
“mac-
s
e rules
nstructs

eir per-
can

n-

code
body
e size
e ex-

a text
is ob-
 now

of such
ace, the

0

Ace: a syntax-driven C preprocessor

James Gosling

July, 1989

Abstract

This document presents theace preprocessor for C programs. Unlikecpp,
which operates on characters,ace operates on syntax trees. The user specifies
syntax trees which are used as templates against which program fragments are
matched. Positive matches cause trees to be rewritten.Acecan be used as a spe-
cial-purpose optimizer that can be controlled by the programmer.

1. Introduction
Ace is a preprocessor for C programs, a sort of “macro processor” in the spirit of cpp. Unlike cpp, ace
ros” do not operate on strings of characters, they operate on syntax trees. Instead of macros, ace harules.
A rule consists of a pattern in the form of a syntax tree, and a replacement, also a syntax tree. Thes
cause instances of the pattern to be replaced in the program tree. Ace reads in a C source program, co
its syntax tree, performs any replacements, and writes the tree out as a C program.
The design of ace was motivated by a desire to perform transformations on algorithms to improve th
formance, without impacting their readability and maintainability. As an example of the kind of thing it
do, consider this code fragment:

for (i = 0; i<10; i++)
if(da > 0) A[i] ++;
else A[i] --;

The test in the inner loop,da>0 , is loop-invariant: it doesn’t change from one trip through the loop to a
other. This loop can be rewritten as:

if (da > 0)
for (i = 0; i<10; i++) A[i]++;

else
for (i = 0; i<10; i++) A[i]--;

Eliminating this is a form of code motion that no compilers use since it leads to an exponential growth in
size, but in some cases it is justified.The exponential code growth comes from the fact that much of the
of the loop is replicated. Each one of these invariant tests that is removed from a loop body doubles th
of the code. But in some circumstances, like the inner loop of a vector drawing routine, this cost in cod
pansion is gladly paid.
Often the way that people deal with optimizations like this is that they expand the code by hand with
editor. But once this is done, the original code is destroyed and the relationships between the parts
scured. If you wanted to change, for example, the upper bound on the loop from 10 to 11, you would
have to change it in two places rather than one. When the loop body becomes large, and the number
special cases becomes large, doing this transformation by hand becomes a major undertaking. Using
second piece of code can be generated from the first by prefixing it by one line, like so:

$pullout(da > 0)
for (i = 0; i<10; i++)

if(da > 0) A[i] ++;
else A[i] --;

Sun Microsystems, Inc 2550 Garcia Avenue Mountain View, CA 94943 (415) 960-130

ements

1, $2 ...

eta
$f2...

-

nt be-
 state-
2. Rules
Ace understands the syntax of C with a few additions. To avoid name clashes,ace considers $ to be a legal
character in identifiers. By convention, names specific toace start with $. The most important addition is
the$replace statement. It looks like this:

$replace statement1 $with statement2

This defines a rule that causes all occurrences ofstatement1 to be replaced bystatement2. Statement1 is a
template. Since expressions are syntactically statements in C, $replace can be used to define replac
for expressions as well as statements:

$replace sqrt(4); $with 2;
a = sqrt(4);

sqrt(4) in the second line will be replaced by2. $replacedefinitions are applied to the rest of the file.
When multiple templates match a tree, the one from the earliest$replace statement applies.
The templates can contain unbound meta variables that match anything. These are the symbols $0, $
For example:

$replace !($0<$1); $with $0>=$1;
if (!(a<b+3))

!(a<b+3) will be replaced bya>=b+3 . Sometimes it’s necessary to restrict the matches of these m
variables. One restriction is to trees that are side-effect free. Such matches are indicated with $f0, $f1,
For example:

$replace $f0 = $0; $with $0;
a = a;
*p++ = *p++;

The first assignment statement,a=a would be replaced bya, since evaluatinga has no side effects. The
second assignment wouldn’t be replaced sincep++ has a side effect.Ace is reasonably clever about state
ments and will eliminate those that have no side effects, so replacinga=a in a statement context witha caus-
es the whole statement to be eliminated. Butb=2*(a=a) would becomeb=2*a .
$LET is a special function thatace understands:

