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Abstract particular operating system, itself depending on a patticu

. _ , lar hardware configuration. In the worst case, a user in the
Foundationis a preservation system for users’ persongisiant future might need to replicate an entire hardware-

digital artifacts. Foundation preserves all of a user'sadagoﬁware stack to view an old file as it once existed.

and its dgpenQencies—fonts, programs, plugins, kernelg, nyationis a system that preserves users’ personal
and conﬁguratlo_n state—t_>y archiving nightly snapshojgyii) artifacts regardless of the applications with whic
of the gser’s entlre_hard disk. Users can browse_ thro y create those artifacts and without requiring any
these images to view old data or recover accident Yeservation-specificfiort on the users’ part. To do so,

deleted files. To access data that a user’s current envirg lermanently archives nightly snapshots of a user's en-
ment can no longer interpret, Foundation boots the di -

ran, a future user can view a file exactly as it was. To limit
This paper describes Foundation's archival storagf: hardware that future emulators must support, Foun-
layer, which uses content-addressed storage (CAS) todgtion confines users’ environments to a virtual machine.
tain nightly snapshots of users’ disks indefinitely. Cutremioday’s virtual machine monitor thus serves as the tem-
state-of-the-art CAS systems, such as Venti [34], requﬂ@te for tomorrow’s emulator.
multiple high-speed disks or other expensive hardware taysing emulation for preservation is not a new idea (see,
achieve high performance. Foundation’s archival storaggy. [15, 35, 38]), but by archiving a complete image of a
layer, in contrast, matches the storagjéceency of Venti yser’s disk, Foundation capturat of the user's data, ap-
using only a single USB hard drive. Foundation archiv@gcations, and configuration state as a singtnsistent
disk snapshots at an average throughput of 2YVéd ynit. By archiving a new snapshot every night, Foundation
restores them at an average of 14 jdBmore than an or- prevents the installation of new applications from interfe
der of magnitude improvement over Venti running on thgg with a user's ability to view older data—e.g., by over-
same hardware. Unlike Venti, Foundation does not rely iiting the shared libraries on which old applications de-

the assumption that SHA-1 is collision-free. pend with new and incompatible versions [8]. Users view
. each artifact using the most recent snapshot that correctly
1 Introduction interprets that artifact. There is no need for them to man-

ually create an emulation environment particular to each

We are “living in the midst of digital Dark Ages” [23].
9 9 9 [23] glifact, or even to choose in advance which artifacts will

As computer users increasingly store their most perso q
data—photographs, diaries, letters—only in digital for € preserved.

they practically ensure that it will be unavailable to fugur Of_clc:.urﬁe, such cf;omp_reher)sanle archmr;}g IS nfot with-
generations [28]. out risk: the cost of storing nightly snapshots of users

Considering only the cost of storage, this state of a3[sks indefinitely may turn out to be prohibitive. On the
fairs seems inexcusable. A half-terabyte USB hard dri fner hand, the Plan 9 system archived nightly snapshots

YFits file syst WORM jukebox f 32,33
now costs just over $100, while reliable remote stora s e system on a jukebox for years [32, 33],

has become an inexpensive commadity: Amazon's S3 %%J?d the subsequent Venti system [34] drastically reduced
vice [1]. for example. charges only $0/E8B/month. e storage required for those archives by using content-

addressed storage (CAS) [18,44] to automatically identify
Alas, mere access to the bits of old files does not impiyd coalesce duplicate blocks between snapshots.
the ability to interpret those bits. Some file formats may The plan 9 experience, and our own experience using
be eternal—JPEG, perhaps—butmost are ephemeral. Bul5_gisk Venti system to back up the main file server
thermor(_a,.the interpretation o_faparticul_ar file may requipf 5 research group at MIT, convinced us that content-
a non-trivial set of support files. Consider, for examplgqqressed storage was a promising technique for reduc-
thefile; needed to vievyaweb page_in its original form:tri’ﬁg Foundation’s storage costs. Venti, however, requires
HTML itself, the fonts it uses, the right web browser anghytiple, high-performance disks to achieve acceptable
plugins. The browser and plugins themselves depend og&hival throughput, an unacceptable cost in the consumer
setting in which we intend to deploy Foundation. A new
*Work done while at Intel Research, Berkeley design seemed necessary.




The core contribution of this paper is the design, ifArchived VM _ Active VM
plementation, and evaluation of Foundation’s contel Last year’s disk: Today’s disk:
addr_essed storage system.. This system is_ inspired ggggétér;%asystem, ggggt&rgg[asystem,
Venti [34], but we have modified the Venti design for cor.
sumer use, replacing Venti's expensive RAID array a

nd
Foundation Software

high speed disks with a single, inexpensive USB hg Virtual Machine Monitor FS Snapshot
; ; ; ; ; irtu i i

drive. Foundation achleyes high arch_lval throughput and Virtual Disk Emulator Server (SMB)

modest hardware by using a Bloom filter to quickly d¢ ) ;

tect new data and by making assumptions about the st
ture of duplicate data—assumptions we have verified
ing over a year of Venti traces. Our evaluation of the r '

sulting system shows that Foundation achieves read CAS Layer
write speeds an order of magnitude higher than Venti

the same hardware.
While we built Foundation for digital preservation, FiIeI:_ %(;/asltem HEai(rtgr[r)lglk Sto?a?g;go(tlgTP)

content-addressed storage is useful in other contexts, aft< _ _
we believe Foundation will enable other applications &fgure 1: Foundation system components. A Foundation user
CAS that were previously confined to the enterprise to ef{eks inside the active VM, which is archived daily to an ex-
ter the consumer space. As an anecdotal example, we g hard disk and (optionally) a remote location. Foioda

' resents archival file system data using SMB and enables user

that within our own households, most computers Shargoa}nterpret obsolete file formats by booting VM snapshabsnfr

Iarge percentage of their fiI_es—digitaI photos, music fiIe&ays or years past.
mail messages, etc. A designer of a networked household

backup server could easily reduce its storage needs9MB.! A user finds files from May 1, 1999, for example,
adopting Foundation as its storage system. in /snapshot/1999/05/01/. This gives the active VM ac-

In this paper, however, we focus on the CAS layer itseffess to old data, but it cannot guarantee that today’s sys-
To ground the discussion, Section 2 provides backgrougth will be able to understand the data. The fallback of
on the Foundation system as a whole. Sections 3-5 ti&ing able to boot the VM image provides that guarantee.
present the main contributions of the paper—the designfFoundation’s CAS layer providediient storage of
implementation, and evaluation of Foundation’s contentightly snapshots taken by the VM archiver. The CAS
addressed storage layer. Section 6 surveys related wéaker stores archived data on an inexpensive, external hard
Section 7 describes future work, and Section 8 concluddisk. Users can also configure the CAS layer to replicate

its archives onto a remote FTP server for fault tolerance.

