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Abstract

Foundationis a preservation system for users’ personal,
digital artifacts. Foundation preserves all of a user’s data
and its dependencies—fonts, programs, plugins, kernel,
and configuration state—by archiving nightly snapshots
of the user’s entire hard disk. Users can browse through
these images to view old data or recover accidentally
deleted files. To access data that a user’s current environ-
ment can no longer interpret, Foundation boots the disk
image in which that data resides under an emulator, al-
lowing the user to view and modify the data with the same
programs with which the user originally accessed it.

This paper describes Foundation’s archival storage
layer, which uses content-addressed storage (CAS) to re-
tain nightly snapshots of users’ disks indefinitely. Current
state-of-the-art CAS systems, such as Venti [34], require
multiple high-speed disks or other expensive hardware to
achieve high performance. Foundation’s archival storage
layer, in contrast, matches the storage efficiency of Venti
using only a single USB hard drive. Foundation archives
disk snapshots at an average throughput of 21 MB/s and
restores them at an average of 14 MB/s, more than an or-
der of magnitude improvement over Venti running on the
same hardware. Unlike Venti, Foundation does not rely on
the assumption that SHA-1 is collision-free.

1 Introduction

We are “living in the midst of digital Dark Ages” [23].
As computer users increasingly store their most personal
data—photographs, diaries, letters—only in digital form,
they practically ensure that it will be unavailable to future
generations [28].

Considering only the cost of storage, this state of af-
fairs seems inexcusable. A half-terabyte USB hard drive
now costs just over $100, while reliable remote storage
has become an inexpensive commodity: Amazon’s S3 ser-
vice [1], for example, charges only $0.15/GB/month.

Alas, mere access to the bits of old files does not imply
the ability to interpret those bits. Some file formats may
be eternal—JPEG, perhaps—but most are ephemeral. Fur-
thermore, the interpretation of a particular file may require
a non-trivial set of support files. Consider, for example,
the files needed to view a web page in its original form: the
HTML itself, the fonts it uses, the right web browser and
plugins. The browser and plugins themselves depend on a
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particular operating system, itself depending on a particu-
lar hardware configuration. In the worst case, a user in the
distant future might need to replicate an entire hardware-
software stack to view an old file as it once existed.

Foundationis a system that preserves users’ personal
digital artifacts regardless of the applications with which
they create those artifacts and without requiring any
preservation-specific effort on the users’ part. To do so,
it permanently archives nightly snapshots of a user’s en-
tire hard disk. These snapshots contain the complete soft-
ware stack needed to view a file in bootable form: given
an emulator for the hardware on which that stack once
ran, a future user can view a file exactly as it was. To limit
the hardware that future emulators must support, Foun-
dation confines users’ environments to a virtual machine.
Today’s virtual machine monitor thus serves as the tem-
plate for tomorrow’s emulator.

Using emulation for preservation is not a new idea (see,
e.g. [15, 35, 38]), but by archiving a complete image of a
user’s disk, Foundation capturesall of the user’s data, ap-
plications, and configuration state as a single,consistent
unit. By archiving a new snapshot every night, Foundation
prevents the installation of new applications from interfer-
ing with a user’s ability to view older data—e.g., by over-
writing the shared libraries on which old applications de-
pend with new and incompatible versions [8]. Users view
each artifact using the most recent snapshot that correctly
interprets that artifact. There is no need for them to man-
ually create an emulation environment particular to each
artifact, or even to choose in advance which artifacts will
be preserved.

Of course, such comprehensive archiving is not with-
out risk: the cost of storing nightly snapshots of users’
disks indefinitely may turn out to be prohibitive. On the
other hand, the Plan 9 system archived nightly snapshots
of its file system on a WORM jukebox for years [32, 33],
and the subsequent Venti system [34] drastically reduced
the storage required for those archives by using content-
addressed storage (CAS) [18,44] to automatically identify
and coalesce duplicate blocks between snapshots.

The Plan 9 experience, and our own experience using
a 15-disk Venti system to back up the main file server
of a research group at MIT, convinced us that content-
addressed storage was a promising technique for reduc-
ing Foundation’s storage costs. Venti, however, requires
multiple, high-performance disks to achieve acceptable
archival throughput, an unacceptable cost in the consumer
setting in which we intend to deploy Foundation. A new
design seemed necessary.
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The core contribution of this paper is the design, im-
plementation, and evaluation of Foundation’s content-
addressed storage system. This system is inspired by
Venti [34], but we have modified the Venti design for con-
sumer use, replacing Venti’s expensive RAID array and
high speed disks with a single, inexpensive USB hard
drive. Foundation achieves high archival throughput on
modest hardware by using a Bloom filter to quickly de-
tect new data and by making assumptions about the struc-
ture of duplicate data—assumptions we have verified us-
ing over a year of Venti traces. Our evaluation of the re-
sulting system shows that Foundation achieves read and
write speeds an order of magnitude higher than Venti on
the same hardware.

While we built Foundation for digital preservation,
content-addressed storage is useful in other contexts, and
we believe Foundation will enable other applications of
CAS that were previously confined to the enterprise to en-
ter the consumer space. As an anecdotal example, we note
that within our own households, most computers share a
large percentage of their files—digital photos, music files,
mail messages, etc. A designer of a networked household
backup server could easily reduce its storage needs by
adopting Foundation as its storage system.

In this paper, however, we focus on the CAS layer itself.
To ground the discussion, Section 2 provides background
on the Foundation system as a whole. Sections 3–5 then
present the main contributions of the paper—the design,
implementation, and evaluation of Foundation’s content-
addressed storage layer. Section 6 surveys related work,
Section 7 describes future work, and Section 8 concludes.

2 Background: Foundation

Figure 1 shows the major components of a Foundation
system. The host operating system runs on the raw hard-
ware, providing a local file system and running Founda-
tion. Users work inside the active VM, which runs a con-
ventional OS like Windows XP or Linux atop Founda-
tion’s virtual machine monitor(VMM). The VMM stores
virtual machine state (disk contents and other metadata)
in the local file system. Every night, Foundation’svirtual
machine archivertakes a real-time snapshot of the active
VM’s state, storing the snapshot in theCAS layer.

In addition to taking nightly snapshots of the VM’s
state, the VM archiver also provides read-only access
to previously-archived disk images. The VMM uses this
functionality to boot past images; the figure shows an
archived VM snapshot running in a separate VM. As
a convenience, Foundation provides afile system snap-
shot serverthat interprets archived disk images, present-
ing each day’s file system snapshot in a synthetic file
tree (like Plan 9’s dump file system [32] or NetApp’s
.snapshot directories [17]) that VMs can access over
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Figure 1: Foundation system components. A Foundation user
works inside the active VM, which is archived daily to an ex-
ternal hard disk and (optionally) a remote location. Foundation
presents archival file system data using SMB and enables users
to interpret obsolete file formats by booting VM snapshots from
days or years past.

SMB.1 A user finds files from May 1, 1999, for example,
in /snapshot/1999/05/01/. This gives the active VM ac-
cess to old data, but it cannot guarantee that today’s sys-
tem will be able to understand the data. The fallback of
being able to boot the VM image provides that guarantee.