$LET(a 0,a 1,a 2,a 3,...,a n)

This temporarily defines rules that replacea0 with a1, a2 with a3, ... inan. For example$LET(a,

1, a+b) would expand to1+b .
As a useful piece of syntactic sugar,ace extends the C language withprefix statements. A prefix statement
is just a statement that has been prefixed by something that looks like a procedure call. The stateme
comes a last argument to the procedure call. This procedure call will normally be transformed into a
ment byace rules. These prefix statements are defined with the$defprefix procedure:

$defprefix($let, $LET);

This defines$let to be a prefix statement that is replaced by a call of the $LET function:

$let(a,1) {
b = a+1;
print(a);

}

becomes

{
b = 2;
print(1);

}

Unlike cpp, one doesn’t have to insert parenthesis all over the place in ace rules:

$replace angle($0); $with $0->angle;

Whenacerewritesangle(*p) , $0 matches*p . When the syntax tree is finally printed,acecorrectly
- 2 -

e
s will
is used

sing

that use
tunities

 other-
econd
tes
ules are
There

ts ar-
inserts parenthesis based on operator priorities to yield(*p)->angle .

3. Time/Space tradeoffs
Ace has a facility that allows you to make time/space tradeoffs:

$tradeoff(code 1, code 2)

picks either code1 or code2 depending on a time/space tradeoff. Presumably, code1 and code2 perform the

same computation, only in different ways.Ace will estimate the time used by each code fragment and th
space used. To aid in its computation of a time estimate, it needs to know the probability that branche
go one way or another and it needs to know the expected number of trips through a loop. $Replace
to tell ace the probability that a boolean expression will be true:

$replace $P(e); $with c;

This says that the probability thatewill be true isc. These probability specifications are used inif andswitch
statements to determine the probability of execution of each clause. Ifacecannot determine the probability
of some expression, it will assume that all clauses are equally likely.
The expected number of trips through a loop is specified by prefixing it with $trips:

$trips(100)
for(i=0; i<100; i++) { ... }

This tellsace that the for loop is expected to be executed about 100 times.
Based on this information, and two parameters,ace will pick one of the two code fragment parameters of
$tradeoff to replace $tradeoff. The two parameters arepthreshandmingain. Pthreshis a probability thresh-
old: If the probability of executing a particular $tradeoff exceedspthresh then the time-efficient code frag-
ment will be chosen, otherwise the space-efficient fragment will be chosen.mingain specifies a minimum
percentage time gain. If the code fragment chosen bypthreshdoesn’t gain at leastmingainpercent in time,
the space-efficient code fragment will be chosen.

4. Rule Application Order
Once the source has been parsed,Aceapplies the rules that have been defined. They are applied by traver
the parse tree from the root. It attempts to apply rules to a nodeboth beforeand after the rules have been
applied to its subnodes. Rules are applied before so that rules which change the ruleset (e.g. those
let) behave properly. They’re also applied after in case the transformed subnodes expose new oppor
for rule application.
This can cause some subtle interactions. Consider the following:

$replace log2(2); $with 1;
$replace constant($c0); $with 1;
$replace constant($0); $with 0;
constant(1)
constant(a)
constant(log2(2))

The intent of the constant rule is that it should evaluate to true if it’s argument is a constant, and false
wise. Because of the ordering of the definitions, this should be so: If the argument is a constant, the s
rule will be applied, yielding true. If it isn’t, the third will be applied, yielding false. Constant(1) evalua
to true, and constant(a) evaluates to false. But constant(log2(2)) evaluates to false because when the r
applied before reducing the argument to constant, the third rule is used since log2(2) isn’t a constant.
is a way around this:

$replaceafter constant($0); with 0;

If a rule is defined with $replaceafter rather than with $replace, it will only be applied to a node after i
guments have been reduced.