2 Background: Foundation To protect users’ privacy, the CAS layer encrypts data be-
) ) fore writing to the external hard drive or replicating it. It

Figure 1 shows the major components of a Foundatigig signs the data and audits the local disk and replica to

system. The host operating system runs on the raw hadgtect corruption or tampering.
ware, providing a local file system and running Founda- a5 4 simple optimization, Foundation interprets the
tion. Users work inside the active VM, which runs a cofyariition table and file systems on the guest OS's disk to

\{en}ior?al OS like Windows XP or Linux atop Foundagentity any swap files or partitions. It treats such swap
tion’s virtual machine monito(VMM). The VMM stores space as being filled with zeros during archival.

virtual machine state (disk contents and other metadatai-he remainder of this section discusses the components

in the local file system. Every night, Foundatiomlstual ¢ o ndation in detail, starting with the VMM and con-
machine archivetakes a real-time snapshot of the aCtin‘?nuing through the VM archiver and CAS layer.

VM’s state, storing the snapshot in tBAS layer

In addition to taking nightly snapshots of the vmg2-1  Virtual Machine Monitor
state, the VM archiver also provides read-only acceSsundation uses VMware Workstation as its virtual ma-
to previously-archived disk images. The VMM uses thishine monitor. Foundation configures VMware to store
functionality to boot past images; the figure shows ahe contents of each emulated disk as a single, contiguous
archived VM snapshot running in a separate VM. Afle, which we call the disk image. VMware’s snapshot
a convenience, Foundation providedila system snap-
shot servetthat interprets archived disk images, present- *Providing the snapshot tree requires that Foundationpirgethe

; o fi : : rtition table and file systems on the guest OS's disk. Fatimd inter-
'ng each days file system SnapShOt ina synthetlc ﬂ:rréets extZ3 and NTFS using third-party libraries. Support for othes fil

tree (like Pl?m 9'5. dump file system [32] or NetApp’gystems is easy to add, and if no such library exists, a usealeays
.snapshot directories [17]) that VMs can access ovéijoot the VM image to access a file.

Virtual Machine Archiver




facility stores the complete state of a VM at a particu-
lar instant in time. Foundation uses this facility to acquir
consistent images of the VM’s disk image.

To take a snapshot, VMware reopens the disk imagg) disk image as of snapshofread-only)
read-only and diverts all subsequent disk writes to a new
partial disk image. To take a second snapshot, VMwal
reopens the first partial disk image read-only and diver
all subsequent disk writes to a second partial disk image\ writes since snapshkt1
A sequence of snapshots thus results in a stack of parti
disk images, with the original disk image at the bottom. To
read a sector from the virtual disk, VMware works down(b)
the stack (from the most recent to the oldest partial disk

image, ending with the original disk) until it finds a value
for that sector [2]. -
To discard a snapshot, VMware removes the snapshog: writes since snapshitl
partial disk image from the stack and applies the writes writes since snapshkt(read-only)
)

contained in that image to the image below it on the stac disk image as of snapshofread-only)
Notice that this procedure works for discarding any snap-
shot, not just the most recent one.

The usual use of snapshots in VMware is to record a
working state of the system before performing a dange
ous operation. Before installing a new application, for ex-
ample, a user can snapshot the VM, rolling back to thé)

snapshotted state if the installation fails. Figure 2: The VMware disk layers when the VM archiver
2.2 Virtual Machine Archiver archives disk image snapsheotl. (a) Before the snapshot. The
base VMware disk corresponds to snapdhatiready archived;

Foundation uses VMware’s snapshot facility both to obince then VMware has been saving disk writes in a parti& dis
tain consistent images of the disk and to track daiiyage layered on top of the base image. (b) During the snapsho
changes between such images. archival process. The VM archiver directed VMware to create

Foundation archives consistent images of the disk &8ew snapshok+1, adding a second partial disk image to the
follows. First, the VM archiver directs VMware to take &/SK stac:. The earlier patr)tial disk imagekconéiins or;llydlw

: : : : ctors that were written between snapska@sdk+1. The VM

shapshot of the active VM, causing future disk writes to lz%chiver saves these using the CAS layer. (c) After the SiTps

diverted into a new partial disk image. The archiver th%%s been archived. The VM archiver directs VMware to discard

reads the now'qu'esce_m original d'Sk_'mag(?’ storing it é'ﬂapshok. VMware applies the writes from the corresponding
the CAS layer along with the VM configuration state ang tia disk image to the base disk image and (d) discards the
metadata about when the snapshot was taken. Finally, $hgial disk image.

virtual machine archiver directs VMware to discard the
shapshot. Using a snapshots in this way allows Founda-

tion to archive a consistent disk image without suspendi&gthe now read-only partial disk image for snapskot

the VM or interrupting the user. Once those blocks have been saved, the VM archiver di-

Note that the above algorithm requires Foundation t@-is vMware to discard snapshomerging those writes
scan the entire disk image during the nightly archival prgsio the base disk image.

cess. For a large disk image, this process can take consid-
erable time. For this reason, Foundation makes further us&Jsing VM snapshots in this way allows Foundation to
of the VMM’s snapshotting facility to track daily changearchive a consistent image of the disk without blocking
in the disk image as illustrated in Figure 2. the user during the archival process. However, because
Between snapshots, the VM archiver keeps VMware Foundation does not yet use VMware’s “SYNC driver” to
a state where the bottom disk image on the stack céorce the file system into a consistent state before taking
responds to the last archived snapshot (say, snapghot snapshot, the guest OS may need to run a repair process
with VMware recording writes since that snapshot in such agsckwhen the user later boots the image. An alter-
partial disk image. To take and archive snapsket, nate approach would archive the machine state and mem-
the VM archiver takes another VMware snapshot, causiagy as well as the disk, and “resume”, rather than boot, old
VMware to push a new partial disk image onto the stacknapshots. We have not yet explored the additional storage
The VM archiver then archives only those blocks writtecosts of this approach.

writes since snapshkt

writes since snapshkt(read-only)
disk image as of snapsHofread-only)

writes since snapshkt1
disk image as of snapshetl (read-only)



2.3 CAS Layer

Foundation’s CAS layer provides the archival storage ser-
vice that the VM archiver uses to save VM snapshots. This i SHA-1

service provides a simpleadwrite interface: passing a aaf4c61ddccse8a2dabede0f3b482cd9aead434d
disk block towrite returns a short handle, angad, when
passed the handle, returns the original block. Internally,
the CAS layer coalesces duplicate writes, so that writing
the same block multiple times returns the same handle and
only stores one copy of the block. Coalescing duplicate 7c2114..] 4
writes makes storing many snapshots feasible; the addi- hello
tional storage cost for a new snapshot is proportionalonly L, T
to its new data. The rest of this paper describes the CAS 22?406"': > printf
layer in detail.

3 CAS Layer Design

Foundation’s CAS layer is modeled on the Venti [34]
content-addressed storage server, but we have adapted the index ~ datalog

Venti algorithms for use in a single-disk system and also (score, offset) pairs indexed by offset

optionally eliminated the assumption that SHA-1 is fréggure 3: Venti’'s on-disk data structures. The SHA-1 hash of

of collisions, producing two operating modes for Foundg-data block produces storg the top bits of which are used

tion: compare-by-hasandcompare-by-value as a bucket number in the index. The index bucket contains an
In this section, we first review Venti and then introduc?oiegsigtr%;g éf’;:;%ﬁ?;ggg@gﬂ& aén;ltg;atlngﬁset of the
Foundation’s two modes. We also discuss the expectedr ’

disk operations used by each algorithm, since those ceffset for the block using the two in-memory caches and
cerns drove the design. then the index, returning immediately if so. Otherwise, it
31 Venti Review appends the block to the log and updates its index and

caches before returning.

