1, B
of an array type lsee: constrained array type, index
constralntý Symbol
of a component of Gn array 3.0 lsee: graphical symbol, operator symbol)
of a component of a record 3,7
of a constant in a static expression 4.9 Synchroniaation of tasks
or a discrimlnant of a generic formal type 12.3.2 leee: task synchrotrizetlon-
of a formal .arameter .4.1.

Subprogram call 0 Synchronization of asks 1-32

Indow

Syntactic category 1.5 look activation 9.3
[see also; length clause, storage units allocated,

syntax notation 1.6 storage-siza attribute]
beforo elaboration of the body 3,9

Syntax rule 1.5; E causing synchronization 9,10. 9.11
not started for an abnormal task 9,10

SYSTEM (predefined library package) 13.7; C, F of a tack with no task body 11.11

System dependent F Task body 9.1; 9, D
attribute 13,4 [sae also: body stub, elaboration of ...)I
constant 13.7 as a proper body 3.9
named number 13,7, 13.7.1 In a package body 7.1
record vompnan~nt 13.4 Including an exception handler 11,2; 11
type 13.7 Including an exit statement 5.7 0

Including a goto statement 5,9
SYSTEM.ADDRESS (prederfined type) 112.7; 13.5 Including an Implicit deolaration 5.1

loee also: address attribute, address clause) must be In the came dclaclrative ragion as the
declaration 3.9, 7,1

SYSTIM.FINLODELTA (predefined named number) 13.7.1 f~ e lbrtda natvto ,
raising en exception 11.4.1, 11.4.2

SYSTEMMAX..DIGITS (predefined named number) 13.7.1 specifying the execution of a task 9.2, 0.3
limit on the significant dig its of a floating point type Ta omncto
3,5.7 [#see: rendezvoui)l'

SYSTEM.MAX-INT (predefined named number) 13.9..1; Takomito

exceedeed by the value of a universal expressionrsecoptdtak

Tosk declaration 9.1
SYSTEM.MAX...MANTISSA (predefined named number) and body as a declarative region 8.1

137,1as a basic declaration 3,11
as a later declarative itemn 3,9

bYUTEKM.MMORY...SIZE (predefined named number) 110,7elbrtorainanxepon1.2
in a package specification 7A1

SYSTEM,MIN..INT (predefined named number) 13.7.1:
3.5.4

greater than the value of a universal expression Task dependence
4.10 Lsaos dependent teak]

8SYTEM.NAMI (predefined type) 13.7 Took designated
by a formal parameter 0.2

SYSTEM.STORAGELUNIT (predefined named number) by a value of a task type 9.1; 9,2, 9.4, 9.5
13.7: 134

Task etocution 9.3
SYSTEM.SYSTEM..NAME (predefined corigtant) 13.7

lsee also: bistem-.nome) Task object 9.2: 9.1, 9.5
9,6 lose also: attribute of., task activation)

SYSTEM.TICK 1predefineid named number) 113.7.1; .0designated by an access value 9,2
SYSTEM-.NAME (proidefined pragme) 13.7: B detarmendn 8akdeednc5.

[ses also: ovatemnsystem..na me oraedfined constant)rnae8.
Teak priority 9.8

losee also: priority pragma, priority subtype]
Tabujlation of a task with an Interrupt entry 13.5.1

Loee: horizontal tabulation, veutical tabuistion)
Teok specification 9.1; 9, D

Target statement (of a goto statement) 5.9 lsee also: elaboration of.)
Including en entry declaration 9.5

Target type of a conversion 4.6 Including a priority pragma 9.8
Including a representation clause 13.1

Taok 9; D
(see also: abnor;'ial task, abort statement, accept state- Task synchronization 9.1; 9.11
ment, communication between,..,. completed task, delay
statement, dapandent task, entry (of a took), entry call Task termination
atstotment, rendezvous, iwelect statement, selective wait, Iseei terminated task]
shared variable, single trisk, terminated task]

calling the main program 10.11 Task type 9.1, 0.2; 0
raising an exception 11,5 see* aliso: attribute of,., class of type, derived type of a task
scheduling 9.8 type, limited typal
suspension awaiting a rendezvous 9,5 completing an Incomplete type definition 3.0.1 ~.
suspension by a delay statement 9.6 formal paraemter 6,2
suspension by a selective wait 9.7.1 object Initialization 3.2.1
suspension of an abnormnal teak 9,10 value designating a task object 3.2,11, 9.1, 9.2