5. Building on ace
Using ace, we can define DeMorgan’s law:
- 3 -

t can be

code
ing the
$replace ! ($0 && $1); $with ! $0 || !$1;
$replace ! ($0 || $1); $with ! $0 && !$1;

Then there are a number of rules that are used in conjunction with these:

$replace ! ($0 == $1); $with $0 != $1;
$replace ! ($0 != $1); $with $0 == $1;
$replace ! ($0 >= $1); $with $0 < $1;
$replace ! ($0 <= $1); $with $0 > $1;
$replace ! ($0 > $1); $with $0 <= $1;
$replace ! ($0 < $1); $with $0 >= $1;
$replace ! !$0; $with $0;

Now we can define a more subtle rule:

$replace $assume($0, $1);
$with $let($0, 1, !$0, 0, $1);

This rule causes code fragment $1 to be compiled, assuming that $0 is true, and that !$0 is false:

$defprefix($ASSUME, $assume);
$ASSUME(a<0) {

if (a>=0) print("true");
else print ("false");

}

This is transformed into justprint("false") . $Assume will replacea<0 with 1, and!(a<0)
with 0. Other rules ensure that!(a<0) is replaced bya>=0 , which is replaced by0. Theif now has a
constant to test, so the true clause is eliminated. There are many special cases of the assume rule tha
defined. Because of the ordering rule of template matching, they have to precede the general rule:

$replace $assume($0 == $1, $2);
$with $let($0, $1, $2);
$replace $assume($0 < $1, $2);
$with $let($0<$1, 1,

$0>=$1, 0,
$0<=$1, 1,
$0==$1, 0,
$0 != $1, 1, $2);

$replace $assume($0 > $1, $2);
$with $let($0>$1, 1,

$0<=$1, 0,
$0>=$1, 1,
$0==$1, 0,
$0 != $1, 1, $2);

$replace $assume($0 && $1, $2);
$with $assume($0, $assume($1, $2));

Using these, we can now define the$pullout prefix that was used at the beginning of this description:

$defprefix($pullout, $pulloute);
$defprefix($LET, $let);
$replace $pulloute($0, $2);
$with if($0)

$assume($0, $2);
else

$assume(!$0, $2);

In other words, to pull a test out of a code fragment, perform the test, and when it’s true execute the
assuming that the test is true, and when it’s false, execute the code assuming that it’s false. Repeat
example from the beginning of this paper:

$pullout(da > 0)
for (i = 0; i<10; i++)

if(da > 0) A[i] ++;
else A[i] --;

This gets expanded to:
- 4 -

ion that
if (da>0)
$ASSUME(da > 0)

for (i = 0; i<10; i++)
if(da > 0) A[i] ++;
else A[i] --;

else $ASSUME(!(da > 0))
for (i = 0; i<10; i++)

if(da > 0) A[i] ++;
else A[i] --;

The ASSUME clauses cause this to become:

if (da>0)
for (i = 0; i<10; i++)

if(1) A[i] ++;
else A[i] --;

else
for (i = 0; i<10; i++)

if(0) A[i] ++;
else A[i] --;

And constant collapsing eliminates the innerifs, yielding:

if (da>0)
for (i = 0; i<10; i++)

A[i] ++;
else

for (i = 0; i<10; i++)
A[i] --;

Tradeoff() can be used to make $pullout() much more powerful:

$replace $pulloute($0, $2);
$with $tradeoff($0 ? $assume($0, $2)

: $assume(!$0, $2),
$2);

This pulls $0 out of $2 only if there is a useful performance gain.Note: ace treats ? andif identically.

6. More mundane uses
Ace can be used much like cpp to define procedures that are expanded inline, with the added attract
it’s easy to define special cases for parameters that are known at compile time:

/* bool(a,b,op) executes a boolean operation specified by op */
$replace bool($0,$1,0); $with $0|$1;
$replace bool($0,$1,1); $with $0&$1;

It can, of course, match parameters other than constants:

$replace Get_Context($0, CTX_CLIP); $with $0->CTX_CLIP;

It can provide default parameters to procedure calls:

$replace atan2($0); $with atan2($0, 1);

It can be used to define iterators for special data types:

/* shape iterator */
$defprefix($scanshape, $scanshapee);
$replace $scanshapee($0, $1);/* (shape, code) */
$with {

register ENTRY *sptr = Get_Shape($0, SHAPE_DATA);
short x0,

y0,
x1,
y1;

while (*sptr != Y_EOL) {
y0 = *sptr++;
y1 = *sptr++;
while (*sptr != X_EOL) {
- 5 -

at put

h
u’ll

d by

cci-

,

sing
library,
depths
n out
l

x0 = *sptr++;
x1 = *sptr++;
$1;

}
sptr++;

}
}

This example uses the special prefix syntax so that it can be invoked this way:

$scanshape(thisshape) {
printf("%d, %d, %d, %d\n", x0, y0, x1, y1);
FillRectangle(x0, y0, x1, y1);

}

7. Acknowledgements
A special thanks to Patrick Naughton for being a guinea pig user. And to the whole “Shapes” team th
up with mysterious things breaking.