The Venti content-addressed storage server provideggie that Venti must read at least one block of its index
SHA-1-addressed block storage. When a client writt§satisfy a read or write that misses in both the block and
disk block, Venti replies with the SHA-1 hash of thg,gex caches. Because blocks’ scores are essentially ran-
block’s contents, called score that can be used to idenyom each such operation necessitates at least one seek to
tify the block in future read requests. The storage seryghj the index. In a single-disk system, these seeks limit
provides readvrite access to disk blocks, typically ranggnroughput toblock sizgseek time The Venti prototype

ing in size from 512 bytes up to 32 kilobytes. Venti client§yriped its index across eight dedicated, high-speed disks

conventionally store larger data streams in hash trees (al§ that it could run eight times as many seeks at once.
known as Merkle trees [29]).

As illustrated in Figure 3, Venti stores blocks in al
append-only data log and maintains an index that magile Venti was designed to provide archival service to
blocks’ scores to theirfisets in the log. Venti implementsmany computers, Foundation is aimed at individual con-
this index as a on-disk hash table, where each bucket cemmers and cannoffard multiple disks to mask seek la-
tains (score, log fiset) pairs for a subsection of the 160ency. Instead, Foundation stores both its archive and in-
bit score space. Venti also maintains two write-througlex on a a single, inexpensive USB hard drive and uses
caches in memory: thelock cachemaps blocks’ scoresadditional caches to improve archival throughput.
to the blocks’ values, and thiedex cachemaps blocks’  In compare-by-hash mode, Foundation optimizes for
scores to the blocks’ logftsets. two request types: sequential reads (reading blocks in the

Figure 4(a) gives pseudocode for the Venti read aodder in which they were originally written) and fresh
write operations. To satisfy a read of a block with a givesrites (writing new blocks).
score, Venti first looks in the block cache. If the block is Foundation stores its log as a collection of 16 M-
not found in the block cache, Venti looks up the blockisasand stores for each arena a sepasatemanfile that
offset in the log, first checking the index cache and thésts all of the (score, fiset) pairs the arena contaihi3o
the index itself. If Venti finds a logf@set for the block, it — _ , _ ,
reads the block from the log and returns the block. Oth- A" alternative approach—storing the index in Flash memory—

. . . would eliminate seek cost for reads but greatly increaseritfrites.
erwise, it returns an error (not shown). Writes are hafgrrent Flash memories require around 40 ms for randomswrite
dled similarly. Venti first checks to see if it has an existing 3This design was inspired by Venti's log arenas. We do not know
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3c8ecd..] 0

goodbye

again

df3904..] 3 world

3-2 Foundation: Compare-by-Hash Mode




(a) Venti

/I Return block named by score.
read(score):
if(data = blockcache.get(score))
return data;
offset = lookupscore(score);
data = log.read(offset);
blockcache.put(score, data);
return data;

/I Write data, returning score.
write(data):
score = SHA1(data);
if(lookupscore(score))
return score;
offset = log.write(data);
index.write(score, offset);
indexcache.put(score, offset);
blockcache.put(score, data);
return score;

/I Return log offset for score.
lookupscore(score):
if(offset = indexcache.get(score))
return offset;
if(offset = index.read(score))
indexcache.put(score, offset);
return offset;
return nil;

(b) Foundation: Compare by Hash

/I Return block named by score.
read(score):
if(data = blockcache.get(score))
return data;
offset = lookupscore(score);
data = log.read(offset);
blockcache.put(score, data);
return data;

/I Write data, returning score.
write(data):
score = SHA1(data);
if(lookupscore(score))
return score;
offset = log.write(data);
indexbuffemwrite(score, offset);
indexcache.put(score, offset);
blockcache.put(score, data);
bloomfilter.put(score);
return score;

/I Return log offset for score.
lookupscore(score):
if('bloomfilter.get(score))
return nil;
if(offset = indexcache.get(score))
return offset;
if(offset = index.read(score))
sum = log.summary(offset);
indexcache.pugnj;
return offset;
return nil;

(c) Foundation: Compare by Value

/I Read block named hffset
readpffse):
if(data = blockcache.get(offset))
return data;
/I No lookupscore!
data = log.read(offset);
blockcache.put(offset, data);
return data;

/I Write data, returningffset
write(data):
score = hash(data);
if(offset = lookupdata(data, scoje)
returroffset
offset = log.write(data);
indexbuffer.write(score, offset);
indexcache.put(score, offset);
blockcache.put(score, data);
bloomfilter.put(score);
returnoffset

/I Return log offset fodata
lookupdatddata, scorg
if('bloomfilter.get(score))
return nil;
for(offset in indexcache.get(score))
if(read(offset) == data)
return offset;
for(offset in index.read(score))
if(offset in indexcache.get(score))
continue;
if(read(offset) == data)
sum = log.summary(offset);
indexcache.put(sum);
return offset;
return nil;

Figure 4: Algorithms for reading and writing blocks in (a) Venti andudndation’s (b) compare-by-hash and (c) compare-by-value
modes. Italics in (b) mark fierences from (a): the addition of a Bloom filter, the use of fidnio batch index updates write,

and the loading of entire arena summaries into the indexecaftbr a miss imookupscoreltalics in (c) mark diferences from (b):
the use of log fisets to identify blocks, the use of an insecure hash funttidsientify potential duplicate writes, the possibility of
multiple index entries for a given score, and the need tolckgisting blocks’ contents against new datddokupdata

take advantage of the spatial locality inherent in sequarsts for out-of-order reads (reading blocks in iedent
tial reads, each time Foundation reads its on-disk indexaer than that in which they were written), sequential du-
find the log dfset of some block, it loads and caches thdicate writes (writing already-written blocks in the same
entire summary for the arena that spans the discoveted order in which they were originally written), and out-of-
set. Reading this summary costs an additional seek. Thider duplicate writes (writing already-written blocksain

cost pays £ in subsequent reads to the same arena,diferent order).
Foundation finds the logffsets of the fiected blocks in  Note that for out-of-order disk reads and for the first
the cached summary, avoiding seeks in the on-disk inddisk read in each arena, compare-by-hash mode is slower
Figure 5 summarizes the costs in disk operations n Venti, as it performs an additional seek to read the
each path through the pseudocode in Figure 4. In ad@iena summary. In return, Foundation performs subse-
tion to sequential reads and fresh writes, the figure sho@ent reads at the full throughput of the disk. Section 5
shows that this trad€bimproves overall throughput in
real workloads.

whether Venti's design was inspired by the log segments & [36].