1-33 Syntactic category *Task type

ANS//MIL-STD-11S5A Ads Reference Manual

Toek unit 9.1; 9 Transfer of control 5,1
l see also: program unit] [Bee also: exception, exit statement, goto stmtement, return

declaration determining the visibility of another statement, terminate alternative]
declaration 8.3
Including a rails statement 11.3 TRUE boolean enumeration literal 3.5.3; C
subject to an address clause 13.6 -
subject to a representation clause 13.1 Type 3.3; D
subject to a suppress pregme 11,7 [see also: access type, appropriate for a type, array type,
with a weparately compiled body 10.2 attribute of..., base attribute, base type, boolean type,

character typo, close of type, composite type, constrained
TASKING-ERROR (predefined exception) 11.1 type, derived type, discrete type, discriminent of,.,,

lsee also: suppress progmel enumeration type, fixed point type, floating point type,
raised hy an entry call to an abnormal task 9,10, forcing occurrence, generic actual type, generic formal
11,6 type, integer :qpe, limited private type, limited type,
raised by an entry call to a completed task 9.5, numeric type, operation of,,,, parent type, predefined type,
3.7,2, 9,7,3, 111.5 private type, real type, record type, representation clause,
raised by an exception In the task body 11,4,2 scalar type, site attribute, storage allocated, subtype,
raised by failure of an dativatlon 9.3; 11.4,2 unconstrained subtype, unconstrained type, universal

typel
Template name 3.3,1

[lee: generic unit) of an actual parameter 8.4.1
of an aggregate 4,3,1, 4.3,2

Term 4,4 of an array component of a generic formal array
In a simple expression 4.4 type 123,14

of an array Index of a generic formal array type
Terminate alternative (of a selective walt) 9.711 12,3.4

[see alis: sul•ct statement] of a case statement expression 54
causing a transfer of control 5.1 of a condition 5.3
In a velsct statement causing a loop to be exited 5. of a declared object 3.2, 3.2.1
selection 9.4 of a discrImInant of a generic formal private type
selection In the presence of am accept altematIve for 12,3,2 4,4
an interrupt entry 13,5.1 of an expresion 4.4

of a file 14,1
TEIRMINATED (predefined attribute) for a tlak object 9,.; A of a formal parameter of a generic formal sub-

program 12,113
of a genrico actual object 12.3.1
of a genaric formal object 12,1.1 12.3.1

Terminated toak 9.4; 9.3, 9,9 of an Index 4,1.1
leae also: completed task] of a loop parameter 5.5

not becoming abnormal 9,10 of a named number 3,2, 3.2.2
object or subei. riponent of an object designated by of an oLlect designated by a generic formal acoess
an access value 4,8 type 112.3.5
termination of a task during Its activation 9.3 of a primary in an expression 4,4

of a shared variable 9.11
Terminator of a slice 4,1.2 , ,

[ase: file terminator, line terminator, page terminator] of a string literal 4,2 '""
of a task object 9.2

"Text lnput-output 14.3: 14.2.1 of a universal expression 4.10
of a value 3.3: 3,2

Text of a program 2,2, 10.1 of discriminants of a generic formal object and the
matching actual object 12,3,2