Appendix 1. Invoking ace
ace [-time] [-space] [-lnc] [-nln] [-pthresh n]

[-mingain m] [-Qpath path] [-o ofile] ifile

-pthresh n Sets thepthresh parameter to n. See the section on time/space tradeoffs

-time Optimize for time. It’s the same as-pthresh 0.
-space Optimize for space. It’s the same as-pthresh 1.
-lnc Line numbers as comments: each line generated byace will be prefixed with a

comment that tells what line of the input file it came from. This is a good switc
to use for debugging since dbx will step through the expanded output, but yo
be able to find the code in the original source.

-nln No line numbers. This should be used if you want to read the code generate
ace. It removes the clutter left by line numbers.

-mingain m Sets themingain parameter tom. See the section on time/space tradeoffs.

-Qpath path Causesace to look inpath for cpp. Normally it just looks in /lib and /usr/lib.

-o ofile Sends the generated output toofile. The default is standard out.Ofile will be un-
linked before it is created, and it will be created with mode 444, to prevent a
dental editing.

-ifc Includes comments after eachif andelsethat indicate what’s true and what’s false
according to containing if statements.

Ace pipes its input throughcpp and takes all parameters thatcpp would accept and passes them on to it.

Appendix 2. A Large Example
As an example of howace can be used in a real-world example, here is a routine for drawing vectors u
Bresenham’s algorithm. It is almost exactly the same as the vector routine that appears in the Shapes
except that the code to support clipping has been eliminated. But is does handle several framebuffer
(1, 8 and 32 bits per pixel), plane masks, and all 16 rasterop codes. Normally the inner loop is writte
many times for the various special cases. Here, it is written once, andaceis used to generate all of the specia
cases:

sh_fb_VecPt(ras, X1, Y1, X2, Y2)
 RASTER ras;
{
 register short count;
 register int err;
 register int erra;
 register int errb;
 int plane_enable = FB_plane_enable,
 dx, dy, left, lineiny;
- 6 -

ases.
iated.
 ex-
.

 if (Y1 > Y2) {
swap_coord(X1, X2, left);
swap_coord(Y1, Y2, left);

 }
 dy = Y2 - Y1;
 dx = X2 - X1;
 if (left = (dx < 0))

dx = -dx;
 if (lineiny = (dy > dx)) {

count = dy + 1; erra = dx << 1; errb = dy << 1;
err = left ? 1 - dy : -dy;

 } else {
count = dx + 1; erra = dy << 1; errb = dx << 1;
err = -dx;

 }
 $switchout(DEPTH, ras->RAS_DEPTH, SH_SUPPORTED_DEPTHS) {

register int bpsl = ras->RAS_LINEBYTES;
PIXCOLOR(color, FB_col, DEPTH);
PIXROP(ropcode, (int) FB_rop, color, DEPTH);
PIXPTR(pix, DEPTH);
PIXMASK(mask, DEPTH);
initpixelpointer_no(ras, pix, mask, X1, Y1, DEPTH);
--count; /* $repeat(count) generates count+1 loops */
$fastrops(ropcode, DEPTH)
 $alwayspulloutiff((FB_disp & FB_DRAW_PLANES) == 0,

 plane_enable == ~0)
 $alwayspullout(erra != 0)
 $alwayspullout(lineiny == 0)
 $alwayspullout(left == 0)
 $repeat(count) {
 writepixel(pix, mask, DEPTH,

 ropcode, color, plane_enable);
 if (lineiny == 0)

if (left == 0)
 RIGHTSTEP(pix, mask, DEPTH);
else
 LEFTSTEP(pix, mask, DEPTH);

 else
DOWNSTEP_STRIDE(bpsl, pix, DEPTH);

 if (erra != 0)
if ((err += erra) >= 0) {
 err -= errb;
 if (lineiny != 0)

if (left == 0)
 RIGHTSTEP(pix, mask, DEPTH);
else
 LEFTSTEP(pix, mask, DEPTH);

 else
DOWNSTEP_STRIDE(bpsl, pix, DEPTH);