(a) Venti

(b) Foundation: by Hash

(c) Foundation: by Value

Out-of-order read
seek-read index bucket
seek-read log block

seek-read index bucket
seek-read arena summary
seek-read log block

seek-read log block

Cost
2 seekst | +L reads

3 seeks |+L+S reads

1 seek L reads

Sequential read
same as out-of-order

if(first block in arena)
seekread index bucket
seek-read arena summary
seek to log block
read log block

if(first block in arena)
seek to log block
read log block

Cost
2 seekst | +L reads

(1A) x (3 seekst | +S reads)+ L reads

(1A) x 1 seek+ L reads

Out-of-order duplicate write
seek-read index bucket

seekead index bucket
seek-read arena summary

seek-read index bucket
(C+1) x seek-read log block
seek-read arena summary

Cost
1 seek+ | reads

(2 seeks 1+S reads)

C+3 seeks+ | +(C+1)L+S reads)

Out-of-order duplicate write — index entry cached

no disk operations

no disk operations

sealead log block

Cost
none

none

1 seek L reads

Sequential duplicate write
same as out-of-order

if(first block in arena)
same as out-of-order

if(first block in arena)
same as out-of-order
else
read log block

Cost
1 seek+ | reads

(1A) x (2 seekst+ | +S reads)

(1A) x (C+3 seekst | +(C+1)L+S reads)
+ (1-1/A) x L reads

Fresh write
seek-read index bucket
seek-write log block
seek-write index bucket

if(Bloom filter false positive)
seek-read index bucket
seek to end of log

write log block

if(index bufer full)
flush index bdfer

if(Bloom filter false positive)
seek-read index bucket
C x seek-read log block
seek to end of log

write log block

if(index bufer full)
flush index biffer

Cost

3 seekst | reads+ L+I writes

B x (2 seekst+ | reads}+ L writes
+ (/W) x 1 index bufer flush

B x (C+2 seekst+ | +CL readsi L writes
+ (/W) x 1 index bufer flush

Figure 5: Disk operations required to handle the fivefelient reativrite casesA is the number of blocks per arenB,is the
probability of a Bloom filter false positives is the probability of a hash collision,is the size of an index buckdlt,is the size of a
log data blockS is the size of an arena summary, aids the size of the write bter in index entries.

On fresh writes, Venti performs three seeks: one to reiad far less memory than the index itself, the Bloom filter
the index and determine the write is fresh, one to apperah check whether a given score is in the index, answer-
the new block to the log, and one to update the index witig either “probably yes” or “definitely no”. A “probably
yes” answer for a score thati®tin the index is called a

the block’s log dfset (see Figure 5).

Foundation eliminates the first of these three seeks
maintaining an in-memory Bloom filter [6] summariziné

fg*se positiveUsing enough memory, the probability of a
alse positive can be driven arbitrarily low. (Section 4-dis

the all of the scores in the index. A Bloom filter is a rar£USes sizing of the Bloom filter.) By first checking the in-

domized data structure for testing set membership.

(laemory Bloom filter, Foundation determines that a write



is fresh without reading the on-disk index in all but a smd#ss frequent, and decreases the index size, making flushes
fraction of these writes. faster when they do occur. Both changes improve the per-

By buffering index updates, Foundation also eliminatégrmance of fresh writes.
the seek Venti performs to update the index during a freshSection 5 presents a detailed performance comparison
write. When this bffer fills, Foundation applies the up-between Venti and Foundation’s two modes.
dates in a single, sequential pass over the index. FI’%SEI
writes thus proceed in two phases: one phase writes neéw
data to the log and fills the index updatefiien; a second It is worth asking what other disadvantages, other than
phase flushes the fiar. During the first phase, Foundadecreased write throughput, compare-by-value incurs in
tion performs no seeks within the index; all disk writesaming blocks by their logftsets.
sequentially append to the end of the log. In return, it The Venti paper lists five benefits of naming blocks by
must occasionally pause to flush the index updatéebu their SHA-1 hashes: (1) blocks are immutable: a block
Section 5 shows that this trad&amproves overall write cannot change its value without also changing its name;
throughputin real workloads. (2) writes are idempotent: duplicate writes are coalesced;
(3) the hash function defines a universal name space for
block identifiers; (4) clients can check the integrity of
In compare-by-value mode, Foundation does not assudata returned by the server by recomputing the hash; and
that SHA-1 is collision-free. Instead, it names blocks k) the immutability of blocks eliminates cache coherence
their log dfsets, and it uses the on-disk index only to ideproblems in a replicated or distributed storage system.
tify potentiallyduplicate blocks, comparing each pair of Benefits (1), (2), and (3) apply also to naming blocks
potential duplicates byte-by-byte. by their log dfsets, as long as the log is append-only. Log

While we originally investigated this mode due to (imvrites are applied at the client in Foundation—the remote
our opinion, unfounded) concerns about cryptograplstorage service is merely a secondary replica—so (5) is
hash collisions (see [5, 16] for a lively debate), weot an issue. Foundation’s compare-by-value mode par-
were surprised to find that its overall write performandilly addresses benefit (4) by cryptographically signing
was close to that of compare-by-hash mode, despite the log, but naming blocks by their hashes, as in compare-
added comparisons. Moreover, compare-by-valualis by-hash mode, still provides a more end-to-end guarantee.
waysfaster for reads, as naming blocks by their Idtgets ~ Our own experience with Venti also provides one ob-
completely eliminates index lookups during reads. scure, butinteresting case in which naming blocks by their

The additional cost of compare-by-value mode can B#1A-1 hashes provides a small but tangible benefit. A si-
seen in thdookupdatafunction in Figure 4(c). For eachmultaneous failure of both the backup disk and the remote
potential match Foundation finds in the index cache or theplica may result in the loss of some portion of the log,
index itself, it must read the corresponding block from thadter which reads for the lost blocks will fail. In archiv-
log and perform a byte-by-byte comparison. ing the user’s current virtual machine, however, Founda-

For sequential duplicate writes, Foundation reads then may encounter many of the lost blocks. When it does
blocks for these comparisons sequentially from the logp, it will append them to the log as though they were
Although these reads consume disk bandwidth, they rew, but because it names them by their SHA-1 hashes,
quire a seek only at the start of each new arena. For diiey will have the same names they had before the fail-
of-order duplicate writes, however, the relative cost ofe. As such, subsequent reads for the blocks will begin
compare-by-value is quite high. As shown in Figure Succeeding again. In essence, archiving current data can
Venti and compare-by-hash mode complete out-of-ordg@metimes “heal” an injured older archive. We have used
duplicate writes without any disk activity at all, whereais technique successfully in the past to recover from cor-
compare-by-value mode requires a seek per write. ~ rupted Venti archives.

On the other hand, hash collisions in compare—by-valyre
mode are only a performance problem (as they cause ad-
ditional reads and byte-by-byte comparisons), not a cdihe Foundation prototype consists of just over 14,000
rectness one. As such, compare-by-value mode can lises of G-+ code. It uses VMware’s VIX library [3]
smaller, faster (and less secure) hash functions than Véatiake and delete VM snapshots. It uses GNU parted,
and compare-by-hash. Our prototype, for example, udibext2, and libntfs to read interpret disk images for ex-
the top four bytes of an MD4 hash to select an index blogtQrt in the/snapshot tree.
and stores the next four bytes in the block itself. Using The CAS layer stores its arenas, arena summaries, and
four bytes is enough to make collisions within an inderdex on an external USB hard disk. To protect against
block rare (see Section 4). It also increases the numhmess of or damage to this disk, the CAS layer can be con-
of entries that fit in the index write lfiier, making flushes figured to replicate the log arenas over FTP using libcurl.