Foundation’s CAS layer provides efficient storage of
nightly snapshots taken by the VM archiver. The CAS
layer stores archived data on an inexpensive, external hard
disk. Users can also configure the CAS layer to replicate
its archives onto a remote FTP server for fault tolerance.
To protect users’ privacy, the CAS layer encrypts data be-
fore writing to the external hard drive or replicating it. It
also signs the data and audits the local disk and replica to
detect corruption or tampering.

As a simple optimization, Foundation interprets the
partition table and file systems on the guest OS’s disk to
identify any swap files or partitions. It treats such swap
space as being filled with zeros during archival.

The remainder of this section discusses the components
of Foundation in detail, starting with the VMM and con-
tinuing through the VM archiver and CAS layer.

2.1 Virtual Machine Monitor

Foundation uses VMware Workstation as its virtual ma-
chine monitor. Foundation configures VMware to store
the contents of each emulated disk as a single, contiguous
file, which we call the disk image. VMware’s snapshot

1Providing the snapshot tree requires that Foundation interpret the
partition table and file systems on the guest OS’s disk. Foundation inter-
prets ext2/3 and NTFS using third-party libraries. Support for other file
systems is easy to add, and if no such library exists, a user can always
boot the VM image to access a file.
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facility stores the complete state of a VM at a particu-
lar instant in time. Foundation uses this facility to acquire
consistent images of the VM’s disk image.

To take a snapshot, VMware reopens the disk image
read-only and diverts all subsequent disk writes to a new
partial disk image. To take a second snapshot, VMware
reopens the first partial disk image read-only and diverts
all subsequent disk writes to a second partial disk image.
A sequence of snapshots thus results in a stack of partial
disk images, with the original disk image at the bottom. To
read a sector from the virtual disk, VMware works down
the stack (from the most recent to the oldest partial disk
image, ending with the original disk) until it finds a value
for that sector [2].

To discard a snapshot, VMware removes the snapshot’s
partial disk image from the stack and applies the writes
contained in that image to the image below it on the stack.
Notice that this procedure works for discarding any snap-
shot, not just the most recent one.

The usual use of snapshots in VMware is to record a
working state of the system before performing a danger-
ous operation. Before installing a new application, for ex-
ample, a user can snapshot the VM, rolling back to the
snapshotted state if the installation fails.

2.2 Virtual Machine Archiver

Foundation uses VMware’s snapshot facility both to ob-
tain consistent images of the disk and to track daily
changes between such images.

Foundation archives consistent images of the disk as
follows. First, the VM archiver directs VMware to take a
snapshot of the active VM, causing future disk writes to be
diverted into a new partial disk image. The archiver then
reads the now-quiescent original disk image, storing it in
the CAS layer along with the VM configuration state and
metadata about when the snapshot was taken. Finally, the
virtual machine archiver directs VMware to discard the
snapshot. Using a snapshots in this way allows Founda-
tion to archive a consistent disk image without suspending
the VM or interrupting the user.

Note that the above algorithm requires Foundation to
scan the entire disk image during the nightly archival pro-
cess. For a large disk image, this process can take consid-
erable time. For this reason, Foundation makes further use
of the VMM’s snapshotting facility to track daily changes
in the disk image as illustrated in Figure 2.

Between snapshots, the VM archiver keeps VMware in
a state where the bottom disk image on the stack cor-
responds to the last archived snapshot (say, snapshotk),
with VMware recording writes since that snapshot in a
partial disk image. To take and archive snapshotk+1,
the VM archiver takes another VMware snapshot, causing
VMware to push a new partial disk image onto the stack.
The VM archiver then archives only those blocks written

disk image as of snapshot k (read-only)

writes since snapshot k

(a)

disk image as of snapshot k (read-only)

writes since snapshot k (read-only)

writes since snapshot k+1

(b)

disk image as of snapshot k (read-only)

writes since snapshot k (read-only)

writes since snapshot k+1

(c)

disk image as of snapshot k+1 (read-only)

writes since snapshot k+1

(d)

Figure 2: The VMware disk layers when the VM archiver
archives disk image snapshotk+1. (a) Before the snapshot. The
base VMware disk corresponds to snapshotk, already archived;
since then VMware has been saving disk writes in a partial disk
image layered on top of the base image. (b) During the snapshot
archival process. The VM archiver directed VMware to create
a new snapshot,k+1, adding a second partial disk image to the
disk stack. The earlier partial disk image contains only thedisk
sectors that were written between snapshotsk andk+1. The VM
archiver saves these using the CAS layer. (c) After the snapshot
has been archived. The VM archiver directs VMware to discard
snapshotk. VMware applies the writes from the corresponding
partial disk image to the base disk image and (d) discards the
partial disk image.

to the now read-only partial disk image for snapshotk.
Once those blocks have been saved, the VM archiver di-
rects VMware to discard snapshotk, merging those writes
into the base disk image.

Using VM snapshots in this way allows Foundation to
archive a consistent image of the disk without blocking
the user during the archival process. However, because
Foundation does not yet use VMware’s “SYNC driver” to
force the file system into a consistent state before taking
a snapshot, the guest OS may need to run a repair process
such asfsckwhen the user later boots the image. An alter-
nate approach would archive the machine state and mem-
ory as well as the disk, and “resume”, rather than boot, old
snapshots. We have not yet explored the additional storage
costs of this approach.
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2.3 CAS Layer

Foundation’s CAS layer provides the archival storage ser-
vice that the VM archiver uses to save VM snapshots. This
service provides a simpleread/write interface: passing a
disk block towrite returns a short handle, andread, when
passed the handle, returns the original block. Internally,
the CAS layer coalesces duplicate writes, so that writing
the same block multiple times returns the same handle and
only stores one copy of the block. Coalescing duplicate
writes makes storing many snapshots feasible; the addi-
tional storage cost for a new snapshot is proportional only
to its new data. The rest of this paper describes the CAS
layer in detail.

3 CAS Layer Design
Foundation’s CAS layer is modeled on the Venti [34]
content-addressed storage server, but we have adapted the
Venti algorithms for use in a single-disk system and also
optionally eliminated the assumption that SHA-1 is free
of collisions, producing two operating modes for Founda-
tion: compare-by-hashandcompare-by-value.

In this section, we first review Venti and then introduce
Foundation’s two modes. We also discuss the expected
disk operations used by each algorithm, since those con-
cerns drove the design.

3.1 Venti Review

The Venti content-addressed storage server provides
SHA-1-addressed block storage. When a client writes a
disk block, Venti replies with the SHA-1 hash of the
block’s contents, called ascore, that can be used to iden-
tify the block in future read requests. The storage server
provides read/write access to disk blocks, typically rang-
ing in size from 512 bytes up to 32 kilobytes. Venti clients
conventionally store larger data streams in hash trees (also
known as Merkle trees [29]).

As illustrated in Figure 3, Venti stores blocks in an
append-only data log and maintains an index that maps
blocks’ scores to their offsets in the log. Venti implements
this index as a on-disk hash table, where each bucket con-
tains (score, log offset) pairs for a subsection of the 160-
bit score space. Venti also maintains two write-through
caches in memory: theblock cachemaps blocks’ scores
to the blocks’ values, and theindex cachemaps blocks’
scores to the blocks’ log offsets.