}
}

 }
}

Running this throughace yields a 20 page source file that contains expanded code for all the special c
As you can see, the inner loops are all very tight. The following listing has been substantially abbrev
The expansion of the$repeat macro is especially interesting: it is machine dependent. In this case it
pands todo { ... } while (--count != -1) , which is compiled on a 68020 into a dbra instruction

int sh_fb_Vect(ras, X1, Y1, X2, Y2)
 RASTER ras; {
 register short count;
 register int err;
 register int erra;
- 7 -

ode

de is
 register int errb;
 int plane_enable = sh_fb_attrs.plane_enable, dx, dy, left, lineiny;
 if (Y1 > Y2) {
 left = X1;
 X1 = X2;
 X2 = left;
 left = Y1;
 Y1 = Y2;
 Y2 = left; }
 dy = Y2 - Y1;
 dx = X2 - X1;
 if (left = dx < 0)
 dx = - dx;
 if (lineiny = dy > dx) {
 count = dy + 1;
 erra = dx << 1;
 errb = dy << 1;
 err = left ? 1 - dy : - dy; }
 else {
 count = dx + 1;
 erra = dy << 1;
 errb = dx << 1;
 err = - dx; }
 switch (ras->RAS_DEPTH) {
 case 1: {
 register int bpsl = ras->RAS_LINEBYTES;
 int color = sh_fb_attrs.col;
 int ropcode = color ? mono_remap1[(int) sh_fb_attrs.rop] :

mono_remap0[(int) sh_fb_attrs.rop];
 register unsigned short *pix;
 register unsigned short mask;
 pix = (unsigned short *) (ras->RAS_DATA + (short) ras->RAS_LINEBYTES*
 (short) Y1 + (X1 >> 3 & -2));
 mask = 32768 >> (X1 & 15);
 --count;
 switch (ropcode) {
 case 14:
 if (erra != 0) {
 if (lineiny == 0) {
 if (left == 0)

Monochrome (1 bit deep), going right, x is the major axis, the line is neither horizontal nor vertical, and the ropc
is SRC.
 do {
 *pix |= mask;
 if ((mask >>= 1) == 0) {
 mask = 32768;
 pix++; }
 if ((err += erra) >= 0) {
 err -= errb;
 pix = (unsigned short *) ((int) pix + bpsl); } }
 while (--count != -1);
 else

Monochrome (1 bit deep), going left, x is the major axis, the line is neither horizontal nor vertical, and the ropco
SRC.
 do {
 *pix |= mask;
 if ((mask = (unsigned short) (mask << 1)) == 0) {
 mask = 1;
 pix--; }
 if ((err += erra) >= 0) {
 err -= errb;
 pix = (unsigned short *) ((int) pix + bpsl); } }
 while (--count != -1);
- 8 -