Compare-by-Hash vs. Compare-by-Value

3.3 Foundation: Compare-by-Value Mode

Implementation



Providers such agot5hosting.com currently lease re- the Bloom filter only during the nightly archival process;
mote storage for as little as $bonth for 300 GB of space.it is not used during read-only operations such as booting
While this storage may not be as reliable as tiegred by an image or mounting thésnapshot tree.
more expensive providers, we suspect that fault-tolerance&urrently, the Foundation prototype uses 512-byte log
obtained through the combination of one local and one tglecks to maximize alignment between data stored from
mote replica is sflicient for most users’ needs. The CASlifferent file systems. Using a 512-byte block size also
layer does not replicate the arena summaries or indexaéigns blocks with file systems within a disk, as the master
it can recreate these by scanning the log. boot record (MBR), for example, is only 512-bytes long,
While users may trust such inexpensive storaged the first file system usually follows the MBR directly.
providers as a secondary replica for their data, they dreat said, per-block overheads are an significant factor in
less likely to be comfortable entrusting such provideFoundation’s performance, so we are considering increas-
with the contents of their most private data. Moreoveng the default block size to 4 kB (now the default for most
the external hard drive on which Foundation stores fie systems) and handling the MBR as a special case.
data might be stolen. The CAS layer thus encryptsiits | .
arenas to protect users’ privacy, and it cryptographica Evaluation
signs the arenas to detect tampering. To evaluate Foundation, we focus on the performance of
For good random-access performance, our implemeaving and restoring VM snapshots, which corresponds
tation uses a hierarchical HMAC signature and AES edirectly to the performance of the CAS layer.
cryption in counter mode [11] to sign and encrypt are- The most important performance metric for Foundation
nas. The combination allows Foundation to read, decryjgthow long it takes to save the VM disk image each night.
and verify each block individually (i.e., without readMany users suspend or power down their machines at
ing, decrypting, and verifying the entire arena in whichight; a nightly archival process that makes them wait ex-
a block resides). Foundation implements its hierarchig@ssively long before doing so is a barrier to adoption. (We
HMAC and counter-mode AES cipher using the OpenS&lnvision that snapshots are taken automatically as part
project's implementations of AES and HMAC. (It alsof the shutdowysleep sequence.) We are also concerned
uses OpenSSl's SHA-1 and MD4 implementations {gith how long it takes to boot old system images and re-
compute block hashes.) cover old file versions from thgsnapshot tree, though
Foundation uses the file system in user-space (FUSH expect such operations to be less frequent than nightly
library to export its/snapshot tree interface to the hostbackups, so their performance is less critical.
OS. The guest OS then mounts the host's tree using th&Ve evaluate Foundation’s VM archiver in two experi-
SMB protocol. To provide the archived disk images fanents. First, we analyze the performance of the CAS layer
booting under VMware, Foundation uses a loopback NleS microbenchmarks in three ways: using the disk oper-
server to create the appearance of a complete VMwaitin counts from Figure 5, using a simulator we wrote,
virtual machine directory, including amx file, the read- and using Foundation itself. These results give insiglot int
only disk image, and avmdk file that points to the read-Foundation’s performance and validate the simulator’s
only image as the base disk while redirecting new writgsedictions. Second, we measure Foundation’s archival
to an initially empty snapshot file. throughput under simulation on sixteen months of nightly
By default, the prototype uses a 192 MB index cachesnapshots using traces derived from our research group’s
with 128 MB reserved for hifiering index writes and the own backups.
remaining 64 MB managed in LRU order—and a 1 MB In both experiments, we compare Foundation in
block cache. Italso caches 10 arena summaries in LRU compare-by-hash and compare-by-value mode with a
der, using approximately 10 MB more memory. The proéhird mode that implements the algorithms described in
totype stores index entries with 6 bytes for the Idf o the Venti paper. Making the comparison this way rather
set, 20 bytes for the score in compare-by-hash mode, aiman using the original Venti software allows us to com-
4 bytes for the score in compare-by-value mode. It sizgare the algorithms directly, without worrying about other
the index to average 90% full for a user-configurable exariables, such as file system caches, that would fierdli
pected maximum log size. In compare-by-hash modegiat between Foundation and the actual Venti. (Although
100 GB log yields a 5.6 GB index. The same log yieldsvee do not present the results here, we have also imple-
2.2 GB index in compare-by-value mode. The prototypeented Foundation’s compare-by-hash improvements in
relocates index block overflow entries using linear prolenti itself and obtained similar speedups.)
ing. It sizes its Bloom filter such that half its bits will b 1 E . tal set
set when the log is full and lookups see a 0.1% false pos- xperimental Setup
itive rate. For a 100 GB log, the Bloom filter consumed/e ran our experiments on a Lenovo Thinkpad T60 laptop
361 MB of memory. To save memory, the prototype loaagth a 2 GHz Intel Core 2 Duo Processor and 2 GB of



— Expected Throughput (kB/s)— | —— Actual Throughput (kB/s) —
. —— Foundation—— . —— Foundation ——
Venti By-Hash By-Value Venti By-Hash By-Value
out-of-order read 18 7.4 37 15 4.8 19
sequential read 18 29,000 33,000 76 13,000 16,000
out-of-order duplicate write 36 9.2 7.4 79 6.0 5.2
index entry cached 39,000 39,000 37 22,000 22,000 19
sequential duplicate write 36 39,000 29,000 78 23,000 16,000
fresh write 12 4,000 8,100 37 3,800 7,100
without write buffer flush n/a 11,000 11,000 7,900 8,400

Figure 6: Predicted and actual sustained performance, infdVIBf the three systems on the cases listed in Figure 5 useng th
hardware described in Section 5.1. The actual performahoaroventi implementation is faster than predicted, beeayserat-
ing system readahead eliminates some seeks. The actuatmanice of Foundation is slightly slower than predictedalbse of
unmodeled per-block overheads: using a 4096-byte bloek(sistead of 512 bytes) matches predictions more closely.

RAM. The laptop runs Ubuntu 7.04 with a Linux 2.6.26he cost of slowing out-of-order accesses, which load
SMP kernel. The internal hard disk is a Hitachi Travelstarena summaries that end up not being useful. Compare-
5K160 with an advertised 11 ms seek time and 64/8/Boy-value reads faster than compare-by-hash, since it
sustained regdrite throughput, while the external disk isavoids the index completely, but it handles duplicate
a 320 GB Maxtor OneTouch Il with an advertised 9 marites slower, since it must compare each potential du-
seek time and 33 MB sustained regdrite throughput.  plicate to previously-written data from the log.

Since Foundation uses both disks through the host OS'The most dramatic flierence between compare-by-
file system, we measured their read and write throughggish and compare-by-value is the case of an out-of-order
through that interface using the Unid command. For duplicate write for which the index entry cache has a cor-
read throughput, we copied a 2.2 GB file A@ev/null; responding record, but the block cache does not. In this
for write throughput, we copied 2.2 GB pdlev/zero into  case, Venti and compare-by-hash can declare the write a
a half-full partition. The Hitachi sustained 38.5 ¥Bead duplicate without any disk accesses, while compare-by-
and 32.2 MBs write throughput; the Maxtor sustainedalue must load the data from disk, resulting in dramat-
32.2 MB/s read and 26.5 MB write throughput. ically lower throughput. (The throughput for Venti and

To measure average seek time plus rotational lateregmpare-by-hash is limited only by the bandwidth of the
through the file system interface, we wrote a small C procal disk in this case.)
gram that seeks to a random location within the block de-Sequential duplicate writes are fast in both Foundation
vice using thelseek system call and reads a single bytemodes. In compare-by-hash mode, Foundation is limited
using theread system call. In 1,000 such “seeks” pepy the throughput of the local disk containing the snap-
drive, we measured an average latency of 15.0 ms on #m@t. The arena summaries needed from the external disk
Hitachi and 13.6 ms on the Maxtor. The system was otre only 5% the size of the snapshot itself. In compare-by-
erwise idle during both our throughput and seek tests. value mode, Foundation must read the snapshot from the

The simulator uses the disk speeds we measured &l disk and compare it again previously-written data
the same parameters (cache sizes, etc.) as our impleméma the log disk. Having two disks arms here is the key
tion. Rather than store the Bloom filter directly, it assum#&s good performance: on a single-disk system the perfor-
a 0.1% probability of a false positive. mance would be hurt by seeks between the two streams.