Figure 4(a) gives pseudocode for the Venti read and
write operations. To satisfy a read of a block with a given
score, Venti first looks in the block cache. If the block is
not found in the block cache, Venti looks up the block’s
offset in the log, first checking the index cache and then
the index itself. If Venti finds a log offset for the block, it
reads the block from the log and returns the block. Oth-
erwise, it returns an error (not shown). Writes are han-
dled similarly. Venti first checks to see if it has an existing

3c8ec4... 0

7c2114... 4

aaa4d5... 1
aaf4c6... 2

df39b4... 3

index
(score, offset) pairs

goodbye

again

hello

printf

world

data log
indexed by offset

hello

SHA-1

aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d

Figure 3: Venti’s on-disk data structures. The SHA-1 hash of
a data block produces ascore, the top bits of which are used
as a bucket number in the index. The index bucket contains an
index entry—a (score, offset) pair—indicating the offset of the
corresponding block in the append-only data log.

offset for the block using the two in-memory caches and
then the index, returning immediately if so. Otherwise, it
appends the block to the log and updates its index and
caches before returning.

Note that Venti must read at least one block of its index
to satisfy a read or write that misses in both the block and
index caches. Because blocks’ scores are essentially ran-
dom, each such operation necessitates at least one seek to
read the index. In a single-disk system, these seeks limit
throughput toblock size/seek time. The Venti prototype
striped its index across eight dedicated, high-speed disks
so that it could run eight times as many seeks at once.

3.2 Foundation: Compare-by-Hash Mode

While Venti was designed to provide archival service to
many computers, Foundation is aimed at individual con-
sumers and cannot afford multiple disks to mask seek la-
tency. Instead, Foundation stores both its archive and in-
dex on a a single, inexpensive USB hard drive and uses
additional caches to improve archival throughput.2

In compare-by-hash mode, Foundation optimizes for
two request types: sequential reads (reading blocks in the
order in which they were originally written) and fresh
writes (writing new blocks).

Foundation stores its log as a collection of 16 MBare-
nasand stores for each arena a separatesummaryfile that
lists all of the (score, offset) pairs the arena contains.3 To

2An alternative approach—storing the index in Flash memory—
would eliminate seek cost for reads but greatly increase it for writes.
Current Flash memories require around 40 ms for random writes.

3This design was inspired by Venti’s log arenas. We do not know
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(a) Venti

// Return block named by score.
read(score):
    if(data = blockcache.get(score))
        return data;
    offset = lookupscore(score);
    data = log.read(offset);
    blockcache.put(score, data);
    return data;

// Write data, returning score.
write(data):
    score = SHA1(data);
    if(lookupscore(score))
        return score;
    offset = log.write(data);
    index.write(score, offset);
    indexcache.put(score, offset);
    blockcache.put(score, data);
    return score;

// Return log offset for score.
lookupscore(score):
    if(offset = indexcache.get(score))
        return offset;
    if(offset = index.read(score))
        indexcache.put(score, offset);
        return offset;
    return nil;

(b) Foundation: Compare by Hash

// Return block named by score.
read(score):
    if(data = blockcache.get(score))
        return data;
    offset = lookupscore(score);
    data = log.read(offset);
    blockcache.put(score, data);
    return data;

// Write data, returning score.
write(data):
    score = SHA1(data);
    if(lookupscore(score))
        return score;
    offset = log.write(data);
    indexbuffer.write(score, offset);
    indexcache.put(score, offset);
    blockcache.put(score, data);
    bloomfilter.put(score);
    return score;

// Return log offset for score.
lookupscore(score):
    if(!bloomfilter.get(score))
        return nil;
    if(offset = indexcache.get(score))
        return offset;
    if(offset = index.read(score))
        sum = log.summary(offset);
        indexcache.put(sum);
        return offset;
    return nil;

(c) Foundation: Compare by Value

// Read block named by offset.
read(offset):
    if(data = blockcache.get(offset))
        return data;
    // No lookupscore!
    data = log.read(offset);
    blockcache.put(offset, data);
    return data;

// Write data, returning offset.
write(data):
    score = hash(data);
    if(offset = lookupdata(data, score))
        return offset;
    offset = log.write(data);
    indexbuffer.write(score, offset);
    indexcache.put(score, offset);
    blockcache.put(score, data);
    bloomfilter.put(score);
    return offset;

// Return log offset for data.
lookupdata(data, score):
    if(!bloomfilter.get(score))
        return nil;
    for(offset in indexcache.get(score))
        if(read(offset) == data)
            return offset;
    for(offset in index.read(score))
        if(offset in indexcache.get(score))
            continue;
        if(read(offset) == data)
            sum = log.summary(offset);
            indexcache.put(sum);
            return offset;
    return nil;

Figure 4: Algorithms for reading and writing blocks in (a) Venti and Foundation’s (b) compare-by-hash and (c) compare-by-value
modes. Italics in (b) mark differences from (a): the addition of a Bloom filter, the use of a buffer to batch index updates inwrite,
and the loading of entire arena summaries into the index cache after a miss inlookupscore. Italics in (c) mark differences from (b):
the use of log offsets to identify blocks, the use of an insecure hash functionto identify potential duplicate writes, the possibility of
multiple index entries for a given score, and the need to check existing blocks’ contents against new data inlookupdata.

take advantage of the spatial locality inherent in sequen-
tial reads, each time Foundation reads its on-disk index to
find the log offset of some block, it loads and caches the
entire summary for the arena that spans the discovered off-
set. Reading this summary costs an additional seek. This
cost pays off in subsequent reads to the same arena, as
Foundation finds the log offsets of the affected blocks in
the cached summary, avoiding seeks in the on-disk index.

Figure 5 summarizes the costs in disk operations of
each path through the pseudocode in Figure 4. In addi-
tion to sequential reads and fresh writes, the figure shows

whether Venti’s design was inspired by the log segments of LFS [36].

costs for out-of-order reads (reading blocks in a different
order than that in which they were written), sequential du-
plicate writes (writing already-written blocks in the same
order in which they were originally written), and out-of-
order duplicate writes (writing already-written blocks ina
different order).