ode

d the
 else

Monochrome (1 bit deep), going right, y is the major axis, the line is neither horizontal nor vertical, and the ropc
is SRC.
 if (left == 0)
 do {
 *pix |= mask;
 pix = (unsigned short *) ((int) pix + bpsl);
 if ((err += erra) >= 0) {
 err -= errb;
 if ((mask >>= 1) == 0) {
 mask = 32768;
 pix++; } } }
 while (--count != -1);
 else
 do {
 *pix |= mask;
 pix = (unsigned short *) ((int) pix + bpsl);
 if ((err += erra) >= 0) {
 err -= errb;
 if ((mask = (unsigned short) (mask << 1)) == 0) {
 mask = 1;
 pix--; } } }
 while (--count != -1);
 else
 if (lineiny == 0) {
 if (left == 0)
 do {
 *pix |= mask;
 if ((mask >>= 1) == 0) {
 mask = 32768;
 pix++; } }
 while (--count != -1);
 else
 do {
 *pix |= mask;
 if ((mask = (unsigned short) (mask << 1)) == 0) {
 mask = 1;
 pix--; } }
 while (--count != -1);
 else
 do {
 *pix |= mask;
 pix = (unsigned short *) ((int) pix + bpsl); }
 while (--count != -1);
 break;
.
.
.
 case 8: {
 register int bpsl = ras->RAS_LINEBYTES;
 register int color = sh_fb_attrs.col;
 int ropcode = (int) sh_fb_attrs.rop;
 register unsigned char *pix;
 pix = ras->RAS_DATA + (short) ras->RAS_LINEBYTES*(short) Y1 + X1;
 --count;
 switch (ropcode) {
 case 12:
 if ((sh_fb_attrs.disp & 1) == 0) {
 if (erra != 0) {
 if (lineiny == 0) {
 if (left == 0)

8 bit deep pixels, going right, x is the major axis, the line is neither horizontal nor vertical, all planes enabled, an
ropcode is SRC.
- 9 -

d the

de is

, and
 do {
 *pix = color;
 ++pix;
 if ((err += erra) >= 0) {
 err -= errb;
 pix += bpsl; } }
 while (--count != -1);
 else

8 bit deep pixels, going left, x is the major axis, the line is neither horizontal nor vertical, all planes enabled, an
ropcode is SRC.
 do {
 *pix = color;
 --pix;
 if ((err += erra) >= 0) {
 err -= errb;
 pix += bpsl; } }
 while (--count != -1);
.
.
. else
 if (lineiny == 0) {
 if (left == 0)

8 bit deep pixels, going right, x is the major axis, the line is horizontal, not all planes are enabled, and the ropco
SRC.
 do {
 *pix = color & plane_enable | *pix & ~plane_enable;
 ++pix; }
 while (--count != -1);
 else
 do {
 *pix = color & plane_enable | *pix & ~plane_enable;
 --pix; }
 while (--count != -1);
 else
 do {
 *pix = color & plane_enable | *pix & ~plane_enable;
 pix += bpsl; }
 while (--count != -1);
 break;
.
.
.
 case 32: {
 register int bpsl = ras->RAS_LINEBYTES;
 register int color = sh_fb_attrs.col;
 int ropcode = (int) sh_fb_attrs.rop;
 register unsigned char *pix;
 pix = ras->RAS_DATA + (short) ras->RAS_LINEBYTES*(short) Y1 + X1*
 4;
 --count;
 switch (ropcode) {
 case 12:
 if ((sh_fb_attrs.disp & 1) == 0) {
 if (erra != 0) {
 if (lineiny == 0) {
 if (left == 0)

32 bit deep pixels, going right, x is the major axis, the line is neither horizontal nor vertical, all planes enabled
the ropcode is SRC.
 do {
 *(int *) pix = color;
 pix += 4;
 if ((err += erra) >= 0) {
 err -= errb;
- 10 -

s SRC.

 SRC.

he
 pix += bpsl; } }
 while (--count != -1);
.
.
.
 else
 if (lineiny == 0) {
 if (left == 0)

32 bit deep pixels, going right, x is the major axis, the line is horizontal, all planes enabled, and the ropcode i
 do {
 *(int *) pix = color;
 pix += 4; }
 while (--count != -1);
 else

32 bit deep pixels, going left, x is the major axis, the line is horizontal, all planes enabled, and the ropcode is
 do {
 *(int *) pix = color;
 pix -= 4; }
 while (--count != -1);
 else

32 bit deep pixels, going neither left nor right, y is the major axis, the line is vertical, all planes enabled, and t
ropcode is SRC.
 do {
 *(int *) pix = color;
 pix += bpsl; }
 while (--count != -1);
- 11 -

	Ace: a syntax-driven C preprocessor
	James Gosling
	July, 1989
	Abstract
	1. Introduction
	2. Rules
	3. Time/Space tradeoffs
	4. Rule Application Order
	5. Building on ace
	6. More mundane uses
	7. Acknowledgements
	Appendix 1. Invoking ace
	Appendix 2. A Large Example