Fresh writes proceed at the same speed in both Foun-
dation modes except for the indextter flushes. Because
To understand Foundation’s performance, we consider theex entries are smaller in compare-by-value mode, the
disk operations required for each of the six read or wri{28 MB bufer holds more entries and needs to be flushed
cases shown in Figure 5. For each case, we count the nigas frequently: after every 4 GB of fresh writes rather
ber of seeks and the amount of data read from and writtéan every 2.3 GB. At that rate, index flushes are still an
to the disk. From these and the disk parameters measunegortant component of the run time. Using a largeféu
and reported above, we compute the speed of each akjge or a larger data block size would reduce the flush fre-
rithm in each case. Figure 6 shows the predicted perfguency, making the two modes perform more similarly.
mance and the performance of the prototype. (The simuThe predictions match Foundation’s actual perfor-
lated performance matches the predictions made usingiegnce to within a factor of 2.25, and the relative orderings
equations in Figure 5 exactly.) are all the same. Foundation is slower than predicted be-

In both prediction and in reality, compare-by-hash mause the model does not account for time spent encrypt-
significantly faster than Venti for sequential accesses,ird), signing, verifying, and decrypting the log; time spent

5.2 Microbenchmarks



shapshots are larger than 128 MB, the vast majority
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§ g 0.5] Figure 8 breaks down the average performance of a
gg ] snapshot backup. The ftBrences in snapshot speed—
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" 64 256 1024 4096 t entirely by the time spent seeking in the external
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'§ 2 1 - Eyz\ljglsulg ” by-hash mode by a factor of 240 versus Venti. Compare-
] = i y s by-value mode reintroduces some seeks by reading log
g g 0.5 blocks to decide that writes are duplicates during lookup.
S £ ] . To access archived data, Foundation users will either
5 2 1 : _ use the file system snapshot server or boot an archived
= o0 oomee Ventl VM. In both cases, the relevant parts of disk can be read

I T
1sec 15 sec 1 min 15min 1 hr  as needed by the file system browser or the VMM.

Fi 2 Di t.bTitmetrfeq.uired tc;arc.r:iv? sna;;shc;too iahtl In many cases, Foundation can satisfy such reads
igure 7. Distribution ot Sizes and wri e, imes for nigh yquickly. Comparing the measured performance of Foun-
snapshots of one of our research group’s home directorgdisk

dation in Figure 6 with the performance of our test
compressing and decompressing blocks; and constant §¥§tem’s internal hard drive, we note that Foundation's
512-byte block) overheads in the run-time system. Usif§mpare-by-value mode is only 1.8 times slower for out-
4096-byte blocks and disabling encryption, compressidti;order reads and 2.2 times slower for sequential reads.
and authentication yields performance that matches ti@wever, in eliminating duplicate data during writes,

predictions more accurately. Foundation may introduce additional seeks into future
) ) ) reads, since the blocks of a disk image being read may
5.3 Trace-driven Simulation originally have been stored as part other disk images ear-

We do not yet have long-term data from using Foundatidigr in the log. We call this problerfragmentation
but as mentioned earlier, our research group takes nightljnfortunately, we do not have traces of the reads re-
physical backups of its central file server using a 15-digkiests serviced by our research group’s Venti server, so
Venti server. The backup program archives entire file sysis difficult to simulate to what degree users will be af-
tem images, using the file system block size as the archifedted by such fragmentation in practice. As an admittedly
block size. We extracted over a year of block traces framcomplete benchmark, however, we simulate reading en-
each of the file server's 10 disks. These traces contdire disk images for each snapshot. We return to the frag-
for each night, a list of the disk blocks changed from theentation problem in Section 7.2.
previous night, along with the blocks’ SHA-1 hashes. We Figure 9 summarizes the performance of reading full
annotated each trace with the data Idtsets each block disk images. Again the fierences in performance are al-
would have been stored at if data from the disk were theost entirely due to disk seeks: 739 minutes seeking for
only data in a Venti or Foundation server. We then ran tMenti, 41 minutes seeking for compare-by-hash, and 35
traces in our simulator to compare the two Foundation apinutes seeking for compare-by-value. Since compare-
erating modes and the Venti mode. by-value eliminates index lookups during read, its seeks
To conserve space, we discuss the results from only @re all within the data log. Such seeks are due to fragmen-
of the traces here. The relative performance of the thitedion, and for compare-by-value mode they account for
algorithms, however, is consistent across traces. The dis& entire diference between the predicted performance
for the trace we chose hosts the home directories of famirsequential reads in Figure 6 with the simulated perfor-
users. The trace covers 400 days. When the trace starance in Figure 9.
the disk has 41.7 GB of data on it; when the trace endsJn compare-by-value mode, since the block identifiers
the disk has 69.9 GB of data on it. The parameters fare log dfsets, the reads could be reordered to reduce the
the simulation are the same as described in Section @hount of seeking. As a hypothetical, the column labeled
except that blocks are 32 kB, to match the traces, ratti@orted” shows the performance if the block requests
than 512 bytes as in Foundation. were first sorted in increasing lodtset. This would cut
The most important metric is the duration of the nightlghe total seek time from 35 minutes to 8 minutes, also im-
shapshot process. Figure 7 plots the distributions of snapaving the number of block cache hits by a factor of 24.
shot sizes and completion times. Even though 95% Although making a list of every block may not be realis-
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Foundation

Venti By-Hash By-Value
average snapshot write speed 849 kB/s 20,581 kB/s 15,723 kB/s
average snapshot time 648.4 s 26.7s 35.0s

... reading external disk 41s 22s 45s

... writing external disk 216s 200s 19.8s

... seeking in external disk 622.3s 26s 10.7 s

... waiting for local disk; external disk idle 04s 20s 0.0s
average # of external disk seeks 46,099 192 792

... to index data 31,415 133 133

... to log data 14,684 58 658
average # of lookup calls; these do ... 17,196 2,526 2,526

... # of index seeks (also # of index reads) 16,731 73 73

... # of log seeks 0 0 442

... # of log reads 0 0 2,482

Figure 8: Statistics gathered while writing 400 nightly snapshitsimulation. The average snapshot size is 537 MB. Becdugse t
VMM identifies which blocks have changed since the previoepshot, on average only 78.5 MB of blocks are duplicatesr&’h
are, however, occasional large spikes of duplicates. 9e04@® nights contain over 1 GB of duplicate blocks; 2 contair & GB.