Note that for out-of-order disk reads and for the first
disk read in each arena, compare-by-hash mode is slower
than Venti, as it performs an additional seek to read the
arena summary. In return, Foundation performs subse-
quent reads at the full throughput of the disk. Section 5
shows that this tradeoff improves overall throughput in
real workloads.
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(a) Venti (b) Foundation: by Hash (c) Foundation: by Value

Out-of-order read
seek+read index bucket
seek+read log block

seek+read index bucket
seek+read arena summary
seek+read log block

seek+read log block

Cost
2 seeks+ I+L reads 3 seeks+ I+L+S reads 1 seek+ L reads

Sequential read
same as out-of-order if(first block in arena)

seek+read index bucket
seek+read arena summary
seek to log block

read log block

if(first block in arena)
seek to log block

read log block

Cost
2 seeks+ I+L reads (1/A) × (3 seeks+ I+S reads)+ L reads (1/A) × 1 seek+ L reads

Out-of-order duplicate write
seek+read index bucket seek+read index bucket

seek+read arena summary
seek+read index bucket
(C+1)× seek+read log block
seek+read arena summary

Cost
1 seek+ I reads (2 seeks+ I+S reads) (C+3 seeks+ I+(C+1)L+S reads)

Out-of-order duplicate write — index entry cached
no disk operations no disk operations seek+ read log block

Cost
none none 1 seek+ L reads

Sequential duplicate write
same as out-of-order if(first block in arena)

same as out-of-order
if(first block in arena)

same as out-of-order
else

read log block
Cost

1 seek+ I reads (1/A) × (2 seeks+ I+S reads) (1/A) × (C+3 seeks+ I+(C+1)L+S reads)
+ (1-1/A) × L reads

Fresh write
seek+read index bucket
seek+write log block
seek+write index bucket

if(Bloom filter false positive)
seek+read index bucket
seek to end of log

write log block
if(index buffer full)

flush index buffer

if(Bloom filter false positive)
seek+read index bucket
C × seek+read log block
seek to end of log

write log block
if(index buffer full)

flush index buffer
Cost

3 seeks+ I reads+ L+I writes B× (2 seeks+ I reads)+ L writes
+ (1/W) × 1 index buffer flush

B× (C+2 seeks+ I+CL reads)+ L writes
+ (1/W) × 1 index buffer flush

Figure 5: Disk operations required to handle the five different read/write cases.A is the number of blocks per arena,B is the
probability of a Bloom filter false positive,C is the probability of a hash collision,I is the size of an index bucket,L is the size of a
log data block,S is the size of an arena summary, andW is the size of the write buffer in index entries.

On fresh writes, Venti performs three seeks: one to read
the index and determine the write is fresh, one to append
the new block to the log, and one to update the index with
the block’s log offset (see Figure 5).

Foundation eliminates the first of these three seeks by
maintaining an in-memory Bloom filter [6] summarizing
the all of the scores in the index. A Bloom filter is a ran-
domized data structure for testing set membership. Us-

ing far less memory than the index itself, the Bloom filter
can check whether a given score is in the index, answer-
ing either “probably yes” or “definitely no”. A “probably
yes” answer for a score that isnot in the index is called a
false positive. Using enough memory, the probability of a
false positive can be driven arbitrarily low. (Section 4 dis-
cuses sizing of the Bloom filter.) By first checking the in-
memory Bloom filter, Foundation determines that a write
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is fresh without reading the on-disk index in all but a small
fraction of these writes.

By buffering index updates, Foundation also eliminates
the seek Venti performs to update the index during a fresh
write. When this buffer fills, Foundation applies the up-
dates in a single, sequential pass over the index. Fresh
writes thus proceed in two phases: one phase writes new
data to the log and fills the index update buffer; a second
phase flushes the buffer. During the first phase, Founda-
tion performs no seeks within the index; all disk writes
sequentially append to the end of the log. In return, it
must occasionally pause to flush the index update buffer;
Section 5 shows that this tradeoff improves overall write
throughput in real workloads.

3.3 Foundation: Compare-by-Value Mode

In compare-by-value mode, Foundation does not assume
that SHA-1 is collision-free. Instead, it names blocks by
their log offsets, and it uses the on-disk index only to iden-
tify potentiallyduplicate blocks, comparing each pair of
potential duplicates byte-by-byte.

While we originally investigated this mode due to (in
our opinion, unfounded) concerns about cryptographic
hash collisions (see [5, 16] for a lively debate), we
were surprised to find that its overall write performance
was close to that of compare-by-hash mode, despite the
added comparisons. Moreover, compare-by-value isal-
waysfaster for reads, as naming blocks by their log offsets
completely eliminates index lookups during reads.

The additional cost of compare-by-value mode can be
seen in thelookupdatafunction in Figure 4(c). For each
potential match Foundation finds in the index cache or the
index itself, it must read the corresponding block from the
log and perform a byte-by-byte comparison.

For sequential duplicate writes, Foundation reads the
blocks for these comparisons sequentially from the log.
Although these reads consume disk bandwidth, they re-
quire a seek only at the start of each new arena. For out-
of-order duplicate writes, however, the relative cost of
compare-by-value is quite high. As shown in Figure 5,
Venti and compare-by-hash mode complete out-of-order
duplicate writes without any disk activity at all, whereas
compare-by-value mode requires a seek per write.

On the other hand, hash collisions in compare-by-value
mode are only a performance problem (as they cause ad-
ditional reads and byte-by-byte comparisons), not a cor-
rectness one. As such, compare-by-value mode can use
smaller, faster (and less secure) hash functions than Venti
and compare-by-hash. Our prototype, for example, uses
the top four bytes of an MD4 hash to select an index block,
and stores the next four bytes in the block itself. Using
four bytes is enough to make collisions within an index
block rare (see Section 4). It also increases the number
of entries that fit in the index write buffer, making flushes

less frequent, and decreases the index size, making flushes
faster when they do occur. Both changes improve the per-
formance of fresh writes.

Section 5 presents a detailed performance comparison
between Venti and Foundation’s two modes.

3.4 Compare-by-Hash vs. Compare-by-Value

It is worth asking what other disadvantages, other than
decreased write throughput, compare-by-value incurs in
naming blocks by their log offsets.

The Venti paper lists five benefits of naming blocks by
their SHA-1 hashes: (1) blocks are immutable: a block
cannot change its value without also changing its name;
(2) writes are idempotent: duplicate writes are coalesced;
(3) the hash function defines a universal name space for
block identifiers; (4) clients can check the integrity of
data returned by the server by recomputing the hash; and
(5) the immutability of blocks eliminates cache coherence
problems in a replicated or distributed storage system.

Benefits (1), (2), and (3) apply also to naming blocks
by their log offsets, as long as the log is append-only. Log
writes are applied at the client in Foundation—the remote
storage service is merely a secondary replica—so (5) is
not an issue. Foundation’s compare-by-value mode par-
tially addresses benefit (4) by cryptographically signing
the log, but naming blocks by their hashes, as in compare-
by-hash mode, still provides a more end-to-end guarantee.

Our own experience with Venti also provides one ob-
scure, but interesting case in which naming blocks by their
SHA-1 hashes provides a small but tangible benefit. A si-
multaneous failure of both the backup disk and the remote
replica may result in the loss of some portion of the log,
after which reads for the lost blocks will fail. In archiv-
ing the user’s current virtual machine, however, Founda-
tion may encounter many of the lost blocks. When it does
so, it will append them to the log as though they were
new, but because it names them by their SHA-1 hashes,
they will have the same names they had before the fail-
ure. As such, subsequent reads for the blocks will begin
succeeding again. In essence, archiving current data can
sometimes “heal” an injured older archive. We have used
this technique successfully in the past to recover from cor-
rupted Venti archives.

4 Implementation

The Foundation prototype consists of just over 14,000
lines of C++ code. It uses VMware’s VIX library [3]
to take and delete VM snapshots. It uses GNU parted,
libext2, and libntfs to read interpret disk images for ex-
port in the/snapshot tree.