TEXT-IO (predeflned input-output package) 14.3: 14, 14.1, of of the literal null 4.2
"14.3.9. 14,3.10, C of the result of a generic formal function 12,1,3

exceptions 14.4: 14.5 renamed 8.5
specification 14.3,10 subject to a representation clause 13.1; 13,6

subject to a suppress pragma 1I,7
TICK yielded by en attribute 4,1,4

[oss: stmu.ttlick)
Type conversion 4.6

TIME (predefined type) 9.6 [see also: conversion operation, conversion, explicit non-
[lsee elso: clock, date, day, makii-time, month, Vytlematlck, version, subtype conversion, unchecked.oonversionl
yearl as an actual parameter 6,4, 8,4,1

as e primary 4.4 , 0
TIMLE.RROR (predefined exception) 9.6 In a static expression 4.9

to a rep; type 445,7
TIMLOF (•predeflned function) T.6

Type declaration 3.3.1
.. ., H 9.7.3; 9,7 (see also: elaboration of.... Incomplete type declaration,
--med entries 0,5 private type declaration]

0 uIt to an address clause 113,51 an a basic declaration 3,1
as a full declaration 7.4.1).. 0

'stor Implicitly declaring operations 3.3,3
.,,tIpIl;ng operator] In s package specification 7,1

Including the name of a private type 7.4.1

.,,ak unit 0 Type declaration 1-34

, I

Iindex

of a fixed point type 3.5.9 Unconstrained typo 3.3; 31,.1, 3.6, 3.6.1, 3.7, 3.7.2
of a floating point type 3.5.7 formal parameter 61.2
of an integer type 3,5.4 with dlscriminante 6.4,1, 1123.2
of a subtype 13,1

Unconstrained variable 3.3, 3.8, 3.7; 12,3.1
Type definition 3.3.1; D ae a subcomponent [oes: suboomponenti

[see isao: access type definition, array type definition,
derived type definition, elaboration of,,., enumeration type Undefined value
definition, generic type definition, Integer type definition, of a scaler parameter 6.2
real type definition, record type definition) of a scalar variable 3.2.1

Type mark (denoting a type or aubtype) 3.3.2 Underline character 2,1
as a generic actual parameter 12.3 In a based literal 2,4,2
in an allocator 4,8 in a decimal literal 2,4.1 , .
In a code statement 13,8 in an identifier 2,3
In a conversion 4.6
In a deferred constant declaration 7. Unhandied exception 11,4.1
In a discriminant specification 317,1
In a generic formal pert 12,1, 12.3 Unit
In a generic parameter declaration 12.3.1 lsee: compllation unit, generic unit, library unit, program
in an Index subtype definition 3.6 unit, storage unit, task unit)
in a parameter specification 6,11 6.2
in a qualified expression 4,7 Universal expression 4.10
In s relation 4.4 assigned 5,2
in a renaming declaration 8.5 In an attribute designator 4,1,4
in a subprogram specification 6.1 of a real type Implicitly converted 4.5,7
of a formal parameter of t generic formal sub- that Is static 4,10
program 12.1,3
of a generic formal array type 12,1,2 Universal type 4.10
of a static scalar subtype 4.9 [asea aiso: conversion, implicit. conversion]
of the result of a generic formal function 12,1,3 expression Isee: expression, numeric literal)

of a named number 3.2.2; 3.2
Type with diseriminanta 3.3 3.3.1, 3,3,2, 3.7, 3,7.1, 7.4, result of on atirlbute lsee: attribute)
7,4,1 ',••'.'

[see also: private type, record type] UNIVERSALFIXED (predeflned type) 3.5,9
as an actual to a formal private type 12.3.2 result of fixed point multiplying operators 4.5.5
as the component type of en array that Is the
operand of s conversion 4,6 UNIVIRSALINTOIR i(predeflned type) 3.8.4, 4.10; C

[ate aiso: Integer Iltersll
argument of a conversion 343,3, 4.0
attriiute 3.5,5, 13,7.1, 13.7.2, 13.7.3; 9,9
bounds of a discrete range 3.6,1

Unary adding operator 4.4, 4.5, C; 4,5.4 bounds of a loop parameter 5.5
(see also: arithmetic operator, overloading of an opee'tor, codes reprezeiting enumeration type values 13.3
predefined operator) converted to an Integer type 3.5.5

as an operation of a discrete type 3.5.5 of Integer literals 2.4, 4.2
In a simple exresslon 4.4 result of an operation 4.10; 4.5
overloaded 6.7