Foundation
Venti By-Value
By-Hash Unsorted Sort-1024 Sorted

average disk image restore speed 1,271 kB/s 13,894 kB/s 15,309 kB/s 20,842 kB/s 28,940 kB/s
average disk image restore time 775 min 71 min 64 min 47 min 34 min

... reading external disk 36 min 30 min 30 min 29 min 26 min

... seeking in external disk 739 min 41 min 35 min 18 min 8 min
average # of block cache hits 9,660 9,660 9,660 31,203 232,597
average # of index entry cache hits 222,936 1,824,023 0 0 0
average # of external disk seeks 3,283,167 182,337 153,853 79,495 35,218

... to index data 1,613,802 25,431 0 0 0

... to log data 1,669,365 156,906 153,853 79,495 35,218
average # of external disk reads 3,450,540 1,849,454 1,836,738 1,815,196 1,613,802

... of index data 1,613,802 12,716 0 0 0

... of log data 1,836,738 1,836,738 1,836,738 1,815,196 1,613,802

Figure 9: Statistics gathered while reading disk images of 400 higittapshots, in simulation. The average disk image is 56 GB.

tic, a simple heuristic can realize much of the benefit. Tirewhich files in older formats are automatically converted
column labeled “Sort-1024" shows the performance whémmore current ones. Producing such conversion routines
1024 reads at a time are batched and sorted before beiag be dificult: withess PowerPoint’s inability to maintain
read from the log. This simple optimization cuts the seérmatting between its Windows and Mac OS versions.
time to 18 minutes, while still improving the number ofFurthermore, perfect conversion is sometimes impossi-
block cache hits by a factor of 3.2. ble, as between image formats that use lossy compression.
Rather than migrate formats forward in time, Foundation
enables travel back in time to the environments in which
old formats can be interpreted.

6 Related Work

Related Work in Preservation Most preservation work
falls into one of two groups. (The following descriptionis The second group of preservationists (e.g. [15, 38]) ad-
SImp'IfIEd somewhat; see Lee et al. [24] for a detailed diﬁocates emu|ating old hardware aﬂdoperating systems
cussion.) The first group (e.g. [12, 14, 37, 41]) proposgsorder to run the original applications with which users
archiving a limited set of popular file formats such agewed older file formats. Foundation uses emulation, but
JPEG, PDF, or PowerPoint. This restriction limits the digecognizes that s|mp|y preserving old app]ications and op-
ital artifacts that can be preserved to those than candifting systems is not enough. Often, the rendering of
encoded in a supported format. In contrast, Foundatigijigital artifact is dependent on configuration state, op-
preserves both the applications and configuration stgihal shared libraries, or particular fonts. A defaulteFir
needed to view both popular and obscure file formats. fox insta”ation’ for examp|e, may not proper|y d|Sp|ay

In the case that a supported format becomes obsoleteyeb page that contains embedded video, non-standard
this first group advocates automated “format migratiorfgnts, or Flash animations. Foundation captures all such
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state by archiving full disk images, but it limits the hardstead finds them using a background “groveler” process.
ware that must be emulated to boot such images by conA number of past file systems have provided support
fining users’ daily environments within a VM. for sharing blocks between successive file versions using
An offshoot of the emulation camp proposes the cosepy-on-write (COW) [17,31,39,42]. These systems cap-
struction of emulators specifically for archival purposeture duplicate blocks between versions of the same file,
Lorie proposed [27] storing with each digital artifact &ut they fail to identify and coalesce duplicate blocks that
program for interpreting the artifact; he further proposeghter the file system throughfiirent paths—as when a
that such programs be written in the language of a Univeser downloads a file twice, for example. Moreover, they
sal Virtual Computer (UVC) that can be concisely speatannot coalesce duplicate data from multiple, distinct file
fied and for which future emulators are easy to construsystems; a shared archival storage server built on such sys-
Ford has proposed [13] a similar approach, but using @ms would not be as spac#ieient as one built on CAS.
x86 virtual machine with limited OS support as the em- Peabody [20] implements time travel at the disk level,
ulation platform. Foundation fiers from these two sys-making it possible to travel back in time to any instant and
tems in that it archives files with the same OS kernel agdt a consistentimage. Chronus [45] used Peabody to boot
programs originally used to view them, rather than requietd VMs to find a past configuration error. Peabody uses a
the creation of new ones specific to archival purposes. |arge in-memory content-addressedtbu cache [21] to
Internet Suspen®esume (ISR) [22] and Machinecoalesce duplicate writes. Because it only looks in the
Bank [43] use a VM to suspend a user’s environment @iffer cache, it cannot guarantee that all duplicate writes
one machine and resume it on another. SecondSite [3f8 coalesced. In contrast, Foundation is careful to find all
and Remus [9] allow resumption of services at a site th@lplicate writes.
sufters a power failure by migrating the failed site’s VMs | BFS [30] chooses block boundaries according to
to a remote site. Like these systems, Foundation requipiscks’ contents, rather than using a fixed block size, in
that a user’s environment be completely contained withgiider to better capture changes that shift the alignment of
a VM, but for a diferent purpose: it allows the “resumpgata within a file. Foundation is agnostic as to how block
tion” of state from arbitrarily far in the past. boundaries are chosen and could easily be adapted to do

Related Work in Storage Hutchinson et al. [19] the same.
demonstrated that physical backup can sustain highefime Machine [40] uses incremental logical backup
throughput than logical backup, but noted several prd-store multiple versions of a file system. It creates the
lems with physical backup. First, since bits are not intdftst backup by logically mirroing the entire file system
preted as they are backed up, the backup is not portalfiee onto a remote drive. For each subsequent backup,
Foundation provides portability by booting the entire imFime Machine creates another complete tree on the re-
age in an emulator. Second, it is hard to restore only a stote drive, but it uses hard links to avoid re-copying un-
set of a physical backup; Foundation interprets file systéianged files. Unlike Foundation, then, Time Machine
structures to provide thesnapshot tree, allowing users to cannot diciently represent single-blockftérences. Even
recover individual files using standard file system tooléa file changes in only one block, Time Machine creates
Third, obtaining a consistent image igfitiult; Founda- @ complete new copy on the remote drive. The storage
tion implements copy-on-write within the VMM to do socost of this diference is particularly acute for applications
but other tools, such as the Linux’s Logical Volume Marsuch as Microsoft Entourage, which stores a user's com-
ager (LVM) [25] could be used instead. Finally, incremeiplete email database as a single file.
tal backups are hard; addressing blocks by their hashes,as
in Venti solves this problem. % Future Work

The SUNDR secure network file system [26] also us&fie Foundation CAS layer is already a fully functioning
a Venti-like content-addressed storage server but usesystem; it has been in use as one author’s only backup
different solution than Founation to reduce index seeksrategy for six months now. In using it on a daily basis,
SUNDR saves all writes in a temporary diskflan with- however, we have discovered two interesting areas for fu-
out deciding whether they are duplicate or fresh and theme work: storage reclamation and fragmentation.
batches both the index searches to determine freshnfz'is
and the index updates for the new data. Foundation avoids
the temporary data ifier by using the Bloom filter to de-Both the Plan 9 experience and our own experience with
termine freshness quickly, fering only the index entriesVenti seem to confirm our hypothesis that, in practice,
for new writes, and never the content. content-addressed storage idfsiently space-@icient