The CAS layer stores its arenas, arena summaries, and
index on an external USB hard disk. To protect against
loss of or damage to this disk, the CAS layer can be con-
figured to replicate the log arenas over FTP using libcurl.
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Providers such asdot5hosting.com currently lease re-
mote storage for as little as $5/month for 300 GB of space.
While this storage may not be as reliable as that offered by
more expensive providers, we suspect that fault-tolerance
obtained through the combination of one local and one re-
mote replica is sufficient for most users’ needs. The CAS
layer does not replicate the arena summaries or index, as
it can recreate these by scanning the log.

While users may trust such inexpensive storage
providers as a secondary replica for their data, they are
less likely to be comfortable entrusting such providers
with the contents of their most private data. Moreover,
the external hard drive on which Foundation stores its
data might be stolen. The CAS layer thus encrypts its log
arenas to protect users’ privacy, and it cryptographically
signs the arenas to detect tampering.

For good random-access performance, our implemen-
tation uses a hierarchical HMAC signature and AES en-
cryption in counter mode [11] to sign and encrypt are-
nas. The combination allows Foundation to read, decrypt,
and verify each block individually (i.e., without read-
ing, decrypting, and verifying the entire arena in which
a block resides). Foundation implements its hierarchical
HMAC and counter-mode AES cipher using the OpenSSL
project’s implementations of AES and HMAC. (It also
uses OpenSSL’s SHA-1 and MD4 implementations to
compute block hashes.)

Foundation uses the file system in user-space (FUSE)
library to export its/snapshot tree interface to the host
OS. The guest OS then mounts the host’s tree using the
SMB protocol. To provide the archived disk images for
booting under VMware, Foundation uses a loopback NFS
server to create the appearance of a complete VMware
virtual machine directory, including a.vmx file, the read-
only disk image, and a.vmdk file that points to the read-
only image as the base disk while redirecting new writes
to an initially empty snapshot file.

By default, the prototype uses a 192 MB index cache—
with 128 MB reserved for buffering index writes and the
remaining 64 MB managed in LRU order—and a 1 MB
block cache. It also caches 10 arena summaries in LRU or-
der, using approximately 10 MB more memory. The pro-
totype stores index entries with 6 bytes for the log off-
set, 20 bytes for the score in compare-by-hash mode, and
4 bytes for the score in compare-by-value mode. It sizes
the index to average 90% full for a user-configurable ex-
pected maximum log size. In compare-by-hash mode, a
100 GB log yields a 5.6 GB index. The same log yields a
2.2 GB index in compare-by-value mode. The prototype
relocates index block overflow entries using linear prob-
ing. It sizes its Bloom filter such that half its bits will be
set when the log is full and lookups see a 0.1% false pos-
itive rate. For a 100 GB log, the Bloom filter consumes
361 MB of memory. To save memory, the prototype loads

the Bloom filter only during the nightly archival process;
it is not used during read-only operations such as booting
an image or mounting the/snapshot tree.

Currently, the Foundation prototype uses 512-byte log
blocks to maximize alignment between data stored from
different file systems. Using a 512-byte block size also
aligns blocks with file systems within a disk, as the master
boot record (MBR), for example, is only 512-bytes long,
and the first file system usually follows the MBR directly.
That said, per-block overheads are an significant factor in
Foundation’s performance, so we are considering increas-
ing the default block size to 4 kB (now the default for most
file systems) and handling the MBR as a special case.

5 Evaluation

To evaluate Foundation, we focus on the performance of
saving and restoring VM snapshots, which corresponds
directly to the performance of the CAS layer.

The most important performance metric for Foundation
is how long it takes to save the VM disk image each night.
Many users suspend or power down their machines at
night; a nightly archival process that makes them wait ex-
cessively long before doing so is a barrier to adoption. (We
envision that snapshots are taken automatically as part
of the shutdown/sleep sequence.) We are also concerned
with how long it takes to boot old system images and re-
cover old file versions from the/snapshot tree, though
we expect such operations to be less frequent than nightly
backups, so their performance is less critical.

We evaluate Foundation’s VM archiver in two experi-
ments. First, we analyze the performance of the CAS layer
on microbenchmarks in three ways: using the disk oper-
ation counts from Figure 5, using a simulator we wrote,
and using Foundation itself. These results give insight into
Foundation’s performance and validate the simulator’s
predictions. Second, we measure Foundation’s archival
throughput under simulation on sixteen months of nightly
snapshots using traces derived from our research group’s
own backups.

In both experiments, we compare Foundation in
compare-by-hash and compare-by-value mode with a
third mode that implements the algorithms described in
the Venti paper. Making the comparison this way rather
than using the original Venti software allows us to com-
pare the algorithms directly, without worrying about other
variables, such as file system caches, that would be differ-
ent between Foundation and the actual Venti. (Although
we do not present the results here, we have also imple-
mented Foundation’s compare-by-hash improvements in
Venti itself and obtained similar speedups.)

5.1 Experimental setup

We ran our experiments on a Lenovo Thinkpad T60 laptop
with a 2 GHz Intel Core 2 Duo Processor and 2 GB of
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Expected Throughput (kB/s) Actual Throughput (kB/s)
Foundation FoundationVenti By-Hash By-Value Venti By-Hash By-Value

out-of-order read 18 7.4 37 15 4.8 19
sequential read 18 29,000 33,000 76 13,000 16,000
out-of-order duplicate write 36 9.2 7.4 79 6.0 5.2
    index entry cached 39,000 39,000 37 22,000 22,000 19
sequential duplicate write 36 39,000 29,000 78 23,000 16,000
fresh write 12 4,000 8,100 37 3,800 7,100
    without write buffer flush n/a 11,000 11,000 7,900 8,400

Figure 6: Predicted and actual sustained performance, in MB/s, of the three systems on the cases listed in Figure 5 using the
hardware described in Section 5.1. The actual performance of our Venti implementation is faster than predicted, because operat-
ing system readahead eliminates some seeks. The actual performance of Foundation is slightly slower than predicted because of
unmodeled per-block overheads: using a 4096-byte block size (instead of 512 bytes) matches predictions more closely.

RAM. The laptop runs Ubuntu 7.04 with a Linux 2.6.20
SMP kernel. The internal hard disk is a Hitachi Travelstar
5K160 with an advertised 11 ms seek time and 64 MB/s
sustained read/write throughput, while the external disk is
a 320 GB Maxtor OneTouch III with an advertised 9 ms
seek time and 33 MB/s sustained read/write throughput.

Since Foundation uses both disks through the host OS’s
file system, we measured their read and write throughput
through that interface using the Unixdd command. For
read throughput, we copied a 2.2 GB file to/dev/null;
for write throughput, we copied 2.2 GB of/dev/zero into
a half-full partition. The Hitachi sustained 38.5 MB/s read
and 32.2 MB/s write throughput; the Maxtor sustained
32.2 MB/s read and 26.5 MB/s write throughput.

To measure average seek time plus rotational latency
through the file system interface, we wrote a small C pro-
gram that seeks to a random location within the block de-
vice using thelseek system call and reads a single byte
using theread system call. In 1,000 such “seeks” per
drive, we measured an average latency of 15.0 ms on the
Hitachi and 13.6 ms on the Maxtor. The system was oth-
erwise idle during both our throughput and seek tests.