UNIVERSALREAL (p, edeflned type) 3,5.6. 4.10
Unary operator 4,1: 3.5.5. 3,5.8, 3.610, 3,6.2, 4.5.4, 4,5,5, iloe also: real literal)
C argument of a conversion 3.3.3, 4.0

Is@e aleo: highest precedence operator, unary adding ittrlbute 13.7,1
operatorl converted to a fixed point type 3.5.10

converted to a floating point type 3.5.8 .
UNCHECKED...CONVERIION (predefinud generc Ilibrary of real literals 2.4, 4,2
function) 13,10.2: 13,10, C result of an operation 4,10; 4,5

UNCHECKEDDEALLO CATION (pi-edefined generic library Updating the value of an obiect 6.2
procedure) 13,10,1; 4.8, 13,10, C

Upper bound
Unconditional termination of a took [se*: bound, last attribute)

lsee: abnormal task, abort statement) Upper ease leter 2.1
Unconstrained array definition 3,6 lees also: basic graphin charactiri

A to F In a based literal 2,4.2

Unconstrained array type 3.6; 3.2,1 E in a decimal literal 2.4,1
as an actual to a formal private type 12.3.2 In an identifier 2.3
formal parameter 6,2
subject to a length clause 13,2 Urgency of a task

Unconstrained subtype 3.3. 3.3.2 lose: task priority.

[lsee also: constrained .ubtype, consatraint, subtype, type) Use clause Ito achieve direct visibility) .4; 8,3, D
Indication In a generic unit 12.3,2 loop also: context clause)

1-35 Type deflnion 0 Use clause

ANS//MIL-STD-1815A Ads Reference Manual

as a basic declarative item 3.9 Visibility 1.3; 8.2, D
as a later declarative Item 3,9 lsee also: direct visibility, hiding, Identifier, name, opera-
in a code procedure body 13,8 tion, overloading)
In a context clause of a compilation unit 10,1.1 and renaming 8,5

*In a context clause of a subunit 10,2 determining multiple meanings of an Identifier 8.4,
Inserted by the environment 10.4 8.7: 8.5Ie

determining order of compilation 10,3 .
U6LERROR (input-output exception) 14.4: 14,2,1, 14,2,3, due to a use clause 8.4
14.2.5, 14.3.3, 14,3,10, 14.6 of a basic operation 8,3

of a character literal 8.3
of a default for a generic formal subprmgram 12,3,6

* of a generic formal parameter 12.3
of a library uit due to a with claui, 8,0. 10.1.1

VAL (predefined attribute) 3.5.1: A of a name of an exception 11.2
of an operation declared In a package 7,4,2 'S

Value of an operator symbol 8.3
leas: assignment, evaluation, expression, Initial value, of a renaming declaration 8,5
returned value, subtype, task designated.,,, type] of a subprogram declared In a package 6,3

In a constant 3,2,1: 3.2 of declarations In a package body 7,3
In a task object 9.2 of declarations In a paokage epeclfoatlon 7,2
In a variable 3.2.1, 5.2; 3.2 of declarations In the package system 13.7
of an macsse type lose: object designated, task within a subunit 10,2
object designated)
of in array type 3.6; 3.6.1 lsee also: array, slice) Viiblifty by selection 8.3
of a based literal 2,4,2 less also: basic operation, character literal, operation,
of a boolean type 3.5.3 operator symbol, selected component)
of a character literal 2.5 o o l c o n
of a character type 3.5,2. 2.5, 2,6 Visible part (of a package) 7.2: 3.2,1, 7.4, 7,4.1, 7.4.3, D
of a decimal literal 2,4.1 [see also: deferred constant declaration, private type
of a fixed point type 3.5.9, 4.5,7 declaration)
of a floating point type 3.5.7, 4.57 expanded name denoting a declaration In a visible
of a record type 3,7 part ,2
of a record type with dlsmrlmlnents 3.7.1 scops of a declaration In a visible part 4.1.3
of a string literal 2.6, 2.10 use clause nornng the pakage 8.4
of a task type (see: task designated) visibility of a declaration In a viskble p.rt 8,3
returned by a function call (ess: returned value]vsly ad roiase r6

VALUE (pradefined attribute) 2.5.: A
W el .' , ' 't.'