Microsoft Single-Instance Store (SIS) [7] identifies andhat users can retain nightly disk snapshots indefinitely.
collates files with identical contents within a file system, Nonetheless, it is not flicult to imagine usage patterns
but rather than coallescing duplicates on creation, SIS that would quickly exhaust the system’s storage. Consider,

Storage Reclamation
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for example, a user that rips a number of DVDs ontosystem can also use this algorithm incrementally: start-
laptop to watch during a long business trip, but shortly d@fig from the end of the log, it can scan backward until
terwards deletes them. Because the ripped DVDs were“enough” space has been reclaimed, and then stop.
the laptop for several nights, Foundation is likely to have The expensive part of the Erlang algorithm is maintain-
archived them, and they will remain in the user’s archiviag the list of live blocks. If references to many blocks
After a number of such trips, the archive disk will fill.  occur much later in the log than the blocks themselves,
One solution to this problem would allow users tehis list could grow too large to fit in memory. We note,
selectively delete snapshots. This solution is somewlhaivever, that a conservative version of the collector could
risky, in that a careless user might delete the only snapshsé a Bloom filter to store the list of live blocks. Although
that is able to interpret a valued artifact. We suspect tifalse positives in the filter would prevent the algorithm
users would be even more frustrated, however, by haviingm reclaiming some legitimate garbage, its memory us-
to add disks to a system that was unable to reclaim spag@ would be fixed at the size of the Bloom filter.
they felt certain was being wasted. Finally, to reclaim the space used by an unreferenced
Like Venti, Foundation encodes the metadata descriflock, Foundation can simply rewrite the log arena in
ing which blocks make up a snapshot as a Merkle tr@ich the block occurs without the block, using an atomic
and stores interior nodes of this tree in the CAS layeename to replace the old arena. Because this rewriting
To simplify finding a particular snapshot within the logshifts the locations of other blocks in the arena, an extra
Foundation also implements a simglgstem catalo@s pass is required in compare-by-value mode, where blocks’
follows. After writing a snapshot, Foundation writes theames are their locations in the log: the system must scan
root of the snapshot's Merkle tree along with the time @bm the rewritten arena to the tail of the log, rewriting
which it took the snapshot to a file that it then archives ijbinters to the fiected arena as it goes. In compare-by-
the CAS layer. It repeats this process after writing eaplish mode, however, blocks’ names are independent of

subsequent snapshot, appending the new snapshot’s figgit locations in the log, so no extra pass is required.
and time to the existing list and re-archiving the list. The

last block in Foundation's log is thus always the root df-2 Fragmentation
the latest version of the system catalog. Most of our current work on the Foundation CAS layer

Conceptually, deleting a snapshot resembles garbage focused on reducing the number of seeks within the
collection in programming languages or log cleaning iAdex. Having done so, however, we have noticed a poten-
LFS. First, the CAS layer writes a new version of the syfial secondary bottleneck: seeks within the data log itself
tem catalog that no longer points to the snapshot. Thebnsider the case of an archived snapshot made up of one
the system reclaims the space used by blocks that arepfistk from each of all of the arenas in the log. Even if no
longer reachable from any other catalog entry. A more rgeeks were required to determine the location of the snap-
cent snapshot, for example, may still point to some blogkot’s blocks, reading the snapshot would still incur one
in the deleted snapshbt. seek (into the appropriate arena) per block.

Interestingly, the structure of Foundation’s log makes\ye have come to call this problefragmentation We
identifying unreferenced blocks particularlffieient: as have not yet studied the sources of fragmentation in detail.
a natural result of the log being append-only, all pointefig our experience so far it is a visible problem, but not
within the log point “backwards”. Garbage collection cag serious one. We simply see some slowdown in reading
thus proceed in a single, sequential pass through the jgg@r versions of disk images as they evolve over time.
using an algorithm developed by Armstrong and Virding ynfortunately, unlike the seeks within the system’s in-
for garbage coII_ecting immutable data structuresin the sy seeks due to fragmentation cannot be eliminated;
lang programming language [4]. they are a fundamental consequence of coalescing dupli-

The algorithm works as follows. Starting at the most rezte writes (the source of Foundation’s storagjeiency).
centlog entry and scanning backwards, it maintains a lige suspect that it also exists in file systems that perform
of “live” blocks initialized from the pointers in the systemygpy-on-write snapshots, such as WAFL [17], although
catalog. Each time it encounters a live block, it deletgg have not found any reference to it in the literature.
that block from its list. If the block is a metadata block \we do note that fragmentation can be eliminated in any
that contains pointers to other blocks, it adds these poigfe snapshot, at the expense of others, by copying all of
ers to its list. If the algorithm encounters a block that {§¢ piocks of that snapshot into a contiguous region of
not in its list, then there are no live pointers to that blogke 1o |f the system also removes the blocks from their
later in the log, and since all pointers point backwards, t§6qina| jocations, this process resembles the “defragmen
algorithm can reclaim the block’s space immediately. Thg: performed by a copying garbage collector. We are

4Here Foundation diers from LFS, which collects all blocks notthl'|S considering imple_mentirlg within Foundation a ver-
pointed to by the most recent version. sion of the Erlang algorithm discussed above that reclaims
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space by copying live data, rather than deleting dead d&tg], S. Granger. Emulation as a digital preservation sgsateD-Lib

in order to defragment more recently archived (and pre-
sumably, more frequently accessed) snapshots. [17]
One other potential motivation for defragmenting more
recent snapshots in this manner is that it will likely im28]
prove the write throughput of compare-by-value mode,
since the blocks it compares against while writing are URg)

likely to change their ordering much between snapshots.
. [20]
8 Conclusion

21
Foundation’s approach to preservation—archiving cons[ls—]
tent, nightly snapshots of a user’s entire hard disk—igza]

straight-forward, application-independent approachuto a 3
tomatically capturing all of a user’s digital artifacts antf®

Magazine 6(10), Oct. 2000.

] V. Henson. An analysis of compare-by-hashHotOS 2003.

D. Hitz, J. Lau, and M. Malcolm. File system design for/dRS
file server appliance. IDSENIX Winter Conf.1994.

J. Hollingsworth and E. Miller. Using content-deriveames for
configuration management. ACM SIGSOFT Symposium on Soft-
ware Reusability1997.

N. Hutchinson et al. Logical vs. physical file system kgz. In
OSDI, 1999.

C. B. M. lll and D. Grunwald. Peabody: The time travejjidisk.
In MSST 2003.

C. B. M. lll and D. Grunwald. Content based block cachirg
MSST 2006.

M. Kozuch and M. Satyanarayanan. Internet Susgieeslime. In
WMCSA 2002.

T. Kuny. A digital dark ages? Challenges in the presomaof
electronic information. 1153rd IFLA General Conferen¢d.997.

their associated software dependencies. Archiving thgsg k.-H. Lee, O. Slattery, R. Lu, X. Tang, and V. McCrary. &htate
Snapshots using content-addressed storage keeps the sysef the art and practice in digital preservatialournal of Research

tem’s storage cost proportional to the amount of new d %5
users create and eliminates duplicates that file-system-

based techniques, such as copy-on-write, would miss. st
ing the techniques described in this paper, CAS achieves
high throughput on remarkably modest hardware—a sfA?)
gle USB hard disk—improving on the read and Writgg]
throughput achieved by an existing, state-of-the-art CAS
system on the same hardware by an order of magnitud[%9
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