The simulator uses the disk speeds we measured and
the same parameters (cache sizes, etc.) as our implementa-
tion. Rather than store the Bloom filter directly, it assumes
a 0.1% probability of a false positive.

5.2 Microbenchmarks

To understand Foundation’s performance, we consider the
disk operations required for each of the six read or write
cases shown in Figure 5. For each case, we count the num-
ber of seeks and the amount of data read from and written
to the disk. From these and the disk parameters measured
and reported above, we compute the speed of each algo-
rithm in each case. Figure 6 shows the predicted perfor-
mance and the performance of the prototype. (The simu-
lated performance matches the predictions made using the
equations in Figure 5 exactly.)

In both prediction and in reality, compare-by-hash is
significantly faster than Venti for sequential accesses, at

the cost of slowing out-of-order accesses, which load
arena summaries that end up not being useful. Compare-
by-value reads faster than compare-by-hash, since it
avoids the index completely, but it handles duplicate
writes slower, since it must compare each potential du-
plicate to previously-written data from the log.

The most dramatic difference between compare-by-
hash and compare-by-value is the case of an out-of-order
duplicate write for which the index entry cache has a cor-
responding record, but the block cache does not. In this
case, Venti and compare-by-hash can declare the write a
duplicate without any disk accesses, while compare-by-
value must load the data from disk, resulting in dramat-
ically lower throughput. (The throughput for Venti and
compare-by-hash is limited only by the bandwidth of the
local disk in this case.)

Sequential duplicate writes are fast in both Foundation
modes. In compare-by-hash mode, Foundation is limited
by the throughput of the local disk containing the snap-
shot. The arena summaries needed from the external disk
are only 5% the size of the snapshot itself. In compare-by-
value mode, Foundation must read the snapshot from the
local disk and compare it again previously-written data
from the log disk. Having two disks arms here is the key
to good performance: on a single-disk system the perfor-
mance would be hurt by seeks between the two streams.

Fresh writes proceed at the same speed in both Foun-
dation modes except for the index buffer flushes. Because
index entries are smaller in compare-by-value mode, the
128 MB buffer holds more entries and needs to be flushed
less frequently: after every 4 GB of fresh writes rather
than every 2.3 GB. At that rate, index flushes are still an
important component of the run time. Using a larger buffer
size or a larger data block size would reduce the flush fre-
quency, making the two modes perform more similarly.

The predictions match Foundation’s actual perfor-
mance to within a factor of 2.25, and the relative orderings
are all the same. Foundation is slower than predicted be-
cause the model does not account for time spent encrypt-
ing, signing, verifying, and decrypting the log; time spent
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Figure 7: Distribution of sizes and write times for 400 nightly
snapshots of one of our research group’s home directory disks.

compressing and decompressing blocks; and constant (per
512-byte block) overheads in the run-time system. Using
4096-byte blocks and disabling encryption, compression,
and authentication yields performance that matches the
predictions more accurately.

5.3 Trace-driven Simulation

We do not yet have long-term data from using Foundation,
but as mentioned earlier, our research group takes nightly
physical backups of its central file server using a 15-disk
Venti server. The backup program archives entire file sys-
tem images, using the file system block size as the archival
block size. We extracted over a year of block traces from
each of the file server’s 10 disks. These traces contain,
for each night, a list of the disk blocks changed from the
previous night, along with the blocks’ SHA-1 hashes. We
annotated each trace with the data log offsets each block
would have been stored at if data from the disk were the
only data in a Venti or Foundation server. We then ran the
traces in our simulator to compare the two Foundation op-
erating modes and the Venti mode.

To conserve space, we discuss the results from only one
of the traces here. The relative performance of the three
algorithms, however, is consistent across traces. The disk
for the trace we chose hosts the home directories of four
users. The trace covers 400 days. When the trace starts,
the disk has 41.7 GB of data on it; when the trace ends,
the disk has 69.9 GB of data on it. The parameters for
the simulation are the same as described in Section 5.1,
except that blocks are 32 kB, to match the traces, rather
than 512 bytes as in Foundation.

The most important metric is the duration of the nightly
snapshot process. Figure 7 plots the distributions of snap-
shot sizes and completion times. Even though 95% of

snapshots are larger than 128 MB, the vast majority
of snapshots—90% for compare-by-value and 94% for
compare-by-hash—finish in a minute or less.

Figure 8 breaks down the average performance of a
snapshot backup. The differences in snapshot speed—
849 kB/s for Venti, 20,581 kB/s for compare-by-hash, and
15,723 kB/s for compare-by-value—are accounted for al-
most entirely by the time spent seeking in the external
disk. Foundation’s use of the Bloom filter and arena sum-
maries reduces the number of seeks required in compare-
by-hash mode by a factor of 240 versus Venti. Compare-
by-value mode reintroduces some seeks by reading log
blocks to decide that writes are duplicates during lookup.

To access archived data, Foundation users will either
use the file system snapshot server or boot an archived
VM. In both cases, the relevant parts of disk can be read
as needed by the file system browser or the VMM.

In many cases, Foundation can satisfy such reads
quickly. Comparing the measured performance of Foun-
dation in Figure 6 with the performance of our test
system’s internal hard drive, we note that Foundation’s
compare-by-value mode is only 1.8 times slower for out-
of-order reads and 2.2 times slower for sequential reads.
However, in eliminating duplicate data during writes,
Foundation may introduce additional seeks into future
reads, since the blocks of a disk image being read may
originally have been stored as part other disk images ear-
lier in the log. We call this problemfragmentation.

Unfortunately, we do not have traces of the reads re-
quests serviced by our research group’s Venti server, so
it is difficult to simulate to what degree users will be af-
fected by such fragmentation in practice. As an admittedly
incomplete benchmark, however, we simulate reading en-
tire disk images for each snapshot. We return to the frag-
mentation problem in Section 7.2.

Figure 9 summarizes the performance of reading full
disk images. Again the differences in performance are al-
most entirely due to disk seeks: 739 minutes seeking for
Venti, 41 minutes seeking for compare-by-hash, and 35
minutes seeking for compare-by-value. Since compare-
by-value eliminates index lookups during read, its seeks
are all within the data log. Such seeks are due to fragmen-
tation, and for compare-by-value mode they account for
the entire difference between the predicted performance
of sequential reads in Figure 6 with the simulated perfor-
mance in Figure 9.

In compare-by-value mode, since the block identifiers
are log offsets, the reads could be reordered to reduce the
amount of seeking. As a hypothetical, the column labeled
“Sorted” shows the performance if the block requests
were first sorted in increasing log offset. This would cut
the total seek time from 35 minutes to 8 minutes, also im-
proving the number of block cache hits by a factor of 24.
Although making a list of every block may not be realis-
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FoundationVenti By-Hash By-Value

average snapshot write speed 849 kB/s 20,581 kB/s 15,723 kB/s

average snapshot time 648.4 s 26.7 s 35.0 s
    ... reading external disk 4.1 s 2.2 s 4.5 s
    ... writing external disk 21.6 s 20.0 s 19.8 s
    ... seeking in external disk 622.3 s 2.6 s 10.7 s
    ... waiting for local disk; external disk idle 0.4 s 2.0 s 0.0 s

average # of external disk seeks 46,099 192 792
    ... to index data 31,415 133 133
    ... to log data 14,684 58 658

average # of lookup calls; these do ... 17,196 2,526 2,526
   ... # of index seeks (also # of index reads) 16,731 73 73
   ... # of log seeks 0 0 442
   ... # of log reads 0 0 2,482

Figure 8: Statistics gathered while writing 400 nightly snapshots,in simulation. The average snapshot size is 537 MB. Because the
VMM identifies which blocks have changed since the previous snapshot, on average only 78.5 MB of blocks are duplicates. There
are, however, occasional large spikes of duplicates. 9 of the 400 nights contain over 1 GB of duplicate blocks; 2 contain over 5 GB.