Variable 3.2.1; D lase: selective walt, taSk suspension)
ses, also: object, sh,•,•ed varlablel

Ja oi actual pa umeter 5.2 While ioop
declared In a package body 7,3 [lee: loop statement)
formal parameter 6.2
In an assignmernt statement 5.2 WIDTH (predeflned attribute) 3.5.5; A
o# an array type as destination of an assignment
5.2.1 With clause 10.1.: D
of a private type 7,4,1 lees also: context clause]
renamed 8.5 determining order of oompilation 10.3
that is a slice 4,112 determining the Implicit order of library unitse .6

in a context clause of a compilation unit 10,1,1
Variable declaration 3.2.1 in a context clause of a subunit 10,2

Inserted by the environment 10.4
Vadint 3,7.3; 4.1.3 leading to direct visibility 8,3

slie also: component clause, record type)
in a variant part 3,7,3 WRITE linput-output procedure)

in an Instance of diretUo 14,24; 14.1, 14.2,14.2.5
Variant part 3.7.3; D In an Instance of squentllalo 14.2.2: 14.1, 14,2,

[see also: dependence on a dlecrlmlnnt] 14.2,3
In a component list 3,7
In a re•ord aggregate 4.3.1

Writing to en output file 14.1, 14,2.2, 14.2.4
Vertiaml bar character 2.1

replacement by exclamation character 2,10
Vertical bar delimiter 2.2 Xor operator

losv: logical operator]

Vertical tabulation format offector 2.1

Violation of a constraint
lesee constrailnLorror exception) YEAR (predefined function) .6.

Use-error * Year 1-36
L

This postscript Ir nt part of the standard definition of the Ada prgramming language.]

Postsrlpt : Submission of Comments

For submission of comments on this standard Ads reference manual, we would appreciate them being sent

by Arpanet to the address

Ada-Comment at ECLB.

If you do not have Arpanet access, plaes" send the comments by mall

Ada Joint Program Office
Office of the Under Secretary of Defense Research and Engineering
Washington, DC 20301 .
United States of America.

For mail comments, It will assist us If you are able to send them on 8-Inch single-sided single-density IBM
format diskette - but even If you can manage this, pies*@ also send us a paper copy, In case of problems "
with reading the diskette.

All comments are sorted and processed mechanically In order to simplify their snalysls and to facilitate glv-
Ing them proper consideration. To aid this process you are kindly requested to precede each comment with
a three line header

Ivsrelon 1983

Itopic ...

* The section line includes the section number, the paragraph number enclosed in parentheses, your name or
affiliation (or both), and the date In ISO standard form (year-month-day), The paragraph number Is the one
given In the margin of the paper form of this document (it Is not contalned In the ECLB files): paragraph
numbers are optional, but very helpful. As an example, here Is the section line of comment 01194 on a
previous version:

Isctlon 03.02.01(12) D Tafft 82-04-20

The version line, for comments on the current standard, should only contain "Iversion 1983", Its purpose is
to distinguish comments that refer to different versions,

The topic line should contain a one line summary of the comment, This line Is essenti!,l, and you are kindly
asked to avoid topics such as "Typo" or "Editorial comment" which will not convey any Information when
printed In a table of contents. As on example of an Informative topic line consider:

Itoplo Suboomponents of constants are constants

" Note also that nothing prevents the topic line from Including all the Information of a comment, as in the fol..
lowing topic line:

SItopic Insert %., are (implicitlyl defined by a subtype declaration"

As a final example here Is a complete comment received on a prior version of this manual:

"sectlon 03.02,01(12) D. Tafft 82-04-26
Iverslon 10
Itopic Suboomponents of constants are constants

Change "component" to "subcomponent" in the last sentence,

SOtherwise the statement Is Inconsistent with the defined use of subcomponent In 3,3,
which says that subcomponents are excluded when the term component Is used Instead
of subcomponent,

A. . . . I I . . .i.