Foundation
By-ValueVenti By-Hash Unsorted Sort-1024 Sorted

average disk image restore speed 1,271 kB/s 13,894 kB/s 15,309 kB/s 20,842 kB/s 28,940 kB/s

average disk image restore time 775 min 71 min 64 min 47 min 34 min
    ... reading external disk 36 min 30 min 30 min 29 min 26 min
    ... seeking in external disk 739 min 41 min 35 min 18 min 8 min

average # of block cache hits 9,660 9,660 9,660 31,203 232,597
average # of index entry cache hits 222,936 1,824,023 0 0 0

average # of external disk seeks 3,283,167 182,337 153,853 79,495 35,218
    ... to index data 1,613,802 25,431 0 0 0
    ... to log data 1,669,365 156,906 153,853 79,495 35,218

average # of external disk reads 3,450,540 1,849,454 1,836,738 1,815,196 1,613,802
    ... of index data 1,613,802 12,716 0 0 0
    ... of log data 1,836,738 1,836,738 1,836,738 1,815,196 1,613,802

Figure 9: Statistics gathered while reading disk images of 400 nightly snapshots, in simulation. The average disk image is 56 GB.

tic, a simple heuristic can realize much of the benefit. The
column labeled “Sort-1024” shows the performance when
1024 reads at a time are batched and sorted before being
read from the log. This simple optimization cuts the seek
time to 18 minutes, while still improving the number of
block cache hits by a factor of 3.2.

6 Related Work

Related Work in Preservation Most preservation work
falls into one of two groups. (The following description is
simplified somewhat; see Lee et al. [24] for a detailed dis-
cussion.) The first group (e.g. [12, 14, 37, 41]) proposes
archiving a limited set of popular file formats such as
JPEG, PDF, or PowerPoint. This restriction limits the dig-
ital artifacts that can be preserved to those than can be
encoded in a supported format. In contrast, Foundation
preserves both the applications and configuration state
needed to view both popular and obscure file formats.

In the case that a supported format becomes obsolete,
this first group advocates automated “format migration”,

in which files in older formats are automatically converted
to more current ones. Producing such conversion routines
can be difficult: witness PowerPoint’s inability to maintain
formatting between its Windows and Mac OS versions.
Furthermore, perfect conversion is sometimes impossi-
ble, as between image formats that use lossy compression.
Rather than migrate formats forward in time, Foundation
enables travel back in time to the environments in which
old formats can be interpreted.

The second group of preservationists (e.g. [15,38]) ad-
vocates emulating old hardware and/or operating systems
in order to run the original applications with which users
viewed older file formats. Foundation uses emulation, but
recognizes that simply preserving old applications and op-
erating systems is not enough. Often, the rendering of
a digital artifact is dependent on configuration state, op-
tional shared libraries, or particular fonts. A default Fire-
fox installation, for example, may not properly display
a web page that contains embedded video, non-standard
fonts, or Flash animations. Foundation captures all such
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state by archiving full disk images, but it limits the hard-
ware that must be emulated to boot such images by con-
fining users’ daily environments within a VM.

An offshoot of the emulation camp proposes the con-
struction of emulators specifically for archival purposes.
Lorie proposed [27] storing with each digital artifact a
program for interpreting the artifact; he further proposed
that such programs be written in the language of a Univer-
sal Virtual Computer (UVC) that can be concisely speci-
fied and for which future emulators are easy to construct.
Ford has proposed [13] a similar approach, but using an
x86 virtual machine with limited OS support as the em-
ulation platform. Foundation differs from these two sys-
tems in that it archives files with the same OS kernel and
programs originally used to view them, rather than require
the creation of new ones specific to archival purposes.

Internet Suspend/Resume (ISR) [22] and Machine
Bank [43] use a VM to suspend a user’s environment on
one machine and resume it on another. SecondSite [10]
and Remus [9] allow resumption of services at a site that
suffers a power failure by migrating the failed site’s VMs
to a remote site. Like these systems, Foundation requires
that a user’s environment be completely contained within
a VM, but for a different purpose: it allows the “resump-
tion” of state from arbitrarily far in the past.

Related Work in Storage Hutchinson et al. [19]
demonstrated that physical backup can sustain higher
throughput than logical backup, but noted several prob-
lems with physical backup. First, since bits are not inter-
preted as they are backed up, the backup is not portable;
Foundation provides portability by booting the entire im-
age in an emulator. Second, it is hard to restore only a sub-
set of a physical backup; Foundation interprets file system
structures to provide the/snapshot tree, allowing users to
recover individual files using standard file system tools.
Third, obtaining a consistent image is difficult; Founda-
tion implements copy-on-write within the VMM to do so,
but other tools, such as the Linux’s Logical Volume Man-
ager (LVM) [25] could be used instead. Finally, incremen-
tal backups are hard; addressing blocks by their hashes as
in Venti solves this problem.

The SUNDR secure network file system [26] also uses
a Venti-like content-addressed storage server but uses a
different solution than Founation to reduce index seeks.
SUNDR saves all writes in a temporary disk buffer with-
out deciding whether they are duplicate or fresh and then
batches both the index searches to determine freshness
and the index updates for the new data. Foundation avoids
the temporary data buffer by using the Bloom filter to de-
termine freshness quickly, buffering only the index entries
for new writes, and never the content.

Microsoft Single-Instance Store (SIS) [7] identifies and
collates files with identical contents within a file system,
but rather than coallescing duplicates on creation, SIS in-

stead finds them using a background “groveler” process.
A number of past file systems have provided support

for sharing blocks between successive file versions using
copy-on-write (COW) [17,31,39,42]. These systems cap-
ture duplicate blocks between versions of the same file,
but they fail to identify and coalesce duplicate blocks that
enter the file system through different paths—as when a
user downloads a file twice, for example. Moreover, they
cannot coalesce duplicate data from multiple, distinct file
systems; a shared archival storage server built on such sys-
tems would not be as space-efficient as one built on CAS.

Peabody [20] implements time travel at the disk level,
making it possible to travel back in time to any instant and
get a consistent image. Chronus [45] used Peabody to boot
old VMs to find a past configuration error. Peabody uses a
large in-memory content-addressed buffer cache [21] to
coalesce duplicate writes. Because it only looks in the
buffer cache, it cannot guarantee that all duplicate writes
are coalesced. In contrast, Foundation is careful to find all
duplicate writes.

LBFS [30] chooses block boundaries according to
blocks’ contents, rather than using a fixed block size, in
order to better capture changes that shift the alignment of
data within a file. Foundation is agnostic as to how block
boundaries are chosen and could easily be adapted to do
the same.

Time Machine [40] uses incremental logical backup
to store multiple versions of a file system. It creates the
first backup by logically mirroing the entire file system
tree onto a remote drive. For each subsequent backup,
Time Machine creates another complete tree on the re-
mote drive, but it uses hard links to avoid re-copying un-
changed files. Unlike Foundation, then, Time Machine
cannot efficiently represent single-block differences. Even
if a file changes in only one block, Time Machine creates
a complete new copy on the remote drive. The storage
cost of this difference is particularly acute for applications
such as Microsoft Entourage, which stores a user’s com-
plete email database as a single file.

7 Future Work

The Foundation CAS layer is already a fully functioning
system; it has been in use as one author’s only backup
strategy for six months now. In using it on a daily basis,
however, we have discovered two interesting areas for fu-
ture work: storage reclamation and fragmentation.

7.1 Storage Reclamation

Both the Plan 9 experience and our own experience with
Venti seem to confirm our hypothesis that, in practice,
content-addressed storage is sufficiently space-efficient
that users can retain nightly disk snapshots indefinitely.

Nonetheless, it is not difficult to imagine usage patterns
that would quickly exhaust the system’s storage. Consider,
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for example, a user that rips a number of DVDs onto a
laptop to watch during a long business trip, but shortly af-
terwards deletes them. Because the ripped DVDs were on
the laptop for several nights, Foundation is likely to have
archived them, and they will remain in the user’s archive.
After a number of such trips, the archive disk will fill.

One solution to this problem would allow users to
selectively delete snapshots. This solution is somewhat
risky, in that a careless user might delete the only snapshot
that is able to interpret a valued artifact. We suspect that
users would be even more frustrated, however, by having
to add disks to a system that was unable to reclaim space
they felt certain was being wasted.

Like Venti, Foundation encodes the metadata describ-
ing which blocks make up a snapshot as a Merkle tree
and stores interior nodes of this tree in the CAS layer.
To simplify finding a particular snapshot within the log,
Foundation also implements a simplesystem catalogas
follows. After writing a snapshot, Foundation writes the
root of the snapshot’s Merkle tree along with the time at
which it took the snapshot to a file that it then archives in
the CAS layer. It repeats this process after writing each
subsequent snapshot, appending the new snapshot’s root
and time to the existing list and re-archiving the list. The
last block in Foundation’s log is thus always the root of
the latest version of the system catalog.

Conceptually, deleting a snapshot resembles garbage
collection in programming languages or log cleaning in
LFS. First, the CAS layer writes a new version of the sys-
tem catalog that no longer points to the snapshot. Then,
the system reclaims the space used by blocks that are no
longer reachable from any other catalog entry. A more re-
cent snapshot, for example, may still point to some block
in the deleted snapshot.4

Interestingly, the structure of Foundation’s log makes
identifying unreferenced blocks particularly efficient: as
a natural result of the log being append-only, all pointers
within the log point “backwards”. Garbage collection can
thus proceed in a single, sequential pass through the log
using an algorithm developed by Armstrong and Virding
for garbage collecting immutable data structures in the Er-
lang programming language [4].

The algorithm works as follows. Starting at the most re-
cent log entry and scanning backwards, it maintains a list
of “live” blocks initialized from the pointers in the system
catalog. Each time it encounters a live block, it deletes
that block from its list. If the block is a metadata block
that contains pointers to other blocks, it adds these point-
ers to its list. If the algorithm encounters a block that is
not in its list, then there are no live pointers to that block
later in the log, and since all pointers point backwards, the
algorithm can reclaim the block’s space immediately. The

4Here Foundation differs from LFS, which collects all blocks not
pointed to by the most recent version.

system can also use this algorithm incrementally: start-
ing from the end of the log, it can scan backward until
“enough” space has been reclaimed, and then stop.

The expensive part of the Erlang algorithm is maintain-
ing the list of live blocks. If references to many blocks
occur much later in the log than the blocks themselves,
this list could grow too large to fit in memory. We note,
however, that a conservative version of the collector could
use a Bloom filter to store the list of live blocks. Although
false positives in the filter would prevent the algorithm
from reclaiming some legitimate garbage, its memory us-
age would be fixed at the size of the Bloom filter.

Finally, to reclaim the space used by an unreferenced
block, Foundation can simply rewrite the log arena in
which the block occurs without the block, using an atomic
rename to replace the old arena. Because this rewriting
shifts the locations of other blocks in the arena, an extra
pass is required in compare-by-valuemode, where blocks’
names are their locations in the log: the system must scan
from the rewritten arena to the tail of the log, rewriting
pointers to the affected arena as it goes. In compare-by-
hash mode, however, blocks’ names are independent of
their locations in the log, so no extra pass is required.

7.2 Fragmentation

Most of our current work on the Foundation CAS layer
has focused on reducing the number of seeks within the
index. Having done so, however, we have noticed a poten-
tial secondary bottleneck: seeks within the data log itself.
Consider the case of an archived snapshot made up of one
block from each of all of the arenas in the log. Even if no
seeks were required to determine the location of the snap-
shot’s blocks, reading the snapshot would still incur one
seek (into the appropriate arena) per block.

We have come to call this problemfragmentation. We
have not yet studied the sources of fragmentation in detail.
In our experience so far it is a visible problem, but not
a serious one. We simply see some slowdown in reading
later versions of disk images as they evolve over time.

Unfortunately, unlike the seeks within the system’s in-
dex, seeks due to fragmentation cannot be eliminated;
they are a fundamental consequence of coalescing dupli-
cate writes (the source of Foundation’s storage efficiency).
We suspect that it also exists in file systems that perform
copy-on-write snapshots, such as WAFL [17], although
we have not found any reference to it in the literature.

We do note that fragmentation can be eliminated in any
one snapshot, at the expense of others, by copying all of
the blocks of that snapshot into a contiguous region of
the log. If the system also removes the blocks from their
original locations, this process resembles the “defragmen-
tation” performed by a copying garbage collector. We are
thus considering implementing within Foundation a ver-
sion of the Erlang algorithm discussed above that reclaims
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space by copying live data, rather than deleting dead data,
in order to defragment more recently archived (and pre-
sumably, more frequently accessed) snapshots.

One other potential motivation for defragmenting more
recent snapshots in this manner is that it will likely im-
prove the write throughput of compare-by-value mode,
since the blocks it compares against while writing are un-
likely to change their ordering much between snapshots.

8 Conclusion

Foundation’s approach to preservation—archiving consis-
tent, nightly snapshots of a user’s entire hard disk—is a
straight-forward, application-independent approach to au-
tomatically capturing all of a user’s digital artifacts and
their associated software dependencies. Archiving these
snapshots using content-addressed storage keeps the sys-
tem’s storage cost proportional to the amount of new data
users create and eliminates duplicates that file-system-
based techniques, such as copy-on-write, would miss. Us-
ing the techniques described in this paper, CAS achieves
high throughput on remarkably modest hardware—a sin-
gle USB hard disk—improving on the read and write
throughput achieved by an existing, state-of-the-art CAS
system on the same hardware by an order of magnitude.
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